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Abstract 

 

DNA pooling is a cost effective approach for collecting information on marker allele 

frequency in genetic studies.  It is often suggested as a screening tool to identify a subset of 

candidate markers from a very large number of markers to be followed up by more accurate 

and informative individual genotyping.  In this paper, we investigate several statistical 

properties and design issues related to this two-stage design, including the selection of the 

candidate markers for second stage analysis, statistical power of this design, and the 

probability that truly disease-associated markers are ranked among the top after second 

stage analysis.  We have derived analytical results on the proportion of markers to be 

selected for second stage analysis.  For example, to detect disease-associated markers with 

an allele frequency difference of 0.05 between the cases and controls through an initial 

sample of 1000 cases and 1000 controls, our results suggest that when the measurement 

errors are small (0.005), about 3% of the markers should be selected.  For the statistical 

power to identify disease-associated markers, we find that the measurement errors 

associated with DNA pooling have little effect on its power.  This is in contrast to the 

one-stage pooling scheme where measurement errors may have large effect on statistical 

power.  As for the probability that the disease-associated markers are ranked among the top 

in the second stage, we show that there is a high probability that at least one 

disease-associated marker is ranked among the top when the allele frequency differences 

between the cases and controls are not smaller than 0.05 for reasonably large sample sizes, 

even though the errors associated with DNA pooling in the first stage is not small. 
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Therefore, the two-stage design with DNA pooling as a screening tool offers an efficient 

strategy in genome-wide association studies, even when the measurement errors associated 

with DNA pooling are non-negligible.  For any disease model, we find that all the statistical 

results essentially depend on the population allele frequency and the allele frequency 

differences between the cases and controls at the disease-associated markers.  The general 

conclusions hold whether the second stage uses an entirely independent sample or includes 

both the samples used in the first stage as well as an independent set of samples.  

 

Key Words: DNA pooling; individual genotyping; measurement errors; power; two-stage 

design.  

Running Title: Two-stage designs for association studies 
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Introduction 

 

Genome-wide case-control association study is a promising approach to identifying 

disease genes (Risch 2000).  For a specific marker, allele frequency difference between 

cases and controls may indicate potential association between this marker and disease, 

although other factors (e.g. population stratification) may account for the observed 

difference.  Allele frequencies among the cases and controls can be obtained either through 

individual genotyping or DNA pooling.  Although individual genotyping provides more 

accurate estimates of allele frequencies and allows for the inference of haplotypes and the 

study of genetic interactions, DNA pooling can be more cost effective in genome-wide 

association studies as individual genotyping needs to collect data from hundreds of 

thousands markers for each person.   

 

In the absence of measurement errors associated with DNA pooling, there would be no 

difference between using DNA pooling or individual genotyping for the estimation of 

allele frequency.  However, one major limitation of the current DNA pooling technologies 

is indeed the errors associated with measuring allele frequencies in the pooled samples.  

Recent research suggests that for a given pooled DNA sample, the standard deviation of the 

estimated allele frequency is between 1% and 4% (cf., Buetow et al. 2001, Grupe et al. 

2001, Le Hellard et al. 2002, and Sham et al. 2002).  LeHellard et al. (2002) reported that 

using the SNaPshot TM Method, which is based on allele-specific extension or 

minisequencing from a primer adjacent to the site of the SNP, the standard deviation ranged 
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from 1% to 4% depending on the specific markers being tested.  Our recent studies have 

found that the errors of this magnitude may have a large effect on the power of case-control 

association studies using DNA pooling as the sole source for genotyping (see Zou and 

Zhao 2004 for unrelated population samples and Zou and Zhao 2005 for family samples).  

Therefore, a two-stage design where DNA pooling is used as a screening tool followed by 

individual genotyping for validation in an expanded or independent sample may offer an 

attractive strategy to balance power and cost (Barcellos et al. 1997, Bansal et al. 2002, 

Barratt et al. 2002, Sham et al. 2002).  In such a design, the first stage evaluates a very large 

number (e.g. one million) of markers using DNA pooling, and only the most promising 

ones are selected and studied in the second stage through individual genotyping.  Similar 

two-stage designs have been considered by Elston (1994) and Elston et al. (1996) in the 

context of linkage analysis, and by Satagopan et al. (2002, 2003, 2004) in the context of 

association studies.  However, these studies primarily assumed that individual genotyping 

is used in both stages, which may not be as cost-effective as using DNA pooling in the first 

stage.  Moreover, errors associated with genotyping have never been considered in the 

literature.   

 

When DNA pooling is used as a screening tool in the first stage, the following issues need 

to be addressed: 

(i) How many markers should be chosen after the first stage so that there is a high 

probability that all or some of the disease-associated markers are included in the individual 

genotyping (second) stage?  
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(ii) What is the statistical power that a disease-associated marker is identified when the 

overall false positive rate is appropriately controlled for?   

(iii) When the primary goal is to ensure that some of the disease-associated markers are 

ranked among the top L markers after the two-stage analysis, what is the probability that at 

least one of the disease-associated markers is ranked among the top?  

 

The objective of this paper is to provide answers to these practical questions to facilitate the 

most efficient use of the two-stage design strategy where DNA pooling is used.  In genetic 

studies, the sample in the first stage can be expanded with a set of new samples in the 

second stage analysis, or the second stage may only involve a new set of samples for 

individual genotyping, so both these strategies will be considered in our article.  We hope 

that the principles thus learned will provide an effective and practical guide to genetic 

association studies. 

 

This paper is organized as follows.  We will first present our analytical results to treat the 

above three problems, and then conduct numerical calculations under various scenarios to 

gain an overview and insights on these design issues.  Finally, some future research 

problems are discussed. 

 

Methods 

Genetic models 

We consider two alleles, A and a, at a candidate marker, whose frequencies are p and 
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pq −= 1 , respectively.  For simplicity, we consider a case-control study with n cases and n 

controls.  Let iX  denote the number of allele A carried by the ith individual in the case 

group, and iY  is similarly defined for the ith individual in the control group.  Assuming 

Hardy-Weinberg equilibrium, each iX  or iY  has a value of 2, 1, 0 with respective 

probabilities 2p , 2pq and 2q  under the null hypothesis of no association between the 

candidate marker and disease.  When the candidate marker is associated with disease, we 

assume that the penetrance is 2f  for genotype AA, 1f  for genotype Aa, and 0f  for 

genotype aa.  Note that these two alleles may be true functional alleles or may be in linkage 

disequilibrium with true functional alleles.  Under this genetic model, the probabilities of 

having k copies of A among the cases, )( kXPm ik == , and those among the controls, 

)( kYPm ik ==′ , are 
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One-stage designs 

For useful reference, we first formulate the test statistics and derive statistical power based 

on a one-stage design using either individual genotyping or DNA pooling.  These can be 

considered as special cases or direct extensions of the results in Zou and Zhao (2004).  

 

(a) Individual genotyping 

For individual genotyping, let An  and Un  denote the observed numbers of allele A in the 

case group and control group, respectively, Ap  and Up  denote the population allele 

frequencies of allele A in these two groups, and Ap̂  and Up̂  denote their maximum 

likelihood estimates, where )2/(ˆ nnp AA =  and )2/(ˆ nnp UU = .  

Under the null hypothesis of no association between the candidate marker and disease 

status, 0)ˆˆ( =− UA ppE , and npqppV UA /)ˆˆ( =− .  On the other hand, under the genetic 

model introduced above,  
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Consider a one-sided test and use a significance level of α , the power of the test statistic 
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indt  is 
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12 mmp ′+′+= µ  is the expected frequency of allele A under the genetic model, 

Φ  is the cumulative standard normal distribution function, and αz  is the upper 100α th 

percentile of the standard normal distribution. 

 

(b) DNA pooling 

For DNA pooling, we consider m pools of cases and m pools of controls each having size s 

such that n=ms.  We assume the following model relating the observed allele frequencies 

estimated from the pooled samples to the true frequencies of allele A in the samples:  
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where ijX  denotes the number of allele A carried by the jth individual in the ith case group, 
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above,  
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Two-stage designs 

(a) How many markers should be selected after the pooling stage? 

In the first stage, i.e., the DNA pooling stage, we consider m pools of cases and m pools of 

controls each having size s such that n = ms.  The main objective for the first stage is to 

select the most promising markers based on pooled DNA data to follow up in the second 

stage in order to reduce the overall cost.  Therefore, the following problem should be 

addressed: how many of the M markers initially screened should be selected for 



 11 

second-stage analysis so that the probability that the disease-associated markers are 

selected is high, e.g. 90%?  For simplicity, we assume that the associated markers are 

independent.  Let the desired number of markers be 1M .  As in Satagopan et al. (2002, 

2004), we choose those markers which have the largest test statistic.   

 

For markers not associated with disease, the test statistic can be approximated by 
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mutually independent.  Whereas for markers associated with disease through the genetic 

model introduced above, the test statistic can be approximated by: 
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and 
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Therefore, the probability that 1K  of the K  disease-associated markers are among the top 

1M  markers is given by 

                                      ( ) ∑
<<

=
11

11 ,...,11

K

K
ii

iiPKP
L

.                                                                  (2) 

From this expression, we can determine the value of 1M  such that ( )11 KP  is higher or 

equal to a given level, e.g. 90%. 

 

For a given 1M , let ζ  denote the number of disease-associated markers included in the top 

1M  markers, then its expectation is ( ) ∑∑
==

⋅==⋅=
K
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)()( ζζ .  Therefore, we can 

determine the value of 1M  through this formula such that the average number of 

disease-associated markers included in the top 1M  markers is 1K , i.e. 1K  

disease-associated markers are selected on average.  

 

The above formulas (1) and (2) are exact but somewhat complicated.  In the following, we 

derive their asymptotic expressions so that we can obtain simpler analytical results.  It is 

easy to see that we need only to consider formula (1). 
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For a fixed proportion 0p , let 0λ  denote the normal distribution quantile corresponding to 

0p , that is, ∫ ∞−
=0

0)(
λ

φ pdxx .  Then from the asymptotic property of order statistics, we 

have 
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Note that the total number of markers M  is usually extremely large, the number of 

disease-associated markers K  is extremely small compared to M, and 

    MMMpKKp //))1(()1( 1010 ≤−−+− MpKKp /)1)1(()1( 010 +−−+−< . 

Therefore, taking 1M  top markers is equivalent to taking the top markers in the proportion 

of 00 1 pq −= .  
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In particular, when the number of disease-associated markers is 1=K , we can obtain an 

analytical expression for the selected proportion 0q  necessary to attain the desired 

probability that the disease-associated marker is selected.  In fact, when 1=K , from 

formulas (5) and (6), we have  
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0λ  is the normal distribution quantile corresponding to ∗− 01 p .  Clearly, the above 

formula is equivalent to  
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So the proportion 0q  should satisfy  )( 00
∗−Φ≥ Uq .  Therefore, a conservative selection of 

the proportion 0q  is the maximum of )( 0
∗−Φ U  over various genetic models and allele 

frequencies. 

 

It should be noted that the above selection approach for markers is through comparing the 
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values of the test statistics at all the markers and no statistical inference is conducted.  If 

statistical tests are performed to select the promising markers, then one would keep those 

markers showing stronger statistical significance in the first stage.  However, the two 

methods are actually asymptotically equivalent.  This is because, if we take 

10 αλ z= (where 
1αz  is the upper 100 1α th percentile of the standard normal distribution 

corresponding to the significance level 1α  for each marker tested in the first stage), that is, 

10 α=q , which means that  the selected proportion of markers is the same as the 

significance level for testing each marker in the first stage, then the asymptotic probability 

of the specified 1K  of K  truly associated markers being selected given in formula (5) is in 

fact the statistical power of detecting the specified 1K  of K  truly associated markers. So 

for the case of independent markers, selecting the markers through comparing the values of 

their test statistics is asymptotically equivalent to selecting the markers through statistical 

tests, a conclusion similar to that of Satagopan et al. (2004) who considered individual 

genotyping in the first stage.  In other words, the selection approach based on statistical 

tests is the limiting case of that based on comparing the values of test statistics at the 

markers when the number of total markers is very large. 

 

(b) The statistical power of the two-stage design 

After a set of promising markers are identified through DNA pooling, these markers will be 

individually genotyped in the second stage.  In this subsection, we first derive the statistical 

power of the two-stage design to detect the disease-associated markers.  In the next 

subsection, we will investigate the possibility of at least one disease-associated marker 
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being ranked among the top after the second stage.  In addition to the 2 n  individuals used 

in the pooling stage, we will also consider an additional sample of size 2 an .  Under the null 

hypothesis 0H , i.e. the marker is not associated with disease, the test statistic for markers 

tested in the second stage can be written approximately as 

00 ηξ ⋅
+

+⋅
+

=
a

a

a
ind nn

n

nn

n
t , 

where 0η ~ )1,0(N and 0η  is independent of 0ξ  and w, which were defined above in the 

discussion of pooled DNA analysis. 

Similarly, for markers associated with disease under the genetic model introduced above, 
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where 1η ~ )1,/( σµanN , and 1η  is independent of  1ξ  and w, which were defined above 

in the discussion of pooled DNA analysis. 

 

Under the null hypothesis of no association,  ( )indpool tt ,  has a joint bivariate normal 
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Under the alternative hypothesis 1H , ( )indpool tt ,  has a joint bivariate normal distribution 

∑1
),~(µN , where      
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For a given sample size n  and significance level 1α  or power 11 β−  in the first stage (or a 

given proportion of markers to be selected for second-stage analysis), we can determine a 

critical value 1k  by solving ( )011 | HktP pool >=α  or ( )111 |1 HktP pool >=− β .  Then for 

the overall significance level α  for testing M  markers and an additional sample of size 

an , we can determine the critical value 2k  in the second stage by solving   

( )021 |)()(/ HktktPM indpool I >>=α ∫ ∫
∞ ∞

=
1 2

),(0k k
dxdyyxh , 

where ),(0 yxh  is the density function of ( )indpool tt ,  under 0H , which is given by  
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where ∑0
||  is the determinant of the matrix ∑0

, and ∑
−1

0
is the inverse of ∑0

. 

The probability that a disease-associated marker is identified by the two-stage design is 

then given by 

( )121 |)()(1 HktktP indpool I >>=− β ∫ ∫
∞ ∞

=
1 2

),(1k k
dxdyyxh , 

where ),(1 yxh  is the density function of ( )indpool tt ,  under 1H , which is given by  
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In the above two-stage design, the sample in the first stage is re-used in the second stage, 

and this introduces correlation between the two test statistics, poolt  and indt .  Therefore, we 

will call this two-stage scheme the two-stage dependent design in the following discussion.  

On the other hand, we may use two separate samples in the two stages with one sample 

used for screening and another independent sample used for individual genotyping.  In this 

scenario, the two test statistics, poolt  and indt , are independent.  Hereafter we call such a 

two-stage scheme the two-stage independent design.  For the two-stage independent design, 

the type-I error rate and power are simply the products of those in both stages.  That is, 

( )021 |)()( HktktP indpool I >> ( )⋅>= 01 | HktP pool ( )02 | HktP ind > , 

and 

( )121 |)()( HktktP indpool I >> ( )⋅>= 11 | HktP pool ( )12 | HktP ind > . 

 

(c) The chance of at least one marker associated with disease being ranked among the top 

L  markers after individual genotyping 

We suppose that, among the 1M  markers selected from the first stage, there are 1K  

markers associated with disease and 11 KM −  null markers.  Without loss of generality, we 

assume that they are )(
,

)(
1, 1

,, T
Kpool

T
pool tt L  and )(

,
)(

1, 11
,, N

KMpool
N

pool tt −L , respectively.  In this case, let 

0Z  and *Z  denote { })(
,

)(
1, 1

,,min T
Kpool

T
pool tt L  and { })(

,
)(

1, ,,max
1

T
Kpool

T
Kpool tt L+ , respectively.  Let 

)(
,

T
jindt ),...,1( 1Kj =  be the test statistic for the jth truly associated marker, 

)(
,

N
jindt ),...,1( 11 KMj −=  be the test statistic for the jth null marker in the second stage, and 

)(
)(,

)(
)1(, 1

T
Kind

T
ind tt ≥≥L  and )(

)(,
)(

)1(, 11

N
KMind

N
ind tt −≥≥L  be their order statistics.  Then in the second 

stage, the probability that none of the truly associated markers are ranked among the top L  
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markers is 
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02 ,                                  (7) 
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Like formula (1), an exact expression for calculating the probability 2P′  can be derived 

(Appendix).  Therefore, the probability that at least one truly associated marker is ranked 

among the top L  markers is obtained by 22 1 PP ′−= .  Because the exact formula is quite 

complicated, we provide an approximate one below to simplify the calculation of this 

probability.  First note that )(
,

T
jindt ~ ( )2

,, , jindjindN λθ , where 

)/()~1(~,

ajj

j
jind

nnpp +−
=

µ
θ , 
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2
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,
jj

j
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=
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λ , 

1,...,1 Kj = .  We denote the distribution function of )(
,

T
jindt  by )(xG j .  Also, let ),()( yxH T

j  

denote the joint distribution function of ( ))(
,

)(
, , T

jind
T

jpool tt , 1,...,1 Kj = .   

 

Now for a fixed proportion 0p′ , we have 

0
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]))[()((, 01111
λ′≈′−−−

N
pKMKMindt , 
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when 11 KM −  is large, where 0λ′  is a normal distribution quantile corresponding to 0p′ , 

that is, ∫
′

∞−
′=0

0)(
λ

φ pdxx , and ][t  denotes the integer part of t  as before.  Denote 

])[( 01111 pKMKML ′−−−= , then 0
)(

)(, λ′≈N
Lindt .  Therefore, we substitute 0λ′  for 

)(
)(,

N
LindtY =  in formula (7).  This means that as long as 0λ′<X , we think no truly associated 

markers are ranked among the top L  markers, regardless of the null markers chosen from 

the first stage.  On the other hand, we have demonstrated that in the first stage, selecting a 

proportion 0q  of the markers through comparing the values of the test statistics is 

asymptotically equivalent to selecting the significant markers through statistical tests with 

significance level )( 01 q=α , that is, the critical value can be taken as 0λ .  Therefore, we 

obtain 

             ( )000
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′<>

=
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XZP
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where ( )00 zZP >  is given in formula (6), and 
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For the two-stage independent design, the probability of at least one truly associated 

marker being ranked among the top L  markers after the second stage can be easily 

obtained as: 

dyygyXPYXPP ∫
∞

∞−

∗∗ ⋅<−=<−= )()(1)(12 , 

where 

( ) ∏
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=<
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1

),(
K

j
j yGyXP  
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and 
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Results 

To see how many markers should be chosen from the pooling stage, we conduct some 

calculations using formula (5) first under various genetic models and allele frequencies.  

The following four genetic models are considered: a dominant model with 04.012 == ff , 

01.00 =f ; a recessive model with 04.02 =f , 01.001 == ff ; a multiplicative model with 

04.02 =f , 02.01 =f , 01.00 =f ; and an additive model with 04.02 =f , 025.01 =f  and 

01.00 =f  (Risch and Teng 1998, Zou and Zhao 2004).  The population frequency of allele 

A is varied from 0.05, 0.2, to 0.7.  We take the sample size to be 1000=n  and assume that 

the number of the disease-associated markers is 5=K .  

 

Table 1 provides the probabilities of i )5,,1( L=i  truly associated markers being among 

the top 1/1000 markers when we assume the same genetic model and allele frequency at 

each disease-associated marker and no measurement errors.  It is clear from the table that 

for most cases, the probability that all truly associated markers are among the top 1/1000 

markers is high.  The probability that these top markers include only some of the truly 

associated markers is often very low.  An explanation is that when there is a signal that the 



 23

marker is associated with disease, the corresponding test statistic should often be large 

when the sample size is reasonably large.  So the chance for such a marker to be ranked low 

is rather small.  The exceptional cases are the recessive models with small allele 

frequencies or dominant models with large allele frequencies.  This is because the allele 

frequency difference between the cases and controls is often small in these scenarios and 

the sample sizes are not large enough to distinguish the signals from noises.  However, we 

can observe from the table that the probability of at least one truly associated marker being 

among the top 1/1000 markers is uniformly very large except for the recessive models with 

small allele frequencies.  The conclusion still holds for the case in which genetic models 

and allele frequencies are different at each truly associated marker or the case of different 

sample sizes (data not shown).  So in the following analysis, we consider the chance that at 

least one truly associated marker is among the top %100 0q  of the markers.  

 

Figure 1 presents the probability of at least one truly associated marker being included 

among the top %100 0q  of the markers for a fixed population allele frequency, p and allele 

frequency difference between the case and control groups, UA pp −  (where 0f  is taken as 

0.01. When 0f  is taken to be other values, the results are similar (data not shown)). It can 

be observed from the figure that for given p and UA pp − , the probabilities are almost the 

same under different genetic models.  This shows that the probability that at least one truly 

associated marker is included among the top markers depends on the genetic model and 

allele frequency mostly through the population allele frequency and allele frequency 

difference between the case and control groups.  Because the exact genetic model is often 
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unavailable to researchers, this fact makes it possible to select the proportion 0q  based on 

the assumed population allele frequency and allele frequency difference between the cases 

and controls at the candidate marker. Note that the effect of the number of truly 

disease-associated markers on the probability that at least one such marker is included is 

not very small (data not shown).  So we require that the value of 0q  is chosen so that the 

probability is greater than 80% for the case of having only one truly associated marker and 

not smaller than 99% for the case of five truly associated markers.  For the case of five truly 

associated markers, the allele frequency differences at four markers are assumed to be at 

least 0.03.  Note that when the number of truly associated markers K  is greater than five, 

the probability that at least one truly associated marker is included is larger. 

 

Figure 2 gives the probability that the disease-associated marker is included among the top 

0q  = 6.7% of the markers for various population allele frequencies and allele frequency 

differences between the cases and controls when there is only one truly associated marker.  

The figure shows that when the error rate is 0.01, choosing %7.60 =q  can detect the truly 

associated marker with an allele frequency difference of 0.05 with more than 80% chance.  

Furthermore, when there are five disease-associated markers, to detect at least one such 

marker with more than 99% chance, the selection proportion should be 7% (data not 

shown).  Therefore, to detect the disease markers with an allele frequency difference of 

0.05 at one marker, the selection proportion of 7% is recommended when the error rate is 

0.01 and the sample consists of 1000 cases and 1000 controls.  To select the truly 

associated markers with an allele frequency difference of 0.03 at one marker, the 
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proportion 0q  should be about 29% (data not shown).  If the error rate is reduced to 0.005, 

the proportion 0q  can be reduced to 3% or 19% to select the truly associated markers with 

an allele frequency difference of 0.05 or 0.03 at one marker, respectively.  The required 

proportions for including at least one truly associated marker with an allele frequency 

difference of 03.0=− UA pp , 0.05, 0.07 or 0.10 are summarized in Table 2 when the 

sample size is 1000=n .  Generally, the effect of sample size on selecting the 

disease-associated markers is not very large, especially for the extreme allele frequencies 

(data not shown).  However, it can be seen from Table 2 that reducing the measurement 

errors can greatly reduce the required proportion 0q .  Therefore, it is important to reduce 

the measurement errors in the first stage.  

 

To investigate the statistical power of the two-stage design, we set the sample size in the 

first stage to be 500=n , and the supplemental sample size in the second stage to be 

500=an .  Note that the main purpose in the first stage is to screen for those truly 

associated markers.  Therefore, we hope that the probability of the truly associated markers 

being included is large.  Thus, we set the power to be 95% in the pooling stage.  The 

significance level of the two-stage design for a single marker test is taken to be 

8105 −×=α , a level suggested by Risch and Merikangas (1996) for genome-wide 

association studies.  The results for the two-stage dependent design under the previous four 

genetic models are presented in Table 3.  Clearly, the power depends on the genetic model 

and allele frequency.  In general, the power is very high for the sample sizes we consider 

here.  The exceptions are the recessive models with a small allele frequency or dominant 
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models with a large allele frequency.  From this table, we can see that the measurement 

errors in DNA pooling have little impact on the statistical power of the two-stage design. 

Our previous studies showed that such effect can be large for a one-stage design, especially 

when the error rates are not small (Zou and Zhao 2004).  Our finding shows that the impact 

of measurement errors on the case-control association studies can almost be neglected by 

using the two-step design, although a larger measurement error will lead to more markers 

to be selected in the first stage. Compared to the one-stage design, the two-stage strategy 

has slightly smaller power due to the selection in the first stage (data not shown).   When 

the two-stage independent design is used, the power is higher than that of the two-stage 

dependent design (Table 4).  In our calculation, we assume that the same number of the 

cases and controls are typed at the second stage for both designs, which implies that more 

efforts are needed for the two-stage independent design to collect additional cases and 

controls compared to the two-stage dependent design.  Our calculation shows that if we 

ignore the correlation between the two stages for a two-stage dependent design, then we 

will slightly overestimate the power.  On the other hand, from Table 4, the two-stage 

independent design is more affected by the measurement errors than the two-stage 

dependent design but less affected than the one-stage pooling scheme.   

 

Table 5 gives the statistical power of the two-stage dependent design for the fixed allele 

frequency and allele frequency difference between the cases and controls (where 0f  is still 

taken as 0.01).  It can be observed from the table that for given p and UA pp − , the power is 

almost the same under different genetic models.  This shows that the power of the 
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two-stage design depends on the genetic model and allele frequency almost only through 

the population allele frequency and allele frequency difference between the case and 

control groups.  As before, this observation is useful in practice because that, although the 

genetic models are often unknown to us,  we can estimate the sample size to attain the 

desired significance level and power under different genetic models as long as the allele 

frequencies in the general population and the allele frequency differences between the 

cases and controls can be assumed.   

 

We use the approximate formula (8) to calculate the probability of at least one truly 

associated marker being ranked among the top L  markers after the second stage for the 

two-stage dependent design.  Likewise, the probabilities are almost the same under 

different genetic models for the same population allele frequency and allele frequency 

difference between the case and control groups (data not shown).  As an example, we 

consider a recessive model with a population allele frequency of 0.2 and allele frequency 

difference of 0.05.  The results are presented in Figure 3.  It can be seen that there is a high 

probability for the top 50 markers to include at least one truly associated marker when 1% 

of the markers are selected from the first stage, even though the measurement errors are not 

small.  However, this probability may not be high for detecting disease-associated markers 

with small allele frequency differences, e.g. 0.03 (data not shown).  Essentially, the chance 

that at least one truly associated marker is ranked among the top L  markers after the 

second stage is higher for markers with larger allele frequency differences.  The conclusion 

is similar for the two-stage independent design (data not shown). In general, the 
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probabilities are not larger for the two-stage independent design than those for the 

two-stage dependent design.  This can be understood by noting the positive correlation 

between the two stages for the two-stage dependent design which leads to the smaller value 

of the right-hand side of formula (8) than )( 0λ′<XP . 

 

Discussion 

In this paper, we have investigated the two-stage design with DNA pooling used in the first 

stage screening.  Three related problems have been considered: (i) How many markers 

should be chosen from the first stage? (ii) What is the overall statistical power when the 

two-stage design is used? and (iii) What is the probability that at least one of the 

disease-associated markers is ranked among the top after the second stage?  Our analyses 

show that the answers to these questions are dependent on the genetic models and allele 

frequencies essentially through the population allele frequencies and allele frequency 

differences between the case and control groups at the candidate markers.  For the first 

problem, we have derived the proportion of markers that needs to be selected to include the 

truly associated markers.  For instance, when the measurement errors are small (0.005), 3% 

of the markers need to be selected to include a disease-associated marker with an allele 

frequency difference of 0.05 between the case and control groups for a sample consisting 

of 1000 cases and 1000 controls.  When the measurement errors are not small, multiple 

pools can be formed to reduce measurement errors.  For the second problem, we have 

derived the formula for calculating the statistical power of a two-stage strategy.  We find 

that the measurement errors in pooled DNA have little effect on the power when the 
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two-stage design, especially the two-stage dependent design, is used, contrary to the single 

stage pooling scheme.  Recall our conclusion that reducing measurement errors can greatly 

reduce the selection proportion of markers in the pooling stage, we see that for a two-stage 

design, measurement errors have a large impact only on the first stage.  Once the markers 

are selected, the effect of measurement errors can be very small.  Three strategies, the 

two-stage dependent design, the two-stage independent design, and the one-stage design, 

have been compared.  Overall, the two-stage independent design has the highest power, the 

one-stage design with individual genotyping has slightly higher power than the two-stage 

dependent design.  However, their difference in power is not large.  On the other hand, the 

one-stage design will be either too expensive (for individual genotyping) in genome-wide 

search or seriously affected by measurement errors (for DNA pooling).  Furthermore, for 

the two-stage independent design, extra sample collection is needed, although the 

genotyping cost is the same as in the two-stage dependent design.  In fact, if in our 

calculations, we use exactly the same number of individuals as that in the two-stage 

dependent design with 500 used to screen and the other 500 for follow-up analyses, the 

statistical power for such a two-stage independent design can be much lower than that of 

the two-stage dependent design. For example, the power under the multiplicative model 

with a population allele frequency of 0.05 and a measurement error rate of 0.005 is 0.209 

for the above two-stage independent design but 0.599 for the two-stage dependent design.  

For the third problem, our studies show that the chance that at least one truly associated 

marker selected from the first stage is ranked among the top markers after the second stage 

is high when the allele frequency differences are not smaller than 0.05 for samples of 
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reasonable sizes, even though the measurement errors are not small.   

 

It is of practical interest how to allocate the sample sizes in the two stages to maximize 

the power (or minimize the total cost) for a given cost (or given power), as Satagopan et 

al. (2002), Satagopan and Elston (2003), and Satagopan et al. (2004) have done.  For 

example, let C  be the total cost, 1C  be the cost of recruiting an individual, poolC  be the 

cost of measuring allele frequency at a single marker for a DNA pool, indC  be the cost 

of genotyping a single marker for an individual, and 0C  be the other cost such as 

administration. Then we have 

        110 )(22)(2 MnnCmMCnnCCC aindpoola +⋅+⋅++⋅+=                                          

for the two-stage dependent design, and   

     110 22)(2 MnCmMCnnCCC aindpoola ⋅+⋅++⋅+=                                                  

for the two-stage independent design. In particular, we take the number of total markers to 

be 610M =  , the number of the truly disease-associated markers to be 1K = , and the 

number of pool pairs to be 1m = . Further, we take 55 10C = ×  (Unit: USD), 1 200C = , 

0.02indC = ， 0.02poolC = ， 0 0C = , and 0.01ε = . Then our preliminary calculation results 

showed that for the given cost, the optimal design that lead to highest power is to allocate 

exactly (nearly) the same sample size to each stage for the two-stage dependent 

(independent) design (data not shown). For the two-stage dependent design, this means 

that all individuals should be used at both stages and no additional sample is needed at the 

second stage. This is similar to the two-stage individual genotyping design with sample 

size constraint (Satagopan et al. 2004) but is different from the design with individual 

genotyping at both stages in which the optimal design maximizing power is to allocate 

approximately 25% of the individuals to the first stage and the remaining individuals to the 
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second stage (Satagopan et al. 2002, Satagopan and Elston 2003). Clearly, an overall 

investigation is needed in this regard. This warrants our further research. 

 

To simplify our analyses, we have assumed independence among the markers.  This 

would be reasonable when the marker density is low.  However, for a genome-wide 

association study, the marker density is high and adjacent markers may be highly 

correlated.  But it is not evident how to model the correlation among markers.  One way 

to avoid this difficulty is to study many subsets of the whole marker set such that they 

cover the entire genome yet the markers are independent.  However, this is clearly less 

than satisfactory due to the loss of information in the data.  On the other hand, this 

question can be examined empirically to assess the effect of correlations among 

markers on our results.  For example, we have investigated the effect of correlation on 

the selection of markers in the first stage through the HapMap data.  We considered the 

SNPs on the 500K SNP Array and used the HapMap data approximate the level of 

correlations among SNPs.  The HapMap data consist of 270 individuals from four 

populations, and the information for the 500K data can be downloaded from 

http://www.affymetrix.com/support/downloads/data/500K_HapMap270.zip (For the 

missing alleles, we imputed them by the corresponding frequencies of the existing 

alleles).  For simplicity, we have only considered the first 300 markers and let the 140th 

marker be disease-associated to illustrate the impact of marker dependence and a more 

through investigation will be reported in future reports.  Assuming a dominant model 

with  1.0,4.0 012 === fff , the allele frequency difference between the case and 

control groups is 088.0=− UA pp .  We considered the sample sizes of the two pools to 
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be 100=n .  Using the results established before under the independence assumption, 

we found that if we took the top %0.02 %,8.71 %,3.180 =q  and %9.30  of the markers 

when  ,0=ε  ,005.0 01.0 and 03.0 , respectively, then we would have the chance of 

%80  to select the disease-associated marker (i.e., 140th marker) in the first stage.  

When we applied these 0q s obtained under the independence assumption to the 

HapMap data, we observed that in 10,000 simulations, we had the chances of %,72  

%,72  %71 , and %65  to include the disease-associated marker when  ,0=ε  

,005.0 01.0  and 03.0 , respectively.  This shows that the correlation among markers 

can reduce the chance that the truly disease-associated marker is selected but such 

reduction is not large.  Further, the impact of correlation is larger (smaller) for less 

(more) stringent requirement on the chance of including the disease-associated marker 

under the independence assumption (data not shown).  Clearly, to eliminate the effect 

of correlation, the best way is to develop similar methods to those given in this paper 

incorporating the correlations among markers, and this will be addressed in our future 

work. 

 

Throughout the paper, we have assumed that there exist measurement errors in the DNA 

pooling stage but no errors in the individual genotyping stage.  How genotyping errors at 

both stages can affect the efficiency of the two-stage scheme also warrants future research. 

 

Note that family-based data are often used in genetic epidemiological studies in addition to 

population-based data.  Association studies using pooled DNA family data have been 
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considered for the one stage scheme (e.g. Risch and Teng 1998, Zou and Zhao 2005).  The 

research on the two-stage designs using family data is no doubt an interesting topic for 

future research.   
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Appendix  

The calculation of the probability that none of the truly associated markers are ranked 

among the top L  markers 

 

Clearly, 2P′  can be written as 
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We have known )(
,

T
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Combining (A.1) and (i)-(iv), we can obtain 2P′ . Thus, the probability that at least one truly 

associated marker is ranked among the top L  markers can be calculated by 22 1 PP ′−= . 
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Table 1. The probability of i )5,,1( L=i  disease-associated markers ranked among the top 

1/1000 markers for the case of the same genetic model and allele frequency at each truly 

associated marker ∗  

 
  

  5=i  
 

 
  4=i  

 
  3=i  

 
  2=i  

 
  1=i  

 
  1≥i  

Dominant 
 

 

  p = 0.05   1.000   0.000    0.000   0.000   0.000   1.000 
  p = 0.20   1.000   0.000    0.000    0.000    0.000   1.000 
  p = 0.70   0.234   0.394   0.266   0.090   0.015   0.999 
Recessive 
 

 

  p = 0.05   0.000   0.000   0.000   0.004   0.099   0.103 
  p = 0.20   0.995   0.005   0.000   0.000   0.000   1.000 
  p = 0.70   1.000   0.000   0.000   0.000   0.000   1.000 
Multiplic. 
 

 

  p = 0.05   0.970   0.030   0.000   0.000   0.000    1.000 
  p = 0.20   1.000   0.000   0.000   0.000   0.000   1.000 
  p = 0.70   0.999   0.001   0.000   0.000   0.000   1.000 
Additive 
 

 

  p = 0.05   1.000   0.000   0.000   0.000   0.000   1.000 
  p = 0.20   1.000   0.000   0.000   0.000   0.000   1.000 
  p = 0.70   1.000   0.000   0.000   0.000   0.000   1.000 

 

∗ Dominant model: 04.012 == ff , 01.00 =f ; Recessive model: 04.02 =f , 

01.001 == ff ; Multiplicative model: 04.02 =f , 02.01 =f , 01.00 =f ; Additive 

model: 04.02 =f , 025.01 =f , 01.00 =f . 

∗∗ The sample size is 1000=n , and no measurement errors are assumed with the number of 

disease-associated markers being 5=K . 
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Table 2. The recommended proportion 0q  of markers selected from the first stage for 

including at least one truly associated marker with an allele frequency difference of 

UA pp −  at one marker∗ 

 
    UA pp −      0=ε      005.0=ε      01.0=ε      03.0=ε  

       0.03       15%        19%        29%         58% 
       0.05       2%        3%        7%         40% 
       0.07       0.4%        0.9%        3%         25% 
       0.10      5 510−×         0.02%        0.4%         18% 

 

∗ The sample size in the first stage is 1000=n , and the number of pools formed for either 

the cases or the controls is 1=m . 
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Table 3. The power of the two-stage dependent design for the sample sizes of 500=n   

and 500=an ∗   

 
 
 
 

 
   0=ε  

 
  005.0=ε  

 
   01.0=ε  

 
   03.0=ε  

Dominant 
 

 

  p = 0.05    0.950    0.950    0.950    0.950    
  p = 0.20    0.950    0.950    0.950    0.950 
  p = 0.70    0.046    0.046    0.046    0.046 
Recessive 
 

 

  p = 0.05    0.000    0.000    0.000    0.000 
  p = 0.20    0.829    0.827    0.824    0.817 
  p = 0.70    0.950    0.950    0.950    0.950 
Multiplic. 
 

 

  p = 0.05    0.600    0.599    0.595    0.584 
  p = 0.20    0.950    0.950    0.950    0.950 
  p = 0.70    0.950    0.950    0.950    0.950 
Additive 
 

 

  p = 0.05    0.941    0.939    0.936    0.931 
  p = 0.20    0.950    0.950    0.950    0.950 
  p = 0.70    0.948    0.947    0.946    0.943 

 

∗  The significance level for the two-stage design is 8105 −×=α , and the power in the 

pooling stage is %951 1 =− β . Dominant model: 04.012 == ff , 01.00 =f ; Recessive 

model: 04.02 =f , 01.001 == ff ; Multiplicative model: 04.02 =f , 02.01 =f , 

01.00 =f ; Additive model: 04.02 =f , 025.01 =f , 01.00 =f . 

∗∗ The number of pools formed for either the cases or the controls is 1=m . 
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Table 4. The power of the two-stage independent design for the sample sizes of 500                  

in the first stage and 1000 in the second stage ∗   

 
 
 
 

 
   0=ε  

 
  005.0=ε  

 
   01.0=ε  

 
   03.0=ε  

Dominant 
 

 

  p = 0.05    0.950    0.950    0.950    0.950    
  p = 0.20    0.950    0.950    0.950    0.950 
  p = 0.70    0.092    0.084    0.071    0.051 
Recessive 
 

 

  p = 0.05    0.000    0.000    0.000    0.000 
  p = 0.20    0.933    0.925    0.902    0.830 
  p = 0.70    0.950    0.950    0.950    0.950 
Multiplic. 
 

 

  p = 0.05    0.833    0.767    0.678    0.593 
  p = 0.20    0.950    0.950    0.950    0.950 
  p = 0.70    0.950    0.950    0.950    0.950 
Additive 
 

 

  p = 0.05    0.950    0.949    0.946    0.933 
  p = 0.20    0.950    0.950    0.950    0.950 
  p = 0.70    0.950    0.950    0.950    0.946 

 

∗ The significance level for the two-stage design is 8105 −×=α , and the power in the 

pooling stage is %951 1 =− β . Dominant model: 04.012 == ff , 01.00 =f ; Recessive 

model: 04.02 =f , 01.001 == ff ; Multiplicative model: 04.02 =f , 02.01 =f , 

01.00 =f ; Additive model: 04.02 =f , 025.01 =f , 01.00 =f . 

∗∗ The number of pools formed for either the cases or the controls is 1=m . 
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Table 5. The power of the two-stage dependent design for the fixed allele frequency and 

allele frequency difference between the case and control groups ∗  

 
  

03.0=− UA pp  

 

 
05.0=− UA pp  

 
07.0=− UA pp  

 
10.0=− UA pp  

p = 0.05 
 

 

     Dominant       0.0685      0.748      0.949      0.950 
     Recessive       0.0915      0.717      0.944      0.950 
     Multiplic.       0.0704      0.744      0.948      0.950 
     Additive       0.0697      0.746      0.949      0.950 
p = 0.20 
 

 

     Dominant       0.00115      0.0585      0.457      0.941 
     Recessive       0.00174      0.0722      0.460      0.931 
     Multiplic.       0.00127      0.0618      0.458      0.938 
     Additive       0.00126      0.0612      0.458      0.939 
 p = 0.70 
 

 

     Dominant     4.58 410−×       0.0301      0.352      0.926 

     Recessive     6.96 410−×       0.0389      0.376      0.934 
     Multiplic.     6.24 410−×       0.0366      0.374      0.936 
     Additive     6.16 410−×       0.0362      0.373      0.937 

 

∗ The significance level for the two-stage design is 8105 −×=α , and the power in the 

pooling stage is %951 1 =− β . 

∗∗ The sample sizes are 500=n  and 500=an , the error rate is 01.0=ε , and the number 

of pools formed for either the cases or the controls is 1=m . 
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Figure 1. The probability of the truly associated marker being included among the top 

%100 0q  of the markers under different genetic models for the same population allele 

frequency (0.20) and allele frequency difference between the case and control groups 

(0.05).  From top to bottom, the curves correspond to the dominant model, additive model, 

multiplicative model, and recessive model, respectively.  The sample size is 1000=n , the 

error rate is 01.0=ε , and the number of pools formed for either the cases or the controls is 

1=m .  We assume that the number of disease-associated markers is 1=K . 
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Figure 2. The probability of the truly associated marker being included among the top 6.7% 

of the markers when the number of disease-associated markers is 1=K .  The sample size 

is 1000=n , the error rate is 01.0=ε , and the number of pools formed for either the cases 

or the controls is 1=m .  From top to bottom, the curves correspond to allele frequency 

differences of 0.10, 0.07, 0.05, 0.03, and 0.01, respectively. 
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Figure 3. The probability of at least one truly associated marker being ranked among the 

top L  markers after the second stage for the two-stage dependent design where the sample 

sizes are 500=n  and 500=an , the error rate is 01.0=ε , and the number of pools formed 

for the cases or the controls is 1=m .  The allele frequency difference is 0.05, and the 

population allele frequency is 2.0=p .  From top to bottom, the curves correspond to the 

cases of =1K 5, 2, and 1, respectively (Assume the number of the whole markers is 

610=M  and top 1% markers are chosen from the first stage in which 1K  truly associated 

markers are included). 

 

 

 


