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Summary

Complex diseases are presumed to be the results of the interaction of several genes and environmental factors, with
each gene only having a small effect on the disease. Mapping complex disease genes therefore becomes one of
the greatest challenges facing geneticists. Most current approaches of association studies essentially evaluate one
marker or one gene (haplotype approach) at a time. These approaches ignore the possibility that effects of multilocus
functional genetic units may play a larger role than a single-locus effect in determining trait variability. In this article,
we propose a Combinatorial Searching Method (CSM) to detect a set of interacting loci (may be unlinked) that
predicts the complex trait. In the application of the CSM, a simple filter is used to filter all the possible locus-sets
and retain the candidate locus-sets, then a new objective function based on the cross-validation and partitions of
the multi-locus genotypes is proposed to evaluate the retained locus-sets. The locus-set with the largest value of the
objective function is the final locus-set and a permutation procedure is performed to evaluate the overall p-value
of the test for association between the final locus-set and the trait. The performance of the method is evaluated
by simulation studies as well as by being applied to a real data set. The simulation studies show that the CSM has
reasonable power to detect high-order interactions. When the CSM is applied to a real data set to detect the locus-set
(among the 13 loci in the ACE gene) that predicts systolic blood pressure (SBP) or diastolic blood pressure (DBP),
we found that a four-locus gene-gene interaction model best predicts SBP with an overall p-value = 0.033, and
similarly a two-locus gene-gene interaction model best predicts DBP with an overall p-value = 0.045.
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Introduction

Searching for a set of susceptibility genes responsible
for a complex trait is one of the greatest challenges
facing geneticists. There is increasing evidence suggest-
ing that gene-gene and gene-environment interactions
play an important role in liability to complex diseases
(Risch 2000; Risch et al. 1999; Nicolae & Cox 2002;
Carrasquillo et al. 2002; Olson et al. 2002; Hoh & Ott

∗Corresponding author: Shuanglin Zhang, Ph.D., Department of
Mathematical Sciences, Michigan Technological University, 1400
Townsend Drive, Houghton, MI 49931, Phone: (906) 487-2095,
Fax: (906) 487-3133. E-mail: shuzhang@mtu.edu

2003; Trornton et al. 2004). Methods to search for a set
of marker loci in different genes and to analyze these loci
jointly are therefore critical. Most current approaches
of association studies in practice essentially evaluate one
locus at a time. These methods make the implicit as-
sumption that susceptibility loci can each be identified
through their independent, marginal contributions to
the trait variability. This simplified approach ignores the
possibility that effects of multilocus functional genetic
units play a larger role than the single-locus effect in
determining trait variability (Nelson et al. 2001; Hoh
et al. 2001; Templeton 2000). Forming haplotypes over
multiple neighboring loci in one gene can increase the
power of gene mapping studies (Zhao et al. 2000; Fallin
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et al. 2001; Schaid et al. 2002; Zhang et al. 2003a), but
these methods only work locally in a given genomic
region. Although various authors have postulated the
need for investigating multiple interacting genes jointly
(Tiwari & Elston 1998; Cox et al. 1999; Templeton
2000; Wilson 2001; Cordell et al. 2001; Cordell 2002;
Culverhouse et al. 2002; Moore & Williams 2002;
Moore 2003), only a few viable approaches in this di-
rection exist (Hoh et al. 2001).

Two intriguing methods have recently been proposed
by Nelson et al. (2001) and Ritchie et al. (2001, 2003)
to allow for the joint analysis of multiple-marker loci for
quantitative traits and qualitative traits, respectively. Nel-
son et al.’s (2001) Combinatorial Partitioning Method
(CPM) works by evaluating all possible partitions of
multi-locus genotypes and retaining only those parti-
tions fulfilling certain optimal criteria. Using the CPM,
Nelson et al. (2001) detected clinical interactions be-
tween loci that individually showed little or no effect
on the phenotype. Although 2-way interactions can be
analyzed with the CPM, the number of possible parti-
tions with three biallelic loci is over 1021. Clearly, the
CPM is not feasible if we analyze the interactions involv-
ing more than two loci. The Multifactor Dimensionality
Reduction (MDR) method proposed by Ritchie et al.
(2001, 2003) and recently reviewed by Moore (2004)
is designed for detecting and characterizing high-order
gene-gene and gene-environment interactions in a bal-
anced case-control design. With the MDR, multilo-
cus genotypes are pooled into high-risk and low-risk
groups, reducing the genotype predictor from high di-
mensions to one dimension. The new one-dimensional
multilocus-genotype variable is used to choose the best
set of loci from every two- to L-locus sets accord-
ing to classification and prediction errors. However,
the MDR method is only applicable to dichotomous
traits.

In this paper, we present an alternative method, the
Combinatorial Searching Method (CSM). To apply the
CSM to detect a set of interacting loci (possibly un-
linked) that predict the complex trait, a simple filter is
first used to filter all the possible locus-sets and retain
the candidate locus-sets, then a new objective function
based on the cross-validation and partitions of the multi-
locus genotypes is proposed to evaluate the retained
locus-sets. The locus-set with the largest value of the

objective function is the final locus-set and a permuta-
tion procedure is used to evaluate the p-value of the test
for association between the final locus-set and the trait.
The simulation studies show that the CSM has reason-
able power to detect high-order interactions. We also
apply the method to the ACE data set (Zhu et al. 2001)
to identify two sets of loci that “best” predict SBP and
DBP, respectively.

Methods

The objective of the CSM is to identify a set of loci that
predicts the trait variability. Suppose that K SNP loci
are genotyped in each of the sampled individuals. The
application of the CSM to identify a subset of the K loci
can be divided into three steps as described in Figure 1.
Here we describe each of these steps in detail for both
quantitative traits and qualitative traits. In the following
discussion, a locus-set means a set of loci, and a l-locus
set means a locus-set with l loci.

Step 1: Search for candidate locus-sets
First, we search every single-locus set and retain those

that explain a significant amount of trait variability.
Next, we search among all the two-locus sets and retain
the two-locus sets that explain a significant amount of
trait variability, then consider three- to L-locus sets (L is
a pre-specified number). To evaluate the locus-sets, we
need a statistical function (or an objective function) that

Step 1

Evaluate amount of 
variability explained by 
each of  i-loci sets

Retain sets of loci that 
explain a significant 
amount of trait variability

i=i+1

Step 2 Validate retained sets of loci by genotypic 
partitions and two-fold cross-validation

Step 3
Select the “best” set of loci and make inferences

Figure 1 The three steps of the CSM.

2 Annals of Human Genetics (2006) 70,1–16 C© 2006 The Authors
Journal compilation C© 2006 University College London



ahg˙262 ahg2006-v1.cls March 22, 2006 :844

CSM for Detecting a Set of Interacting Loci

provides a measure for each of the locus-sets. When we
compare among the different locus-sets with the same
number of loci, the correlation coefficient between trait
values and numerical codes of the multi-locus genotypes
is a choice of the objective function. The numerical
codes of the multi-locus genotypes can be defined in
many ways. In this article, we use the following way
to define the numerical code. For a sample of size n,
consider a l-locus set (1 ≤ l ≤ L). Let g 1, . . . , g m+1

denote all the distinct multi-locus genotypes observed
in the sample, where m + 1 is the total number of
distinct multi-locus genotypes in the sample. Define a
numerical code for the multi-locus genotype of the ith
individual as a numerical vector Xi = (xi1, . . . , xim),
where

xi j =
{

1 if the genotype of i th individual is g j

0 otherwise.
(1)

To define the correlation between the trait values
and the numerical codes, we first project the multi-
dimensional vector Xi into a one-dimensional number
by

xi =
m∑

j=1

α j xi j ,

where α1, . . . , αm are parameters. We estimate α =
(α1, . . . , αm )T by α̂ = (α̂1, . . . , α̂m )T which maxi-
mize the correlation between trait values and one-
dimensional genotype scores, that is,

ρ2(α̂) = max
α

ρ2(α),

where ρ(α) is the correlation coefficient between the
trait values and the one-dimensional codes x1, . . . ,
xn. Using α̂ = (α̂1, . . . , α̂m )T, we define a new one-
dimensional space or direction that captures the max-
imum information of correlation between the trait
and the genotype code in the initial data. Let x̂i =∑m

j=1 α̂ j xi j denote the genotypic code in the “best” di-
rection and denote R2 = ρ2(α̂). Then R2 is the square
of the correlation coefficient between the trait values
and x̂1, . . . , x̂n . Let yi denote the trait value of the ith
individual (for a qualitative trait, denote affected as 1 and
unaffected as 0). The above procedure is equivalent to
the following linear model setting. Assume that the trait

yi and the numerical genotypic code Xi = (xi1, . . . ,
xim) follow the linear model

yi = α0 + α1xi1 + · · · + αm xim + εi , (2)

then α̂1 . . . , α̂m given above are also the least-squares es-
timators of α1, . . . , αm . Let ŷi = α̂0 + α̂1xi1 + · · · +
α̂m xim be the predicted trait value of the ith individual
under linear model (2). Then R2 = ρ2(α̂) given above
is the square of the correlation coefficient between the
trait yi and predicted trait value ŷi , and R2 also rep-
resents the proportion of the total variance of the trait
value explained by the genotype. Although R2 is a rea-
sonable measure as an objective function to compare the
data sets with the same number of independent variables
under a linear model, a disadvantage of R2 is that it will
tend to increase as the number of independent variables
increases, and thus will favor data sets with more inde-
pendent variables. Theoretically, two locus-sets with the
same number of loci will have the same number of geno-
types, therefore the same number of independent vari-
ables. However, due to the rare allele frequencies of some
markers, some of the genotypes for a specific locus-set
may not appear in the sample. Thus, two locus-sets with
the same number of loci may have a different number of
genotypes and thus a different number of independent
variables. Based on these considerations, we propose
to use Leave-One-Out Cross-Validation (LOOCV) to
calculate R2. The LOOCV R2, denoted by R2

1, is the
square of correlation coefficient between the trait yi and
the LOOCV predicted trait value ŷ− i . To calculate ŷ− i ,

remove the ith individual from the sample and use the
data of the remaining n − 1 individuals to calculate α̂ j ,
the least-squared estimator of α j ( j = 0, 1, . . . , m ),
then ŷ− i = α̂0 + α̂1xi1 + · · · + α̂m xim . Comparing to
R2, R2

1 is a less biased estimator of the population’s pro-
portion of the trait variability explained by genotypes
(Goutte 1997; Stone 1977). Under linear model (2), we
are able to give a simple formula to allow quick com-
putation of R2

1 (Hastie et al. 2001, page 216). When
R2

1 is used to compare locus-sets with the same num-
ber of loci, many criteria can be used to decide which
locus-sets should be retained for further studies, includ-
ing biological significance (e.g., R2

1 ≥ 0.05), the top 1%
or the top 10 of the locus-sets for a fixed number of
loci, or simply the best. In our simulation studies, for
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computational consideration, we choose the best one as
the retained locus-set (the one with the largest value of
R2

1) for each of the one- to L-locus sets. In the appli-
cation of the CSM to a real data set, we choose the top
10 locus-sets for each of the one- to L-locus sets.

Step 2: Validate the retained locus-sets
Since the retained locus-sets from step 1 were searched

from a large number of locus-sets, model validation is
critical in this situation (Coffey et al. 2004a, b). In the
second step, we will validate and compare the locus-sets
retained in the first step. To validate and compare the
locus-sets retained in the first step, we need to con-
sider the following problems: (1) When the number
of genotypes m + 1 is large, we need to use some
dimension reduction methods to deal with the sparse
data; (2) In the first step, having chosen a locus-set that
is “good” or “best” for a particular sample of data,
we have no assurance that the locus-set can be reli-
ably applied to other samples, and thus, need to verify
the reliability of the retained locus-sets; (3) Although
R2

1 is a good measure to compare locus-sets with the
same number of loci, R2

1 still tends to increase with the
number of independent variables, and the locus-sets re-
tained in the first step have different numbers of loci
and thus have quite different numbers of independent
variables. Based on these considerations, we propose the
following method to calculate the value of the objec-
tive function used to compare the locus-sets retained in
step 1.

To deal with the sparse data due to the large number
of multilocus genotypes, we use Nelson et al.’s (2001)
idea of partitions or groups of multilocus genotypes.
Nelson et al. (2001) proposed to evaluate every possible
partition of the genotypes. It makes the computation in-
feasible due to the large number of possible partitions if
we consider interactions involving more than two bial-
lelic loci. As noted by Culverhouse et al. (2004), a large
part of the partitions is unnecessary to be evaluated.
In fact, a good partition should have the property that
genotypes with similar trait values will be in the same
group. Based on this consideration, we propose to find
the approximate “best” partition of the genotypes by
the K-mean clustering method (Richard et al. 1998,
see Appendix for detail) to group the multilocus geno-
types with similar trait values into the same group. For
a given locus-set with m + 1 multilocus genotypes, we

propose to cluster the genotypes into k groups where
k = 2, 3, . . . , m + 1. For example, when we consider
three biallelic loci, the number of partitions evaluated
by Nelson et al. (2001)’s method is over 1021, while we
only evaluate 26 different cases (k = 2, . . . , 27).

For a given number of groups k, we denote G1, . . . ,
Gk to be the k genotype groups found by the K-mean
clustering method. We take G1, . . . , Gk as if they were k
different genotypes and define a numerical code for the
multi-locus genotype of the ith individual as a numerical
vector Xi = (xi,1, . . . , xi,k−1), where

xi, j ={1 if the genotype of i th individual belongs to Gj

0 otherwise.
(3)

To study the reliability of a locus-set and find a suitable
objective function to compare the locus-sets with differ-
ent numbers of loci, we use a bagging version of split-
sample analysis (or bagging version of two-fold cross-
validation). With this method, we randomly split the
sample into two groups with approximately the same
sample size. First, we use the first group as a train-
ing group and the second group as a test group. Us-
ing the data of the training group and new numeri-
cal codes in (3), we calculate α̂ = (α̂0, α̂1, . . . , α̂k−1)T

under linear model (2) and use the prediction equa-
tion ŷ = α̂0 +

∑k−1
j=1 α̂ j x j to predict trait values of in-

dividuals in the training group and in the test group.
Then, we use the second group as a training group and
the first group as a test group re-do the above procedure.
In this way, each individual, individual i for example, has
two prediction values: one, denoted by ŷi , is using train-
ing group to predict training group (called training to
training prediction), the other one, denoted by ŷ∗

i , is us-
ing training group to predict test group (called training
to test prediction). We repeat this randomly split proce-
dure many times (100 times in this paper) and calculate
the average of the two kinds of prediction values for each
of the individuals. Denote average training to training
prediction trait values by ŷ1, . . . , ŷn and average train-
ing to test prediction values by ŷ

∗
1 , . . . , ŷ

∗
n . Denote the

square of the correlation coefficient between y1, . . . , yn

and ŷ1, . . . , ŷn by R2(1) and the square of the correla-
tion coefficient between y1, . . . , yn and ŷ

∗
1 , . . . , ŷ

∗
n by

R2(2). The quantity R2(2) is called the cross-validation
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correlation, and the quantity S2 = (R2 (1) − R2(2))/
(R2(1) + R2(2)) is called the shrinkage on cross-
validation. Typically, comparing to R2(1), R2(2) is a less
biased estimator of the population proportion of the trait
value variability explained by genotypes. S2 is a measure
that indicates the reliability of the model (how a “good”
or “best” locus-set for a particular sample of data can be
reliably applied to other samples). The small value of S2

means that the model or the locus-set is reliable, i.e. the
locus-set can predict the trait value as well in any new
sample as it does in the sample at hand. So, a “good”
locus-set should correspond to a large value of R2(2)
and a small value of S2 . From this argument, R2(2)

S can
be a reasonable measure to compare different locus-sets.
Denote

T(k) =
R2(2)

S
, (4)

where k is the number of genotype groups. For a spe-
cific locus-set with m + 1 distinct multilocus genotypes
observed in the sample, the final value of the objective
function of the locus-set is given by

T = max
2≤k≤m+1

T(k). (5)

In summary, for a locus-set with m + 1 distinct geno-
types in the sample, the algorithm to calculate the ob-
jective function proceeds as follows:(starting from k =
2)

(1) Divide the genotypes into k groups by using the
K-mean clustering method and code the genotypes
by equation (3).

(2) Randomly split the sample into two groups with
approximately equal sample sizes, and calculate two
prediction values ŷi and ŷ∗

i for individual i (i =
1, . . . n).

(3) Repeat step (2) 100 times. Calculate average of the
two kinds of prediction values for each individual,
and then R2 (2), S, and T (k).

(4) Repeat steps (1) to (3) for k = 2, . . . , m + 1. Cal-
culate the value of the objective function of this
locus-set by equation (5).

Although in each of the randomly split we use only
half of the sample to fit the model and to predict the
trait values, the final prediction value is the average of
prediction values predicted by half of the sample. This

is the idea of bagging (Breiman 1996; Friedman & Hall
1999) which is a very popular learning method in ma-
chine learning and data mining to improve prediction
accuracy. In most of cases, the bagging prediction, av-
erage of many prediction values by part of the sample
(half sample or 0.632 sample–bootstrap), is more accu-
rate than a single prediction by using the full sample
(Breiman 1996; Friedman & Hall 1999, Hastie et al.
2001).

In step 1 and step 2, we use two different kinds of
cross-validation. We use LOOCV in step 1 due to its
computational efficiency. In step 1, we search a large
number of locus-sets. Thus, computational efficiency is
important. Using LOOCV to calculate R2

1 allows quick
computing, in fact, as quick as computing R2 based on
the full sample. In step 2, we only compare the locus-
sets retained in step 1. The number of retained locus-
sets is not large. The computation efficiency is not a
major concern. However, the dimensions of the retained
locus-sets are quite different, and we need to choose
the objective function very carefully. In this step, we
proposed a measure to combine the predictability and
reliability of the model. To measure the reliability of the
model, we compare R2(1) and R2(2). In order to have
an equal number of training to training prediction and
training to test prediction for each individuals, we use a
2-fold cross-validation.

Step 3. Choose the best locus-set and make inference
In step 2, each retained locus-set has been assigned

a value of the objective function. Larger values of the
objective function mean higher predictability and more
reliability. We choose the locus-set with the largest value
of the objective function as the final locus-set. To as-
sess the statistical significance of the test for association
between the final locus-set and the trait, we perform
a permutation test. Denote the value of the objective
function given by equation (5) from original sample by
T 0 . In each permutation, we randomly permute trait
values of the individuals and repeat step 1 and step 2
on the randomized data, and calculate the value of the
objective function given by equation (5). This permuta-
tion process was repeated 1000 times, and denote values
of the objective function for the 1000 permuted samples
by T1, . . . , T1000 . The estimated p-value of the test for
association between the final locus-set and the trait is
#{i :Ti >T0}

1000 . This p-value is an overall p-value.
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The CSM has been implemented using C programing
language. The program will be available by Jan. 2006
through http://www.math.mtu.edu/∼ shuzhang.

Data simulation
We first evaluate both the type I error and the power
of the CSM through simulation studies. For evaluating
type I error, we consider the test for association between
the final locus-set and the trait. For power evaluation,
we consider two kinds of powers: (1) the power to de-
tect the correct set of functional SNPs; (2) the power
of the test for association between the final locus-set
and the trait. To calculate the power of the test for as-
sociation (using significance level α), for each replica-
tion, we consider there is a significance association only
if the p-value ≤ α and the final locus-set contains at
least one functional SNP. We consider both quantitative
traits and qualitative traits. For each simulation scenario,
we generate 100 replications of 400 individuals (200
cases and 200 controls for the qualitative trait) and con-
sider ten independent SNPs. Unrelated individuals and
their genotypes for the ten unlinked SNPs are generated
by assuming Hardy-Weinberg equilibrium and linkage
equilibrium.

Data sets for assessing the type I error: To assess the type
I error rate of the test for association between the final
locus-set and a trait, we generate marker alleles at each
of the ten markers independently according to their al-
lele frequencies. The allele frequency of one of the two
alleles at each marker is drawn from a beta distribution
B(2, 21−q

q ) with mean q and variance 1−q
2+q q 2. We con-

sider three cases: q = 0.5, q = 0.25 and q = 0.1. For a
qualitative trait of interest, we randomly assign one in-
dividual as a case or a control independent of the geno-
types. For a quantitative trait of interest, we generate the
trait value of each individual using the model

y = μ + ε

where μ= 3 and ε is a standard normal random variable.
Data sets for assessing the power: To assess both the power

of the CSM to detect the correct locus-set and the power
of the test for association between the final locus-set and
a trait of interest, we consider two sets of simulations.
In the first set of simulations, we consider two-locus
epistasis models. Six two-locus epistasis models used in
this article are given in Table 1. All six models, also

Table 1 Multilocus penetrance functions and allele frequencies
for six two-locus models exhibiting gene-gene interaction in ab-
sence of main effects

Locus B
Minor allele

Model and Locus A BB Bb bb Frequencies

Model 1
AA 0 0.1 0
Aa 0.1 0 0.1 qA = qB = 0.5
aa 0 0.1 0

Model 2
AA 0 0 0.1
Aa 0 0.05 0 qA = qB = 0.5
aa 0.1 0 0

Model 3
AA 0.08 0.07 0.05
Aa 0.1 0 0.1 qA = qB = 0.25
aa 0.03 0.1 0.04

Model 4
AA 0 0.01 0.09
Aa 0.04 0.01 0.08 qA = qB = 0.25
aa 0.07 0.09 0.03

Model 5
AA 0.07 0.05 0.02
Aa 0.05 0.09 0.01 qA = qB = 0.1
aa 0.02 0.01 0.03

Model 6
AA 0.09 0.001 0.02
Aa 0.08 0.07 0.005 qA = qB = 0.1
aa 0.003 0.007 0.02

Note: Adopted from Ritchie et al. (2003).

described by Ritchie et al. (2003), exhibit interaction
effects in the absence of any main effects when Hardy-
Weinberg is assumed. To compare with the results of
Ritchie et al. (2003), we use the same set-up as that in
Ritchie et al. (2003), i.e. the minor allele frequencies
are the same across the ten simulated SNPs and given
in Table 1. Of the ten SNPs, there are two functional
SNPs and eight nonfunctional SNPs. For a qualitative
trait of interest, the genotypes at the nonfunctional SNPs
can be generated according to the genotype frequencies
under Hardy-Weinberg and linkage equilibrium, and
the genotypes across the two functional SNPs can be
generated according to the conditional probability of
the genotypes given affected or unaffected status. When
a trait of interest is quantitative, for each individual,
we generate the genotypes across the ten SNPs under
Hardy-Weinberg and linkage equilibrium, and generate
the trait values using the model

y = μ · Pen(G) + ε,
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where y denotes the trait value; μ is a constant; Pen(G),
given in Table 1, is penetrance (for a case-control design)
of this individual’s genotype G at the two functional
SNPs; ε is a standard normal random number. The value
of μ can be determined by the value of the heritability.
In the first set of simulations, we vary the heritability
from 5% to 9%.

In the second set of simulations, we consider one
three-locus, one four-locus and one five-locus epista-
sis model. Thus, of the total 10 simulated SNPs, 3,
4, or 5 are functional epistatic SNPs and there are up
to seven nonfunctional SNPs. Allele frequencies for
each of the 10 SNPs were selected to match those in
the ACE gene samples (Zhu et al. 2001). The three-,
four-, and five-locus models used in this article, similar
to those described by Ritchie et al. (2001), are exten-
sions of model 2 in Table 1. Model 2 in Table 1 is
a well-characterized model for epistasis, in which the
disease risk is dependent on whether two deleterious
alleles and two normal alleles are present, from either
one locus or both loci (Ritchie et al. 2001). Let A and
a denote the two alleles at the first disease susceptibility
locus, and B and b denote the two alleles at the second
disease susceptibility locus. The high risk genotypes are
AAbb, AaBb and aaBB. Similar to those of Ritchie et al.
(2001), we extend this two-locus model to three-locus,
four-locus and five-locus epistasis models by adding cor-
responding homozygous or heterozygous genotypes to
the aforementioned high risk genotypes. For example,
for the three-locus model, the high risk genotypes are
AAbbcc, AAbbcc, AAbbcc, AAbbcc, AabbCc and aabbCC.
For a qualitative trait of interest, we assume that all the
high risk genotypes have the same penetrance, and all
low risk genotypes also have the same penetrance. Let
R denote the relative risk of the high risk genotypes to
low risk genotypes. We fix the population prevalence to
5%, and vary R from 10 to 20. When a trait of interest
is quantitative, for each individual we generate the trait
value using the model

y = α · I (G) + ε,

where y denotes the trait value; α is a constant; I (G) =
1 if this individual’s genotype G is a high risk genotype,
I (G) = 0 otherwise; ε is a standard normal random
number. The constant α can be determined by the value

of the heritability. In this set of simulations, we vary the
heritability from 10% to 20%.

ACE Data
We apply the CSM to the data set collected by the
International Collaborative Study on Hypertension in
Blacks (Cooper et al. 1997; Zhu et al. 2001). The data
includes 1,343 individuals in 332 families residing in
western Africa. ACE concentration, SBP, DBP, sex,
age and body mass index (BMI) are available for this
data. 13 SNPs including one insertion/deletion were
genotyped. Zhu et al. (2001) demonstrated that a two-
locus (ACE4 and ACE8) additive model with an addi-
tive interaction explained most of the ACE variation.
A two-locus (ACE4 and ACE8) epistasis model is also
significantly associated with SBP and DBP. For the pur-
pose of this study, we choose 361 unrelated individuals
(178 males and 183 females) whose genotype and phe-
notype data are available.

Results

Simulation Results

We first verify that the CSM has the correct nominal
type I error rate for testing for association between the
final locus-set and the trait. For 100 replication sam-
ples, the standard deviation for the type I error rate are√

0.05 × 0.95/100 ≈ 0.022 and
√

0.1 × 0.9/100 ≈
0.03, for the nominal levels of 0.05 and 0.1, respec-
tively. The 95% Quantile Ranges (QRs) are (0.006,
0.094) and (0.04, 0.16), respectively. The estimated type
I errors of the test for different minor allele frequencies
and different numbers of L, the pre-specified maximum
number of loci which we search for, are summarized in
Table 2. It is easy to see that the estimated type I er-
rors of the test are not significantly different from the
nominal levels. The pooled p-values for different minor
allele frequencies and different values of L are presented
in Figure 2. Figure 2 shows that the distribution of p-
values of the test is very close to a uniform distribution,
also suggesting that the test has the correct type I error
rate.

The powers of the CSM to detect the two functional
SNPs from the ten SNPs for each of the two-locus epis-
tasis models and to test association between the final
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Table 2 Type-I error rate of the test for association between the final locus-set and the trait. The type I error rates are based on 100
replications and 1000 permutations to evaluate the p-value. L is the pre-specified maximum number of loci which we search for, i.e.
we search all the one- to L-locus sets

Significant level = 0.05 Significant level = 0.1
Expected
allele frequency L=1 L = 2 L = 3 L = 4 L = 5 L = 1 L = 2 L = 3 L = 4 L = 5

Qualitative 0.1 0.06 0.08 0.05 0.06 0.05 0.15 0.10 0.09 0.11 0.14
trait 0.25 0.04 0.03 0.06 0.03 0.04 0.07 0.07 0.12 0.07 0.06

0.5 0.03 0.03 0.03 0.03 0.07 0.12 0.10 0.10 0.07 0.11
Quantitative 0.1 0.08 0.04 0.08 0.05 0.05 0.10 0.09 0.13 0.08 0.15

trait 0.25 0.06 0.07 0.06 0.02 0.02 0.16 0.11 0.12 0.07 0.07
0.5 0.04 0.04 0.04 0.03 0.07 0.07 0.07 0.09 0.08 0.12

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

qualitative trait
0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

quantitative trait

Figure 2 The histograms of the pooled p-values for the three different minor allele frequencies and L = 1, 2, 3, 4, 5, where L is the
pre-specified maximum number of loci which we search for.

locus-set and the trait are given in Table 3. For the
qualitative trait, the powers of the MDR (Ritchie et al.
2003) from Table II of Ritchie et al. (2003) are also
given for the purpose of comparison. Table 3 shows
that, for the qualitative trait, the powers of the CSM

and MDR (Ritchie et al. 2001, 2003) are very simi-
lar. However, the CSM is slightly more powerful than
the MDR under model 5 and 6. For both the quali-
tative trait and quantitative trait, the power of the test
for association at 5% significance level is very similar to
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Table 3 The power of the CSM to de-
tect correct functional interacting loci
and power of the test for association be-
tween the final locus-set and the trait un-
der two-locus interaction models. The
numbers in parenthesis are from Table II
of Ritchie et al. (2003)

Power to detect the Power of the test (%)

Model Correct locus-set (%) Significance level = 0.05

1 100 (100) 100
2 100 (100) 100

qualitative 3 99 (99) 99
trait 4 98 (99) 96

5 87 (82) 88
6 89 (84) 92

heritability
1 76 75
2 76 73

0.05 3 70 68
4 69 68
5 68 65
6 73 70
1 98 93
2 94 90

quantitative 0.07 3 89 86
trait 4 90 89

5 89 85
6 90 90
1 99 100
2 99 98

0.09 3 97 95
4 96 94
5 90 92
6 92 94

the power of detecting correct functional SNPs. For all
the cases, more than 95% of the p-values for the cor-
rectly identified locus-set (functional SNPs) are less than
0.05 (results not shown). For the quantitative trait, we
evaluate the power of the CSM for different value of
heritability. Both the power of correctly detecting the
functional SNPs and the power of the test for associa-
tion increase as the heritability increases. However, the
power of testing for association increases more rapidly
than that of correctly detecting the functional SNPs.
When the heritability is 5%, the power of testing for as-
sociation at the 5% significance level is slightly less than
that of correctly detecting the functional SNPs. When
the heritability increases to 9%, the power of testing for
association is almost the same as that of correctly detect-
ing the functional SNPs.

The powers of the CSM under three-locus to five-
locus epistasis models are summarized in Table 4. For the
qualitative trait, we consider different values of relative
risk. The power of correctly detecting the functional
SNPs increases as the relative risk increases. However,
the power of testing for association is 100% for all the
cases considered here. The reason is that even if the fi-

nal locus-set is not the set of functional SNPs, the final
locus-set will include some or all of the functional SNPs
and the association between the final locus-set and the
trait is still strong enough. For the quantitative trait, we
consider different heritabilities. The power of correctly
detecting the functional SNPs and the power of the as-
sociation test are very similar and both increase as the
heritability increases, which is consistent with the re-
sults for the two-locus epistasis models. Comparing the
performance of the CSM for the qualitative trait and
for the quantitative trait, it seems that the CSM per-
forms better for the quantitative trait than for the quali-
tative trait. Consider the five-locus model as an example.
Table 4 shows that, for the qualitative trait, the power
of the association test is 100% but the power of cor-
rectly detecting the functional SNPs is only 60% (relative
risk = 10). This means that the CSM can only correctly
detect the functional SNPs that are strongly associated
with the qualitative trait. However, for the quantitative
trait (heritability = 0.15), the power of correctly detect-
ing the functional SNPs is 59% when the power of the
association test is 61%. It seems that the CSM can cor-
rectly detect the functional SNPs that have a moderate
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Table 4 The power of the CSM to de-
tect correct functional interacting loci
and power of the test for association be-
tween the final locus-set and the trait un-
der three-, four- and five-locus interac-
tion models

Power of the test (%)
Qualitative trait Number of Power of correct
Relative risk functional loci detection(%) α = 0.05

3 88 100
10 4 80 100

5 60 100
3 94 100

15 4 90 100
5 75 100
3 99 100

20 4 97 100
5 80 100

Quantitative trait
heritability 3 79 74

0.1 4 53 50
5 33 30
3 98 95

0.15 4 76 78
5 59 61
3 100 100

0.2 4 89 92
5 69 72

effect on the quantitative trait. To compare the perfor-
mance of the objective function T with R2(2), the cross-
validation correlation, Figure 3 summarizes the values
of the objective function T and R2(2) for a quantitative
trait. It is clear that the objective function performs bet-
ter than R2(2) to distinguish the set of functional SNPs
from the other locus-sets.

For both the qualitative trait and the quantitative trait,
when the relative risk or heritability is fixed, the power
to identify the correct functional SNPs tends to de-
crease when the order of interaction is higher. This phe-
nomenon is consistent in many cases including different
relative risks (qualitative trait) and different values of her-
itability (quantitative trait). We believe that this is a real
phenomenon. It is surprising that, using a similar model
but with an infinite relative risk (penetrance of high risk
genotype is 20% while penetrances of other genotypes
are 0), Ritchie et al. (2001)’s results showed that the
power to identify the correct functional SNPs tends to
increase as higher-order interactions are modeled. We
have applied the CSM to the case of infinite relative risk
and got the same results as that of Ritchie et al. (2001),
i.e. the power to identify the correct functional SNPs
tends to increase as the order of interactions increases
(results not shown). We believe that this is a special case.

Why the case of infinite relative risk is special will re-
quire further investigation.

Analysis of ACE data
To apply the CSM to the ACE data, we considered
three traits: ACE, SBP and DBP. We first adjusted ACE
level, SBP or DBP by age, sex and BMI as covariates.
We used the residuals as the adjusted trait values. We
applied the CSM to the data to search for the locus-set
that best predicts the adjusted trait values for each of
the three traits. For ACE, using all 361 individuals, one
one-locus model (polymorphism ACE8 ) had the largest
value of the objective function and the p-value of the
test for association between polymorphism ACE8 and
ACE level was 0 based on 1000 permutations (Table 5).
Figure 4(a) summarizes the mean trait values of the three
genotypes AA, AG, and GG at the ACE8 locus. The
three genotypes were divided into two groups: AA in
one group and AG and GG in another group, i.e. the
final model was a recessive disease model.

For SBP and DBP, there was no statistically signif-
icant evidence of an independent main effect of any
of the 13 polymorphisms whenever the entire sample,
males only or females only was used. When the CSM
was applied to the entire sample and female only, the
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Figure 3 Comparisons of the cross-validation coefficient R2(2) and objective function T .

Table 5 The values of the objective function of the “best” locus-
set for different number of loci and the p-value of the test for
association between the “best” locus-set and the trait. The mul-
tilocus model with maximum value of the objective function is
indicated in boldface type for each of the three traits

Value of T of the “best” locus-set
for each number of loci

Number of loci ACE SBP (male) DBP (male)

1 0.45 0.050 0.040
2 0.40 0.048 0.069
3 0.25 0.091 0.057
4 0.23 0.110 0.018
5 0.12 0.071 0.012
6 0.12 0.040 0.010
p-value of the <0.001 0.033 0.045

“best” locus-set

p-value was larger than 15% both for SBP and DBP.
When the CSM was applied to the sample of males only,
one two-locus model with a p-value = 0.045 has the
largest value of the objective function for DBP, and one
four-locus model with a p-value = 0.033 has the largest
value of the objective function for SBP. The two-locus
model for DBP included the polymorphisms ACE1 and
ACE8. The mean trait values of each of the two-locus
genotypes and the groups of the genotypes are summa-
rized in Figure 4(b). Figure 4(b) shows the epistasis or
gene-gene interaction between ACE1 and ACE8; that
is, the influence of the genotypes on the trait at one lo-
cus is dependent on the genotypes at another locus. The
four locus model for SBP included the polymorphisms
ACE1, ACE4, ACEs2.1 and ACE8. The mean trait val-
ues for each of the four-locus genotypes also show the
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Figure 4 Summary of the trait values (trait values after adjusted for age, sex, BMI, and weight) of the
genotypes. (a) Average trait (ACE) values corresponding to the three genotypes at ACE1 locus. The
two bars with the same color are clustered in one group. (b) Average trait (SBP) values corresponding
to the nine genotypes of the two-locus genotypes (ACE1 locus and ACE8 locus). The boxes with the
same color are in one group. The box without trait-value bar indicates no individual with this
genotype.

gene-gene interaction among the four loci (results not
shown).

Discussion

The CSM is proposed to identify a group of interaction
loci that has both high predictability and high reliabil-
ity. The method evaluates sets of SNP markers at vari-
ous positions in the genome (in one candidate gene or
in different candidate genes) while keeping the overall
type I error in control. The development of the method
was motivated by the success of data-reduction methods
by genotype partitioning for quantitative traits (Nelson
et al. 2001) and dimension-reduction methods by divid-
ing the genotypes into high-risk and low-risk groups for
qualitative traits (Ritchie et al. 2001, 2003). The primary
advantage of the CSM is that it can detect and character-
ize multiple interacting loci affecting either a qualitative
trait or a quantitative trait. Using simulation studies, we
have shown that, under some particular epistasis models,
the CSM has reasonable power to identify the locus-set
with high-order gene-gene interaction for both quan-
titative traits and qualitative traits. We applied the CSM
to the ACE data set to identify the locus-set associated
with ACE concentration level, the locus-set associated
with SBP, and the locus-set associated with DBP.

It has been suggested that there are several polymor-
phisms with the ACE gene additively contributing to the
variation of ACE level (Zhu et al. 2001; Bouzekri et al.
2003), and ACE8 has a much stronger effect than other
markers. When we applied the CSM to the ACE data,
we only detected a one-locus model involving ACE8 as-
sociated with ACE level. The reason is that the CSM is
more powerful to detect the interaction of multiple loci.
When several polymorphisms additively affect the trait
and one has a much stronger effect than other mark-
ers, the CSM may only pick the polymorphism most
strongly affecting the trait, which is consistent with the
idea that ACE8 is the strongest polymorphism affect-
ing ACE level (Zhu et al. 2001; Bouzekri et al. 2003).
For SBP and DBP, the CSM detects a two-locus and
a four-locus models in males, respectively. Both mod-
els include ACE8, which is also present in the epistasis
model identified by Zhu et al. (2001). The slightly dif-
ferent models identified between this study and Zhu
et al. (2001) could be potentially due to the strong link-
age disequilibrium between the SNPs in the 3’end of the
ACE genes (Bouzekri et al. 2003) and the different sam-
ple sizes used. In fact, Zhu et al. (2001) used the entire
sample and this study only used a subset of the sample.
Besides, Zhu et al. (2001) only searched the interaction
model for SBP and DBP based on the model obtained
from ACE levels, which is rather limited. The CSM is
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more ambitious because it exhaustively searches all the
possible interaction models. Surprisingly, the CSM can
still identify interaction models for both SBP and DBP
when the sample size is relatively small.

In the implementation of the CSM, one question is
that the multilocus genotype g of a specific individual
in the test group may not appear in the training group.
In this case, we use y, the sample mean of the training
group, as the predicted trait value of this individual. As an
alternative method, we may choose a genotype g ∗ in the
training group that is most similar to g, and use the trait
value of g ∗ as the predicted trait value of this individual.
In this article, we use a linear model to model qualitative
traits. An alternative method for qualitative traits is using
a logistic model. Under a logistic model, if we use the
estimated conditional probability of an individual being
affected given his/her genotype as the predicted trait
value, the method described in this article can be applied
to the logistic model directly. However, the performance
of the method based on a logistic model needs further
investigation.

Culverhouse et al. (2004) also proposed a promising
Restrict Partition Method (RPM) to limit the “good”
partitions. The RPM uses testing methods to merge
genotypes (if trait means are not significantly different)
which greatly reduced the computation effort compar-
ing to the CPM by exhaustive search. The “good” par-
titions found by the RPM and by K-mean clustering
are very similar. However, in applying the RPM, each
locus-set needs several tests and each test needs a permu-
tation procedure to evaluate the p-value which makes
the RPM still computational demanding if we search
a large number of locus-sets. Furthermore, in applying
the RPM, the overall p-value of the final locus-set is the
Bonferroni correction of the individual p-value. The
Bonferroni correction may be very conservative due to
the correlation between locus-sets, and a large number
of permutations is required in order to get a small (0.05
for example) overall p-value.

Considering the complex and unclear nature of gene-
gene interaction, like most of other methods to detect a
set of loci with possible interaction (Nelson et al. 2001;
Ritchie et al. 2001, 2003; Culverhouse et al. 2004), the
CSM searches all possible combinations of the multi-
locus genotypes without considering their partial order.
For example, one marker with the genotypes AA, Aa,

and aa, we may combine AA and aa as one group and
Aa as the other group. Considering all possible genotype
combinations allows us to find all possible interactions.
In other hand, if the genotypes really have the partial
order, we may lose power by searching a larger number
of recombinations. Furthermore, without considering
the partial order of the genotypes may make the CSM
models difficult to interpret. This is illustrated clearly in
the two-locus model in Figure 4. There are no obvious
trends or patterns in the distribution of high-risk and
low-risk groupings across the two-dimensional geno-
type space. Interpretation of multi-locus models with
interactions is always a difficult task due to the com-
plex nature of gene-gene interactions plus the different
meanings of interaction in statistics and genetics litera-
ture(Cordell et al. 2001; Moore & Williams 2005). An-
other shortcoming of the CSM is that we are not read-
ily clear whether the final model contains interaction
effects or only main effects. Also, using the partitioning
method, the CSM is hard to model the additive rela-
tion and thus there would be a decrease in the CSM
power if several loci have additive effects. It is clearly an
important topic by using genotype partitions and also
incorporating additive effect in future studies.

Some other unsolved questions need to be addressed.
One is that genotyping errors have deleterious effects
on association analysis (Akey et al. 2001) and thus will
affect the CSM method, especially for the case that the
genotyping error depends on the trait value. The easiest
solution to the error problem is increasing quality con-
trol in the laboratory. Another avenue to be explored
is incorporating error frequencies in the analysis model
as it did for a special disequilibrium test (Gordon et al.
2001). Finally, population stratification is a problem in
any population-based association study, our method be-
ing no exception. If the sampled individuals have dif-
ferent ethnic backgrounds and different ethnic back-
grounds are associated with different trait values and
different allele frequencies, this will affect the CSM. If
there is evidence that there may be different ethnic back-
grounds in the sample, our recommendation is to use
methods such as the Genomic Control Method, which
requires genotyping a set of unlinked SNPs across the
genome (Devlin & Roeder 1999; Pritchard et al. 2000;
Bacanu et al. 2000; Zhang & Zhao 2001; Zhang et al.
2003b; Chen et al. 2003; Zhu et al. 2002).
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Appendix: The K-mean Clustering Method

For a given locus-set, let g 1, . . . , g m+1 denote all the
distinct multilocus genotypes observed in the sample.
Let ni and yi denote the number of individuals and the
average trait value, respectively, of the individuals who
have genotype g i.

To use the K-mean clustering method to divide the
m + 1 genotypes into k groups, we first give the initial
values of the centers for the k groups and denote the
initial value of the center of group l by Cl(l = 1, . . . , k),
then the process involves the following steps:

1. For each genotype g i(i = 1, . . . , m + 1), calculate
the distance between yi and the center of each group.
Assign g i to group j if Cj is the nearest center among
the k centers, that is, |yi − Cj | = min1≤ l≤k |yi −
Cl |. In this way, we partition the m + 1 genotypes
into k groups. Denote the k groups by G1, . . . , Gk.

2. Update the center for each of the groups. We use the
average trait values of all individuals whose geno-
type belongs to Gl as the center of group Gl(l =
1.. . .k), that is, Cl = 1

ml

∑
{i :g i∈Gl } ni yi , where ml is

the number of individuals whose genotype belongs
to Gl.

3. Repeat step 1 and step 2 until no more reassignments
take place.

Let a = min1≤ i≤m+1 yi and b = max1≤ i≤m+1 yi .

When we implement this method, we choose the initial
values of the k centers as

Cl =
l − 0.5

k
(b − a ), l = 1, 2, . . . , k.
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