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Abstract

DNA pooling is a cost effective approach for collecting information on marker allele
frequency in genetic studies. It isoften suggested as ascreening tool to identify a subset of
candidate markersfrom avery large number of markers to be followed up by more accurate
and informative individual genotyping. In this paper, we investigate several statistical
properties and design issues related to this two-stage design, including the selection of the
candidate markers for second stage analysis, statistical power of this design, and the
probability that truly disease-associated markers are ranked among the top after second
stage analysis. We have derived analytical results on the proportion of markers to be
selected for second stage analysis. For example, to detect disease-associated markers with
an alele frequency difference of 0.05 between the cases and controls through an initia
sample of 1000 cases and 1000 controls, our results suggest that when the measurement
errors are small (0.005), about 3% of the markers should be selected. For the statistical
power to identify disease-associated markers, we find that the measurement errors
associated with DNA pooling have little effect on its power. This is in contrast to the
one-stage pooling scheme where measurement errors may have large effect on statistical
power. Asfor the probability that the disease-associated markers are ranked among the top
in the second stage, we show that there is a high probability that at least one
disease-associated marker is ranked among the top when the allele frequency differences
between the cases and controls are not smaller than 0.05 for reasonably large sample sizes,

even though the errors associated with DNA pooling in the first stage is not small.



Therefore, the two-stage design with DNA pooling as a screening tool offers an efficient
strategy in genome-wide associ ation studies, even when the measurement errors associ ated
with DNA pooling are non-negligible. For any disease model, we find that al the statistical
results essentially depend on the population allele frequency and the allele frequency
differences between the cases and controls at the disease-associated markers. The general
conclusions hold whether the second stage uses an entirely independent sample or includes

both the samples used in the first stage as well as an independent set of samples.
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Introduction

Genome-wide case-control association study is a promising approach to identifying
disease genes (Risch 2000). For a specific marker, alele frequency difference between
cases and controls may indicate potential association between this marker and disease,
although other factors (e.g. population stratification) may account for the observed
difference. Allele frequencies among the cases and controls can be obtained either through
individual genotyping or DNA pooling. Although individual genotyping provides more
accurate estimates of allele frequencies and allows for the inference of haplotypes and the
study of genetic interactions, DNA pooling can be more cost effective in genome-wide
association studies as individual genotyping needs to collect data from hundreds of

thousands markers for each person.

In the absence of measurement errors associated with DNA pooling, there would be no
difference between using DNA pooling or individual genotyping for the estimation of
alele frequency. However, one major limitation of the current DNA pooling technologies
is indeed the errors associated with measuring alele frequencies in the pooled samples.
Recent research suggests that for a given pooled DNA sample, the standard deviation of the
estimated allele frequency is between 1% and 4% (cf., Buetow et a. 2001, Grupe et al.
2001, Le Hellard et al. 2002, and Sham et al. 2002). LeHellard et al. (2002) reported that
using the SNaPshot ™ Method, which is based on allele-specific extension or

minisequencing from a primer adjacent to the site of the SNP, the standard deviation ranged



from 1% to 4% depending on the specific markers being tested. Our recent studies have
found that the errors of this magnitude may have alarge effect on the power of case-control
association studies using DNA pooling as the sole source for genotyping (see Zou and
Zhao 2004 for unrelated population samples and Zou and Zhao 2005 for family samples).
Therefore, a two-stage design where DNA pooling is used as a screening tool followed by
individual genotyping for validation in an expanded or independent sample may offer an
attractive strategy to balance power and cost (Barcellos et al. 1997, Bansal et al. 2002,
Barratt et al. 2002, Sham et al. 2002). In such adesign, thefirst stage evaluatesavery large
number (e.g. one million) of markers using DNA pooling, and only the most promising
ones are selected and studied in the second stage through individual genotyping. Similar
two-stage designs have been considered by Elston (1994) and Elston et al. (1996) in the
context of linkage analysis, and by Satagopan et al. (2002, 2003, 2004) in the context of
association studies. However, these studies primarily assumed that individual genotyping
isused in both stages, which may not be as cost-effective asusing DNA pooling in the first
stage. Moreover, errors associated with genotyping have never been considered in the

literature.

When DNA pooling is used as a screening tool in the first stage, the following issues need
to be addressed:

(i) How many markers should be chosen after the first stage so that there is a high
probability that all or some of the disease-associated markers are included in the individual

genotyping (second) stage?



(if) What is the statistical power that a disease-associated marker is identified when the
overall false positive rate is appropriately controlled for?

(iii) When the primary goal is to ensure that some of the disease-associated markers are
ranked among the top L markers after the two-stage analysis, what is the probability that at

least one of the disease-associated markers is ranked among the top?

The objective of this paper isto provide answers to these practical questionsto facilitatethe
most efficient use of the two-stage design strategy where DNA pooling isused. In genetic
studies, the sample in the first stage can be expanded with a set of new samples in the
second stage analysis, or the second stage may only involve a new set of samples for
individual genotyping, so both these strategies will be considered in our article. We hope
that the principles thus learned will provide an effective and practical guide to genetic

association studies.

This paper is organized as follows. We will first present our analytical results to tregt the
above three problems, and then conduct numerical calculations under various scenarios to
gain an overview and insights on these design issues. Finaly, some future research

problems are discussed.

M ethods
Genetic models

We consider two alleles, A and a, a a candidate marker, whose frequencies are p and



g=1- p, respectively. For simplicity, we consider a case-control study with n casesand n
controls. Let X, denote the number of allele A carried by the ith individual in the case
group, and Y, is similarly defined for the ith individual in the control group. Assuming
Hardy-Weinberg equilibrium, each X, or Y, has a value of 2, 1, O with respective
probabilities p*, 2pg and g* under the null hypothesis of no association between the
candidate marker and disease. When the candidate marker is associated with disease, we
assume that the penetrance is f, for genotype AA, f, for genotype Aa, and f, for
genotypeaa. Notethat thesetwo alleles may betruefunctional allelesor may bein linkage
disequilibrium with true functional aleles. Under this genetic model, the probabilities of

having k copies of A among the cases, m, = P(X; =k), and those among the controls,

m, = P(Y, =k), are

2
f
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p°f, +2paf, +q°f,
_ 2pdf,
p*f, +2paf, +q*f,
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One-stage designs
For useful reference, we first formulate the test statistics and derive statistical power based
on a one-stage design using either individual genotyping or DNA pooling. These can be

considered as special cases or direct extensions of the resultsin Zou and Zhao (2004).

(a) Individual genotyping
For individual genotyping, let n, and n, denote the observed numbers of allele A in the
case group and control group, respectively, p, and p, denote the population allele
frequencies of allele A in these two groups, and p, and p, denote their maximum
likelihood estimates, where p, =n,/(2n) and p, =n, /(2n).
Under the null hypothesis of no association between the candidate marker and disease
status, E(p,—p,) =0, and V(p, — p,) = pa/n. On the other hand, under the genetic
model introduced above,

BBy~ fu)=m,+om - -2 m =
and

~ ~ l / 4 4 /
V(Pa— pu)zﬁ[‘]'mz +m, —(2m, +m,)° +4n +m{ —(2m, +ml)2]

0_2
T .
The statistic to test genetic association between the candidate marker and disease is
t ﬁA - f)u
ind — ~ ~ '
VP(I-p)/n

where p=(n, +n,)/(4n).

Consider a one-sided test and use a significance level of « , the power of the test statistic
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q)[— 2,/PA- D) +ﬁu],

c
where p = u/2+m, +m /2 istheexpected frequency of allele A under the genetic model,
@ is the cumulative standard normal distribution function, and z, is the upper 100« th

percentile of the standard normal distribution.

(b) DNA pooling

For DNA pooling, we consider m pools of cases and m pools of controls each having size s
such that n=ms. We assume the following model relating the observed allele frequencies
estimated from the pooled samples to the true frequencies of allele A in the samples:

~ pool __ Xil-i-“'-i_xis +

) u.,
Ai 2S i

where X, denotesthe number of allele A carried by thejth individual in theith case group,
and Y, isdefined similarly (i=1,...,m; j=1,...,), U, and v, are disturbances with mean 0

ij

and variance £ and are assumed to be independent and normally distributed. Define

RS I

~ pool __ A pool

Pa __szi ’
miz

and
2 Pooi l 4 2 Pooi
Py lzﬁ]izzl: o g
Under the null hypothesis of no association, E(p® -pi)=0 , and

V(PP - p2™) = pg/n+2e*/m. Onthe other hand, under the genetic model introduced
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above,
E(PX - P ) =pu,
and

foool Aol OO 287
V(PR - BS |)=_+F'

We can use the following test statistic to test genetic association based on DNA pooling

data:

A pool & pool
p— Pa _ Py ,
\/ ppool (1_ ppool) " 252
n m

where p_ :%(ngO' £ pe).

If we use a one-sided test and a significance level of « , the power of thetest statistic t

= = 2
_Za/p(l p)+g+ﬂ
@ n m .
lo?  2¢?
7_1_7
n m

pool

is

Two-stage designs

(a) How many markers should be selected after the pooling stage?

In thefirst stage, i.e., the DNA pooling stage, we consider m pools of cases and m pools of
controls each having size s such that n = ms. The main objective for the first stage is to
select the most promising markers based on pooled DNA data to follow up in the second
stage in order to reduce the overall cost. Therefore, the following problem should be

addressed: how many of the M markers initially screened should be selected for



second-stage analysis so that the probability that the disease-associated markers are
selected is high, e.g. 90%? For simplicity, we assume that the associated markers are
independent. Let the desired number of markers be M,. As in Satagopan et al. (2002,

2004), we choose those markers which have the largest test statistic.

For markers not associated with disease, the test statistic can be approximated by

mfoer
O B L
pool > ’
|Pq_ 2"
n m
o 2e?) o1& 1y
where £,~N(0), w=U-V~N|0,=— |, U==>u,, V== v, and & and w are
m miz i=1

mutually independent. Whereas for markers associated with disease through the genetic

model introduced above, the test statistic can be approximated by:

2
1/a—é‘l+w
— n
pool — — — 2 ’
pA-p)  2e°

n m

where £,~N(/nu/ 1), and & and w are mutually independent.

Let t),,-,t5) « be the test statistics corresponding to the K disease-associated
markers, t() .-t ,_« be those corresponding to the M —K null markers, and
thoa@ 2+ 2 Lo -k, arethecorresponding ordered test statistics. Let B, ~denotethe

probability that the specified K, of the K truly associated markers are among thetop M,

markers. Furthermore, denote

Zo=min{tm .t }

Cyttey, )
pool iy pool iy,
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and

Z' =maxt®) ,je E={L., K}\{ij,ic -

pool, j *

2
/l pool, j

Note that t{] ) j=1...,K, where

pool ] ( pool j?

H;
[P @-p)/n+2e?/m’

epool,j =

2 ol ln+2e*/m
ool,j T ~ ~ '
B, @-p) n+ 2 Im

and p;, 4; and of are defined as p, u and o? with allele frequency p,, penetrances

f,;, f,; and fy, a the truly associated marker j in place of p, f,, f, and f,

respectively, j =1...,K. In addition, t&) ~ N(0,1), j=1..,M —K. For convenience,

? “pool,j

we denote the distribution and density functions of t{), .

by F;(x) and f,(x), and the
distribution and density functions of t®) = by @®(x) and ¢(x), respectively. Then it can

pool, j

be shown that the joint density function of (Z,,2") is

9(z,,2)=9,(2) 9, (2),

where
gzo(zo)=lj_[£L R, (z,)] Z;%
and
9, ()= EF( );F( )-

Moreover, the joint density of (t(V) oo (Mo—ks2)+ Lol (k) ) 1S

(M —K)!

MMk K- emewew),

9o (U,v) = [

u<v.

Hence,
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pool,(M;—K;+1) ?

= [Pz, >u.Z' <2,,2" <v)- gy (uv)cuay, ®

u<v

where
P(Zo>u,2" <2,,2" <V)=Plu<Z,<v,Z" <Z,)+P(Z,2v,Z" <V)

= I:dzojjig(zo,z*)dz* +J'V°° 9y, (2,)dz, f_vw g,.(z)dz" .

Therefore, the probability that K, of the K disease-associated markers are among the top

M, markersis given by

P(K)= 2P .- )

From this expression, we can determine the value of M, such that P,(K,) is higher or

equal to agiven level, e.g. 90%.

Foragiven M, let ¢ denotethe number of disease-associated markersincluded in thetop
K K

M, markers, then its expectationis E({) =D I -P( =1)=>I-P(l). Therefore, we can
1=0 1=0

determine the value of M, through this formula such that the average number of
disease-associated markers included in the top M, markers is K, , i.e K;

disease-associated markers are selected on average.

The above formulas (1) and (2) are exact but somewhat complicated. In thefollowing, we
derive their asymptotic expressions so that we can obtain simpler analytical results. It is

easy to see that we need only to consider formula (1).
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For afixed proportion p,, let A, denote the normal distribution quantile corresponding to

Py, that is, J‘j‘) #(x)dx = p,. Then from the asymptotic property of order statistics, we

have
t(N) a.s. i (3)
pool ,((M-K)-{(M-K) po]+1) 0
and
(N) a.s.
tP00| M -K)-[(M-K) pol) /10 ! (4)

when M — K tends to infinity, where [t] denotes the integer part of t, and —=—
denotes convergence almost sure.
If wewrite M, =K, +(M -=K)-[(M -K)p,], thenwe have
P = PZo >t ki 2 < Z6,Z" <t )
P(Zy > 2.2 < Z5,Z" < A,)
=P(Zy> ) P(Z <) . (5)

where
P(Z, > 7,) [1 F (2], ©)

and

(Z <z) [1F @).

jeE

Note that the total number of markers M is usualy extremely large, the number of

disease-associated markers K is extremely small compared to M, and
A-py)+(Ki—KA-p))/M <M, /M <(1-py)+ (K, —K@A-py)+H/M .

Therefore, taking M, top markersis equivalent to taking the top markers in the proportion

of gy =1-py.
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In particular, when the number of disease-associated markers is K =1, we can obtain an
analytical expression for the selected proportion g, necessary to attain the desired
probability that the disease-associated marker is selected. In fact, when K =1, from
formulas (5) and (6), we have

Pl = P(Zo > /10):1_ Fl(;to)

N _ B 2
/,to\/ pl(l pl) + 28 _,ul
=1-®

n m
ol 2¢?
7+7
n m

Therefore, if we require the probability that the truly associated marker isincluded in the

selected subset from the first stageis at least p,,i.e, B, > p,, then

N _ R 2
;to\/pl(l P.) + 2 — i
@ N m <1-p;=0(4),
o} 2¢e?
7+7
n m

where A, is the normal distribution quantile corresponding to 1- p,. Clearly, the above

2 2
/12\/11+Zi+ﬂ1
Ay<— M U

- \/51(1_ 51) + 282
n m

formulais equivalent to

*
0"

So the proportion g, should satisfy ¢, > ®(-U,). Therefore, aconservative selection of
the proportion q, is the maximum of ®(-U,) over various genetic models and alele

frequencies.

It should be noted that the above selection approach for markers is through comparing the
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values of the test statistics at all the markers and no statistical inference is conducted. If
statistical tests are performed to select the promising markers, then one would keep those
markers showing stronger statistical significance in the first stage. However, the two
methods are actually asymptotically equivalent.  This is because, if we take
4, =z, (where z, is the upper 100¢,th percentile of the standard normal distribution
corresponding to the significance level ¢, for each marker tested in the first stage), that is,
g, =, , which means that the selected proportion of markers is the same as the
significance level for testing each marker in the first stage, then the asymptotic probability
of thespecified K, of K truly associated markers being selected given in formula(5) isin
fact the statistical power of detecting the specified K, of K truly associated markers. So
for the case of independent markers, selecting the markers through comparing the values of
their test statistics is asymptotically equivalent to selecting the markers through statistical
tests, a conclusion similar to that of Satagopan et al. (2004) who considered individual
genotyping in the first stage. In other words, the selection approach based on statistical
tests is the limiting case of that based on comparing the values of test statistics at the

markers when the number of total markersis very large.

(b) The statistical power of the two-stage design

After aset of promising markers areidentified through DNA pooling, these markerswill be
individually genotyped in the second stage. In thissubsection, we first derive the statistical
power of the two-stage design to detect the disease-associated markers. In the next

subsection, we will investigate the possibility of at least one disease-associated marker

16



being ranked among the top after the second stage. In addition to the 2n individuals used
in the pooling stage, we will also consider an additional sample of size2n,. Under the null
hypothesis H,, i.e. the marker is not associated with disease, the test statistic for markers

tested in the second stage can be written approximately as

n n
tng = Sot E— 1,
n+n, n+n,

where 77,~N(0,1) and 7, is independent of &, and w, which were defined above in the

discussion of pooled DNA analysis.
Similarly, for markers associated with disease under the genetic model introduced above,

the test statistic for markers tested in the second stage can be written approximately as

n n
c-&+ |—0o-n
n+n, n+n,
t —

ind \/m ’

where 77,~N (\/n_a ulol), and i, isindependent of & and w, which were defined above

in the discussion of pooled DNA analysis.

Under the null hypothesis of no association, (tpool,tmd) has a joint bivariste normal

distribution N(0,>_ ), where

1 Vpa/(n+n,)
B \{pa/n+2e*/m
2% oty L |
Vpa/n+2e”/m

Under the alternative hypothesis H,, (t ool ,tmd) has a joint bivariate normal distribution

N(Z,Y ), where

17



JPA-P)/n+2e2/m | PA-P)/(n+n,)

and
o?In+2e*/m o’
P(-p)/n+2e*/m J(+n)PA-) -/ B-P)/n+2¢%/m
21: 0.2 0_2 .
J(+n)PA-P) - P-P)/n+2¢%/m p(- p)

For agiven sample size n and significance level ¢, or power 1—- 3, inthefirst stage (or a
given proportion of markers to be selected for second-stage analysis), we can determine a
critical value k; by solving o, = P(tpool > K, | HO) orl-p = P(tpool > K, | Hl). Then for
the overall significance level o for testing M markers and an additional sample of size

n,, we can determine the critical value k, in the second stage by solving

I M = Pt > KVt > ko) [Ho )= [ ho(x Yy,

where h, (X, y) isthe density function of (t ool ,tind) under H,, whichis given by

hy(x.Y) = #mexp{—g(x y)Zj@},
where | Y_ | isthe determinant of the matrix >, and z;l istheinverseof >
The probability that a disease-associated marker is identified by the two-stage design is
then given by
1= 8= Pl(tye > k) V(s > ko) 1Hy)= [ 1 (x )by,

where h,(x, y) isthe density function of (t_,t,,) under H,, which is given by

pool * *ind

hl(x,y)—zﬂ s { (x ) ﬂ)Zl[@J—ZZ’J}
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In the above two-stage design, the sample in the first stage is re-used in the second stage,

and thisintroduces correlation between the two test statistics, t ,,, and t,,,. Therefore, we
will call this two-stage scheme the two-stage dependent design in the following discussion.
On the other hand, we may use two separate samples in the two stages with one sample
used for screening and another independent sample used for individual genotyping. Inthis

scenario, the two test statistics, t_, and t,,, are independent. Hereafter we call such a

pool

two-stage scheme the two-stage independent design. For the two-stage independent design,

the type-I error rate and power are simply the products of those in both stages. That is,
P((t o > k) > K2) [Ho) = Pltoy >k, [Ho ) Plty >k, [Ho),

and

P((tpool > kl)ﬂ(tind > kz) | Hl)z P(tpool > k1 | Hl) P(tind > k2 I Hl)

(c) The chance of at least one marker associated with disease being ranked among the top
L markers after individual genotyping
We suppose that, among the M, markers selected from the first stage, there are K,

markers associated with diseaseand M, — K, null markers. Without loss of generality, we

assume that they are t), ,,---,t&)  and t{) -+ t) ., respectively. Inthis case, let
Z,and Z" denote min{tgj)l,l,---,tﬁ;ﬂ,hKl} and max{tgz,,’ml,---,tgof)lx}, respectively. Let
the; (i=1..K,) be the test statistic for the jth truly associated marker,

tow; (i =1..,M, —K,) bethetest statistic for the jth null marker in the second stage, and

o = 2t ) and thy > >th) - betheir order statistics. Then in the second

stage, the probability that none of the truly associated markers are ranked among thetop L
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markersis

P2,=P(X <Y‘Zo >U’Z*<Zo’Z*<V1V>U)' ()
where
X = max{tﬂj)l’ " |(n-|;:1)K }
Y - t|nNd)(L) '
U = maxftis v, e )
and
V = mln{tmd 11" !tg)'(\)lo)l M- Kl}

Like formula (1), an exact expression for calculating the probability P, can be derived
(Appendix). Therefore, the probability that at least one truly associated marker is ranked
among the top L markers is obtained by P, =1- P,. Because the exact formula s quite

complicated, we provide an approximate one below to simplify the calculation of this

probability. First note that (), ~ N6, i A, ,) where
Hi
eind,j == = )
\/pj (1_ pj)/(n+na)
and
2
o
/1,2nd,j =%,
pj (1_ pj)

j =1...,K,. We denote the distribution function of t{}, by G,(x). Also, let H{"(x,y)

ind, j

denote the joint distribution function of (t), ,t0) ), j =1...,K,.

pool jrhind,j

Now for afixed proportion p;, we have

(N) ~ 77
tindv((M1—K1)—[(M1—K1) pol) ﬂo !

20



when M, — K| is large, where A; is a normal distribution quantile corresponding to p;,
that is, fi¢(x)dx =p,, and [t] denotes the integer part of t as before. Denote
L=M,-K,—[(M; -K})p;] , then ti), =A; . Therefore, we substitute Aj for
Y =ty informula(7). Thismeansthat aslongas X < A;, wethink no truly associated
markers are ranked among thetop L markers, regardless of the null markers chosen from
thefirst stage. On the other hand, we have demonstrated that in the first stage, selecting a
proportion ¢, of the markers through comparing the values of the test statistics is
asymptotically equivalent to selecting the significant markers through statistical tests with
significance level ¢, (=q,), that is, the critical value can be taken as A,. Therefore, we
obtain

P = P(X < &|Zo > 40, Z" < AgV > Ag,U < 4

_P(Zy > A, X < Ag)
P(Z, > 4,)

: )

where P(Z, > z,) isgiven in formula (6), and

P(Z, > z,, X < x):ﬁ[Gj (X) — H}T)(zo,x)].

=1

For the two-stage independent design, the probability of at least one truly associated
marker being ranked among the top L markers after the second stage can be easily
obtained as:

P, =1-P(X <Y)=1-[ P(X <y)-g"(y)dy,

where

o(x <)~ [T,
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and

(Ml — Kl)!

M. _K _L)!(L_1)!<I>M1‘K1‘L(y)[l—d>(y)]“¢>(y)-

g (y)=
An approximationto P, is

Kl
Py =1- P(X</15):1—HGJ(/16). 9)
j=1

Results

To see how many markers should be chosen from the pooling stage, we conduct some
calculations using formula (5) first under various genetic models and allele frequencies.
The following four genetic models are considered: adominant model with f, = f, =0.04,
f, = 0.01; arecessive model with f, =0.04, f, = f, = 0.01; amultiplicative model with
f,=0.04, f, =0.02, f, =0.01; and an additive model with f, =0.04, f, =0.025 and
f, =0.01 (Risch and Teng 1998, Zou and Zhao 2004). The population frequency of allele
Aisvaried from 0.05, 0.2, t0 0.7. We take the sample sizeto be n=1000 and assume that

the number of the disease-associated markersis K =5.

Table 1 provides the probabilities of i (i =1,---,5) truly associated markers being among
the top /1000 markers when we assume the same genetic model and alele frequency at
each disease-associated marker and no measurement errors. It is clear from the table that
for most cases, the probability that all truly associated markers are among the top 1/1000
markers is high. The probability that these top markers include only some of the truly

associated markers is often very low. An explanation isthat when thereis asignal that the
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marker is associated with disease, the corresponding test statistic should often be large
when the sample sizeisreasonably large. So the chance for such amarker to be ranked low
is rather small. The exceptional cases are the recessive models with small allele
frequencies or dominant models with large allele frequencies. This is because the allele
frequency difference between the cases and controls is often small in these scenarios and
the sample sizes are not large enough to distinguish the signals from noises. However, we
can observe from the table that the probability of at least one truly associated marker being
among the top 1/21000 markersisuniformly very large except for the recessive modelswith
small alele frequencies. The conclusion still holds for the case in which genetic models
and allele frequencies are different at each truly associated marker or the case of different
sample sizes (datanot shown). So inthefollowing analysis, we consider the chance that at

least one truly associated marker is among the top 100q,% of the markers.

Figure 1 presents the probability of at least one truly associated marker being included
among the top 100q,% of the markers for afixed population alele frequency, p and allele
frequency difference between the case and control groups, p, — p, (wWhere f, istakenas
0.01. When f, istaken to be other values, the results are similar (data not shown)). It can
be observed from the figure that for givenp and p, — p, , the probabilities are almost the
same under different genetic models. This shows that the probability that at least one truly
associated marker is included among the top markers depends on the genetic model and
alele frequency mostly through the population allele frequency and allele frequency

difference between the case and control groups. Because the exact genetic model is often
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unavailable to researchers, this fact makes it possible to select the proportion g, based on
the assumed population allele frequency and allele frequency difference between the cases
and controls a the candidate marker. Note that the effect of the number of truly
disease-associated markers on the probability that at least one such marker is included is
not very small (data not shown). So we require that the value of q, is chosen so that the
probability is greater than 80% for the case of having only one truly associated marker and
not smaller than 99% for the case of five truly associated markers. For the case of five truly
associated markers, the allele frequency differences at four markers are assumed to be at
least 0.03. Note that when the number of truly associated markers K is greater than five,

the probability that at |least one truly associated marker is included is larger.

Figure 2 gives the probability that the disease-associated marker isincluded among the top
g, = 6.7% of the markers for various population allele frequencies and allele frequency
differences between the cases and controls when there is only one truly associated marker.
The figure shows that when the error rateis 0.01, choosing g, = 6.7% can detect the truly
associated marker with an allele frequency difference of 0.05 with more than 80% chance.
Furthermore, when there are five disease-associated markers, to detect at least one such
marker with more than 99% chance, the selection proportion should be 7% (data not
shown). Therefore, to detect the disease markers with an allele frequency difference of
0.05 at one marker, the selection proportion of 7% is recommended when the error rate is
0.01 and the sample consists of 1000 cases and 1000 controls. To select the truly

associated markers with an allele frequency difference of 0.03 a one marker, the
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proportion g, should be about 29% (data not shown). If the error rate is reduced to 0.005,
the proportion q, can be reduced to 3% or 19% to select the truly associated markers with
an allele frequency difference of 0.05 or 0.03 at one marker, respectively. The required
proportions for including at least one truly associated marker with an allele frequency
difference of p, — p, =0.03, 0.05, 0.07 or 0.10 are summarized in Table 2 when the
sample size is n=1000. Generdly, the effect of sample size on selecting the
disease-associated markers is not very large, especialy for the extreme allele frequencies
(data not shown). However, it can be seen from Table 2 that reducing the measurement
errors can greatly reduce the required proportion q,. Therefore, it is important to reduce

the measurement errors in the first stage.

To investigate the statistical power of the two-stage design, we set the sample size in the
first stage to be n=500, and the supplemental sample size in the second stage to be
n, =500. Note that the main purpose in the first stage is to screen for those truly
associated markers. Therefore, we hope that the probability of the truly associated markers
being included is large. Thus, we set the power to be 95% in the pooling stage. The
significance level of the two-stage design for a single marker test is taken to be
a=5x10"°, a level suggested by Risch and Merikangas (1996) for genome-wide
association studies. The results for the two-stage dependent design under the previous four
genetic models are presented in Table 3. Clearly, the power depends on the genetic model
and allele frequency. In general, the power is very high for the sample sizes we consider

here. The exceptions are the recessive models with a small allele frequency or dominant
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models with a large allele frequency. From this table, we can see that the measurement
errors in DNA pooling have little impact on the statistical power of the two-stage design.
Our previous studies showed that such effect can be large for a one-stage design, especially
when the error rates are not small (Zou and Zhao 2004). Our finding shows that the impact
of measurement errors on the case-control association studies can almost be neglected by
using the two-step design, although alarger measurement error will lead to more markers
to be selected in the first stage. Compared to the one-stage design, the two-stage strategy
has slightly smaller power due to the selection in the first stage (data not shown). When
the two-stage independent design is used, the power is higher than that of the two-stage
dependent design (Table 4). In our calculation, we assume that the same number of the
cases and controls are typed at the second stage for both designs, which implies that more
efforts are needed for the two-stage independent design to collect additional cases and
controls compared to the two-stage dependent design. Our calculation shows that if we
ignore the correlation between the two stages for a two-stage dependent design, then we
will slightly overestimate the power. On the other hand, from Table 4, the two-stage
independent design is more affected by the measurement errors than the two-stage

dependent design but |ess affected than the one-stage pooling scheme.

Table 5 gives the statistical power of the two-stage dependent design for the fixed allele
frequency and allele frequency difference between the cases and controls (where f, isstill
taken as0.01). It can be observed from thetablethat for givenpand p, — p, , the power is

amost the same under different genetic models. This shows that the power of the
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two-stage design depends on the genetic model and alele frequency almost only through
the population allele frequency and allele frequency difference between the case and
control groups. As before, this observation is useful in practice because that, although the
genetic models are often unknown to us, we can estimate the sample size to attain the
desired significance level and power under different genetic models as long as the allele
frequencies in the general population and the allele frequency differences between the

cases and controls can be assumed.

We use the approximate formula (8) to calculate the probability of at least one truly
associated marker being ranked among the top L markers after the second stage for the
two-stage dependent design. Likewise, the probabilities are amost the same under
different genetic models for the same population allele frequency and allele frequency
difference between the case and control groups (data not shown). As an example, we
consider a recessive model with apopulation allele frequency of 0.2 and alele frequency
difference of 0.05. The results are presented in Figure 3. It can be seen that thereis ahigh
probability for the top 50 markersto include at least one truly associated marker when 1%
of the markers are selected from the first stage, even though the measurement errors are not
small. However, this probability may not be high for detecting disease-associated markers
with small allele frequency differences, e.g. 0.03 (data not shown). Essentialy, the chance
that at least one truly associated marker is ranked among the top L markers after the
second stageis higher for markers with larger allele frequency differences. The conclusion

is smilar for the two-stage independent design (data not shown). In general, the
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probabilities are not larger for the two-stage independent design than those for the
two-stage dependent design. This can be understood by noting the positive correlation
between the two stages for the two-stage dependent design which leads to the smaller value

of theright-hand side of formula (8) than P(X < 4;) .

Discussion

In this paper, we have investigated the two-stage design with DNA pooling used in the first
stage screening. Three related problems have been considered: (i) How many markers
should be chosen from the first stage? (ii) What is the overal statistical power when the
two-stage design is used? and (iii) What is the probability that at least one of the
disease-associated markers is ranked among the top after the second stage? Our analyses
show that the answers to these questions are dependent on the genetic models and allele
frequencies essentially through the population alele frequencies and allele frequency
differences between the case and control groups at the candidate markers. For the first
problem, we have derived the proportion of markers that needsto be selected to includethe
truly associated markers. For instance, when the measurement errors are small (0.005), 3%
of the markers need to be selected to include a disease-associated marker with an allele
frequency difference of 0.05 between the case and control groups for a sample consisting
of 1000 cases and 1000 controls. When the measurement errors are not small, multiple
pools can be formed to reduce measurement errors. For the second problem, we have
derived the formula for calculating the statistical power of a two-stage strategy. We find

that the measurement errors in pooled DNA have little effect on the power when the
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two-stage design, especially the two-stage dependent design, is used, contrary to the single
stage pooling scheme. Recall our conclusion that reducing measurement errors can greatly
reduce the selection proportion of markersin the pooling stage, we see that for a two-stage
design, measurement errors have alarge impact only on the first stage. Once the markers
are selected, the effect of measurement errors can be very small. Three strategies, the
two-stage dependent design, the two-stage independent design, and the one-stage design,
have been compared. Overall, the two-stage independent design has the highest power, the
one-stage design with individual genotyping has slightly higher power than the two-stage
dependent design. However, their difference in power isnot large. On the other hand, the
one-stage design will be either too expensive (for individual genotyping) in genome-wide
search or seriously affected by measurement errors (for DNA pooling). Furthermore, for
the two-stage independent design, extra sample collection is needed, although the
genotyping cost is the same as in the two-stage dependent design. In fact, if in our
calculations, we use exactly the same number of individuals as that in the two-stage
dependent design with 500 used to screen and the other 500 for follow-up analyses, the
statistical power for such a two-stage independent design can be much lower than that of
the two-stage dependent design. For example, the power under the multiplicative model
with a population allele frequency of 0.05 and a measurement error rate of 0.005 is 0.209
for the above two-stage independent design but 0.599 for the two-stage dependent design.
For the third problem, our studies show that the chance that at least one truly associated
marker selected from the first stage is ranked among the top markers after the second stage

is high when the allele frequency differences are not smaller than 0.05 for samples of
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reasonabl e sizes, even though the measurement errors are not small.

It isof practical interest how to allocate the sample sizesin the two stages to maximize
the power (or minimizethetotal cost) for agiven cost (or given power), as Satagopan et

a. (2002), Satagopan and Elston (2003), and Satagopan et al. (2004) have done. For

example, let C bethetotal cost, C, bethe cost of recruiting anindividual, C ., bethe

pool

cost of measuring allele frequency at a single marker for a DNA pool, C,, be the cost
of genotyping a single marker for an individual, and C, be the other cost such as

administration. Then we have

C=Cy+C,-2(n+n,)+Cy - 2MM +C,y - 2(n+n, )M,

for the two-stage dependent design, and

C=C,+C,-2(n+n,)+C_, -2mM +C,, -2n,M,

pool a

for the two-stage independent design. In particular, we take the number of total markers to

be M =10° , the number of the truly disease-associated markers to be K =1, and the
number of pool pairs to be m=1. Further, we take C =5x10° (Unit: USD), C, = 200,

G =002, C,, =002, C;=0,and £=0.01. Then our preliminary calculation results

showed that for the given cost, the optimal design that lead to highest power is to allocate
exactly (nearly) the same sample size to each stage for the two-stage dependent
(independent) design (data not shown). For the two-stage dependent design, this means
that all individuals should be used at both stages and no additional sampleis needed at the
second stage. This is similar to the two-stage individual genotyping design with sample
Size constraint (Satagopan et a. 2004) but is different from the design with individual
genotyping at both stages in which the optimal design maximizing power is to allocate

approximately 25% of the individualsto the first stage and the remaining individuals to the
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second stage (Satagopan et al. 2002, Satagopan and Elston 2003). Clearly, an overall

investigation is needed in this regard. This warrants our further research.

To simplify our analyses, we have assumed independence among the markers. This
would be reasonable when the marker density is low. However, for a genome-wide
association study, the marker density is high and adjacent markers may be highly
correlated. But it isnot evident how to model the correlation among markers. One way
to avoid this difficulty is to study many subsets of the whole marker set such that they
cover the entire genome yet the markers are independent. However, thisisclearly less
than satisfactory due to the loss of information in the data. On the other hand, this
guestion can be examined empirically to assess the effect of correlations among
markers on our results. For example, we have investigated the effect of correlation on
the selection of markersin the first stage through the HapMap data. We considered the
SNPs on the 500K SNP Array and used the HapMap data approximate the level of
correlations among SNPs. The HapMap data consist of 270 individuals from four
populations, and the information for the 500K data can be downloaded from

http://www.affymetrix.com/support/downloads/data/S00K_HapMap270.zip (For the

missing alleles, we imputed them by the corresponding frequencies of the existing
alleles). For simplicity, we have only considered the first 300 markers and let the 140™
marker be disease-associated to illustrate the impact of marker dependence and a more
through investigation will be reported in future reports. Assuming a dominant model
with f, =f =04, f, =0.1, the allele frequency difference between the case and

control groupsis p, — p, = 0.088. We considered the sample sizes of the two poolsto
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be n=100. Using the results established before under the independence assumption,
we found that if we took the top q, =18.3%,18.7%, 20.0% and 30.9% of the markers
when =0, 0.005, 0.01and 0.03, respectively, then we would have the chance of
80% to select the disease-associated marker (i.e., 140™ marker) in the first stage.
When we applied these g, s obtained under the independence assumption to the
HapMap data, we observed that in 10,000 simulations, we had the chances of 72%,
72%, 71% , and 65% to include the disease-associated marker when ¢£=0,
0.005, 0.01 and 0.03, respectively. This shows that the correlation among markers
can reduce the chance that the truly disease-associated marker is selected but such
reduction is not large. Further, the impact of correlation is larger (smaller) for less
(more) stringent requirement on the chance of including the disease-associated marker
under the independence assumption (data not shown). Clearly, to eliminate the effect
of correlation, the best way is to develop similar methods to those given in this paper
incorporating the correlations among markers, and this will be addressed in our future

work.

Throughout the paper, we have assumed that there exist measurement errors in the DNA

pooling stage but no errors in the individual genotyping stage. How genotyping errors at

both stages can affect the efficiency of the two-stage scheme also warrants future research.

Note that family-based data are often used in genetic epidemiological studiesin addition to

population-based data. Association studies using pooled DNA family data have been
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considered for the one stage scheme (e.g. Risch and Teng 1998, Zou and Zhao 2005). The
research on the two-stage designs using family data is no doubt an interesting topic for

future research.
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Appendix
The calculation of the probability that none of the truly associated markers are ranked

among thetop L markers

Clearly, P, can be written as

P(X<Y,z,>U,2" <Z,,Z" <V,V>U)
P(z,>U,2 <Z,,2" <V,V>U)

P =

P(X<Y,\V>Z,>U,Z <Z,V>U)+P(X<Y,Z,2V,Z" <V,V>U)
PV >2z,>U,Z2" <Z,V>U)+P(Z,>V,Z" <V,V>U)

(A1)

We have known t@ ~N(6q .42y, ), j=1..K; and t& ~ N(01), j=1...M, —K,.

ind, j

We denote the distribution and density functions of t'y), by G,(x) and g,(x) ,
respectively. The distribution and density functions of ti(nﬁ?j are still denoted as ®(x) and
@(x), respectively. Further, let H™(x,y) denote the joint distribution of (t©), t@ ),

pool,j ?tind, |

j=1..K, ; and H{"(xy) denote the joint distribution of (tgggl,j,tigg?j),
j=1...,M,—K,. Moreover, h{”(x,y) and h{"’(x, y) denote the corresponding density

functions. Then it can be shown that

(i) PX<YV>Z,>U,2" <Z,V>U)

= [ay[[| ] [Pz’ <2) p(x 2)dz, |- pLyv) p(u)cuc,

(i) P(X<Y,Z,2V,Z" <V,V>U)
=["dy[ PZe> v X <y)PZ" <V)PU <V)- p(y.v)dv,

(iii) P(v >Z,>U,Z" <Z,,V >U)
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=f U Pz < Zo)p(zo)dzo} p(U) p(v)dudv,

and
(iv) Pz, 2V,Z" <V,V >U)

= [ PZo > Pz <vPU <v)- piv,

where
PU <u) =[]k,

pu) =[(M = K) = (M, = K)J[@(u)]" "™ g(u),

(V) = (M, =K Ji- )" ™7 (v) ,

T HO 3 9;,(®-¢ AN b,
p(ZO,X) - ]]:![GJ (X) H i (ZO’X)]{JZ; Gj (X)— H ]‘(T)(ZO’X) JZ=1:G1 (X) —H J(T)(ZO,X)
01, - o 0] b0, =]
= (6,09 H ™ (z,,%)] |
with b, = [ " (z,,)dt, and ¢; = [* ™ (s,x)ds, and

p(y,V) = Z Z(P(V’ y)(DlDZ - D12)'

1=M,-K;—L+1i;< - <i|

with i;,...,i, being some | numbersof 1,...,M, - K,, and

M,—K

k-0 -0om +H®wy)],

j=l+1

o) =Tl - HP )]

| di. M, -K, ¢(V)_di.
D, =) — + s ,
SO(y)-HM(vy)  Fhl-0(y)-oWv)+HM (v,y)
_~ o(y)-e, Mt —o(y)+e

+ )
FO-HM(vy)  Fil-0(y)-oVv)+HM (v, y)

D, = zl] ~hY ey -H® v y)|+d, v -6 |
= () -H® v, y)f
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+MlzK1“‘”)<v Y- ®(y) - W)+ H® (v, y) - o) ~d, Joy) - eJ
o h-a(y) -0 +HM v yf

and d, =[" h™(vt)dt and g = [ h™(s,y)ds.

Combining (A.1) and (i)-(iv), wecan obtain P, . Thus, the probability that at least one truly

associated marker is ranked among thetop L markers can be calculated by P, =1-P;.
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Table 1. The probability of i (i =1,---,5) disease-associated markers ranked among the top
1/1000 markers for the case of the same genetic model and allele frequency at each truly

associated marker

Dominant

p=0.05 | 1.000 0.000 0.000 0.000 0.000 1.000

p=020 | 1.000 0.000 0.000 0.000 0.000 1.000

p=0.70 | 0.234 0.394 0.266 0.090 0.015 0.999

Recessive

p=0.05 | 0.000 0.000 0.000 0.004 0.099 0.103

p=0.20 | 0.995 0.005 0.000 0.000 0.000 1.000

p=0.70 | 1.000 0.000 0.000 0.000 0.000 1.000

Multiplic.

p=0.05 | 0.970 0.030 0.000 0.000 0.000 1.000

p=020 | 1.000 0.000 0.000 0.000 0.000 1.000

p=0.70 | 0.999 0.001 0.000 0.000 0.000 1.000

Additive

p=0.05 | 1.000 0.000 0.000 0.000 0.000 1.000

p=020 | 1.000 0.000 0.000 0.000 0.000 1.000

p=0.70 | 1.000 0.000 0.000 0.000 0.000 1.000

" Dominant model: f,=f =004 , f,=001; Recessive model: f,=0.04 ,
f,=f,=0.01; Multiplicative model: f,=0.04, f =0.02, f,=0.01; Additive
model: f, =0.04, f, =0.025, f, =0.01.

“Thesamplesizeis n=1000, and no measurement errors are assumed with the number of

disease-associated markers being K =5.
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Table 2. The recommended proportion g, of markers selected from the first stage for
including at least one truly associated marker with an allele frequency difference of

Pa— Py a onemarker’

Pa— Py e=0 £=0.005 £=0.01 £=0.03
0.03 15% 19% 29% 58%
0.05 2% 3% 7% 40%
0.07 0.4% 0.9% 3% 25%
0.10 5x107° 0.02% 0.4% 18%

" The sample size in thefirst stageis n=1000, and the number of pools formed for either

the cases or the controlsis m=1.
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Table 3. The power of the two-stage dependent design for the sample sizes of n=500

and n, =500 "
=0 £ =0.005 =001 =0.03
Dominant
p =0.05 0.950 0.950 0.950 0.950
p=0.20 0.950 0.950 0.950 0.950
p=0.70 0.046 0.046 0.046 0.046
Recessive
p =0.05 0.000 0.000 0.000 0.000
p=0.20 0.829 0.827 0.824 0.817
p=0.70 0.950 0.950 0.950 0.950
Multiplic.
p =0.05 0.600 0.599 0.595 0.584
p=0.20 0.950 0.950 0.950 0.950
p=0.70 0.950 0.950 0.950 0.950
Additive
p =0.05 0.941 0.939 0.936 0.931
p=0.20 0.950 0.950 0.950 0.950
p=0.70 0.948 0.947 0.946 0.943

* The significance level for the two-stage design is &z =5x10"°, and the power in the
pooling stage is 1- 4, =95%. Dominant model: f, = f, =0.04, f, =0.01; Recessive
model: f,=004, f, =f,=0.01; Multiplicative model: f,=0.04, f =0.02 ,
f, =0.01; Additive model: f, =0.04, f, =0.025, f,=0.01.

“ The number of pools formed for either the cases or the controlsis m=1.
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Table 4. The power of the two-stage independent design for the sample sizes of 500

in the first stage and 1000 in the second stage”

=0 £ =0.005 =001 =0.03

Dominant

p =0.05 0.950 0.950 0.950 0.950

p=0.20 0.950 0.950 0.950 0.950

p=0.70 0.092 0.084 0.071 0.051
Recessive

p =0.05 0.000 0.000 0.000 0.000

p=0.20 0.933 0.925 0.902 0.830

p=0.70 0.950 0.950 0.950 0.950
Multiplic.

p =0.05 0.833 0.767 0.678 0.593

p=0.20 0.950 0.950 0.950 0.950

p=0.70 0.950 0.950 0.950 0.950
Additive

p =0.05 0.950 0.949 0.946 0.933

p=0.20 0.950 0.950 0.950 0.950

p=0.70 0.950 0.950 0.950 0.946

*The significance level for the two-stage design is oz =5x10"°, and the power in the
pooling stage is 1- 4, =95%. Dominant model: f, = f, =0.04, f, =0.01; Recessive
model: f,=004, f, =f,=0.01; Multiplicative model: f,=0.04, f =0.02 ,
f, =0.01; Additive model: f, =0.04, f, =0.025, f,=0.01.

“ The number of pools formed for either the cases or the controlsis m=1.



Table 5. The power of the two-stage dependent design for the fixed alele frequency and

allele frequency difference between the case and control groups”

p,—-p, =003 | p,—p, =005 | p,—p, =007 | p,—p, =0.10

p =0.05

Dominant 0.0685 0.748 0.949 0.950

Recessive 0.0915 0.717 0.944 0.950

Multiplic. 0.0704 0.744 0.948 0.950

Additive 0.0697 0.746 0.949 0.950
p=0.20

Dominant 0.00115 0.0585 0.457 0.941

Recessive 0.00174 0.0722 0.460 0.931

Multiplic. 0.00127 0.0618 0.458 0.938

Additive 0.00126 0.0612 0.458 0.939
p=0.70

Dominant 4.58x%107* 0.0301 0.352 0.926

Recessive 6.96x10™* 0.0389 0.376 0.934

Multiplic. 6.24x107 0.0366 0.374 0.936

Additive 6.16x10™* 0.0362 0.373 0.937

*The significance level for the two-stage design is « =5x10°®, and the power in the
pooling stage is 1—- S, = 95%.
“The sample sizes are n =500 and n, =500, the error rate is € = 0.01, and the number

of pools formed for either the cases or the controlsis m=1.
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Figure 1. The probability of the truly associated marker being included among the top
100q,% of the markers under different genetic models for the same population allele
frequency (0.20) and allele frequency difference between the case and control groups
(0.05). From top to bottom, the curves correspond to the dominant model, additive model,
multiplicative model, and recessive model, respectively. The samplesizeis n=1000, the
error rateis € = 0.01, and the number of poolsformed for either the cases or the controlsis

m=1. We assume that the number of disease-associated markersis K =1.
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Figure 2. The probability of the truly associated marker being included among the top 6.7%
of the markers when the number of disease-associated markersis K =1. The sample size
is n=1000, the error rateis £ = 0.01, and the number of pools formed for either the cases
or the controlsis m=1. From top to bottom, the curves correspond to allele frequency

differences of 0.10, 0.07, 0.05, 0.03, and 0.01, respectively.
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Figure 3. The probability of at least one truly associated marker being ranked among the
top L markers after the second stage for the two-stage dependent design where the sample

sizesare n =500 and n, =500, theerror rateis &£ = 0.01, and the number of pools formed
for the cases or the controls is m=1. The allele frequency difference is 0.05, and the
population alele frequency is p=0.2. From top to bottom, the curves correspond to the
cases of K, =5, 2, and 1, respectively (Assume the number of the whole markers is
M =10° and top 1% markers are chosen from the first stagein which K truly associated

markers are included).
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