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CHAPTER 1
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The sample mean vector and the sample covariance matrix are the cor-
ner stone of the classical multivariate analysis. They are optimal when
the underlying data are normal. They, however, are notorious for being
extremely sensitive to outliers and heavy tailed noise data. This article
surveys robust alternatives of these classical location and scatter estima-
tors and discusses their applications to the multivariate data analysis.

1. Introduction

The sample mean and the sample covariance matrix are the building block
of the classical multivariate analysis. They are essential to a number of mul-
tivariate data analysis techniques including multivariate analysis of vari-
ance, principal component analysis, factor analysis, canonical correlation
analysis, discriminant analysis and classification, and clustering. They are
optimal (most efficient) estimators of location and scatter parameters at any
multivariate normal models. It is well-known, however, that these classical
location and scatter estimators are extremely sensitive to unusual observa-
tions and susceptible to small perturbations in data. Classical illustrative
examples showing their sensitivity are given in Devlin et al (1981), Huber
(1981), Rousseeuw and Leroy (1987), and Maronna and Yohai (1998).

Bickel (1964) seems to be the first who considered the robust alternatives
of the sample mean vector – the coordinate-wise median and the coordinate-
wise Hodges-Lehmann estimator. Extending the univariate trimming and
Winsorizing idea of Tukey (1949) and Tukey (1960) to higher dimensions,
Bickel (1965) proposed the metrically trimmed and Winsorized means in
the multivariate setting. All these estimators indeed are much more robust
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(than the sample mean) against outliers and contaminated data (and some
are very efficient as well). They, however, lack the desired affine equivariance
(see Section 2.2) property of the sample mean vector.

Huber (1972) discussed a “peeling” procedure for location parameters
which was first proposed by Tukey. A similar procedure based on iterative
trimming was presented by Gnanadesikan and Kettenring (1972). The re-
sulting location estimators become affine equivariant but little seems to be
known about their properties. Hampel (1973) was the first to suggest an
affine equivariant iterative procedure for a scatter matrix, which turns out
to be a special M -estimator (see Section 3.1) of the scatter matrix.

Inspired by Huber (1964)’s seminal paper, Maronna (1976) first intro-
duced and treated systematically general M -estimators of multivariate lo-
cation and scatter parameters. Huber (1977) considered the robustness of
the covariance matrix estimator with respective to two measures: influence
function and breakdown point (defined in Section 2).

Multivariate M -estimators are not greatly influenced by small perturba-
tions in a data set and have reasonably good efficiencies over a broad range
of population models. Ironically, they, introduced as robust alternatives to
the sample mean vector and the sample covariance matrix, were frequently
mentioned in the robust statistics literature in the last two decades, not
because of their robustness but because of their not being robust enough
globally (in terms of their breakdown point). Indeed, M -estimators have a
relatively very low breakdown point in high dimensions and are not very
popular choices of robust estimators of location and scatter parameters in
the multivariate setting. Developing affine equivariant robust alternatives
to the sample mean and the sample covariance matrix that also have high
breakdown points consequently was one of the fundamental goals of research
in robust statistics in the last two decades.

This paper surveys some influential robust location and scatter esti-
mators developed in the last two decades. The list here is by no means
exhaustive. Section 2 presents some popular robustness measures. Robust
location and scatter estimators are reviewed in Section 3. Applications of
robust estimators are discussed in Section 4. Concluding remarks and future
research topics are presented in Section 5 at the end of the paper.

2. Robustness Criteria

Often a statistic Tn can be regarded as a functional T (·) evaluated at an
empirical distribution Fn, where Fn is the empirical version of a distribution
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F based on a random sample X1, · · · , Xn from F , which assigns mass 1/n

to each sample point Xi, i = 1, · · · , n. In the following we describe three
most popular robustness measures of functional T (F ) or statistic T (Fn).

2.1. Influence function

One way to measure the robustness of the functional T (F ) at a given dis-
tribution F is to measure the effect on T when the true distribution slightly
deviates from the assumed one F . In his Ph.D. thesis, Hampel (1968) ex-
plored this robustness and introduced the influence function concept. For a
fix point x ∈ Rd, let δx be the point-mass probability measure that assigns
mass 1 to the point x. Hampel (1968, 1971) defined the influence function
of the functional T (·) at a fixed point x and the given distribution F as

IF (x;T, F ) = lim
0<ε→0

T ((1− ε)F + εδx)− T (F )
ε

, (1)

if the limit exists. That is, the influence function measures the relative effect
(influence) on the functional T of an infinitesimal point mass contamination
of the distribution F . Clearly, the relative effect (influence) on T is desired
to be small or at least bounded. A functional T (·) with a bounded influence
function is regarded as robust and desirable.

A straightforward calculation indicates that for the classical mean and
covariance functionals µ(·) and Σ(·) at a fixed point x and a given F in Rd,

IF (x;µ, F ) = x− µ(F ), IF (x; Σ, F ) = (x− µ)(x− µ)′ − Σ(F ).

Clearly, both influence functions are unbounded with respect to standard
vector and matrix norms, respectively. That is, an infinitesimal point mass
contamination can have an arbitrarily large influence (effect) on the classical
mean and covariance functionals. Hence these functionals are not robust.

The model, (1− ε)F + εδx, a distribution with a slight departure from
the F , is also called the ε-contamination model. Since only a point-mass
contamination is considered in the definition, the influence function mea-
sures the local robustness of the functional T (·). General discussions and
treatments of influence functions of statistical functionals could be found
in Serfling (1980), Huber (1981), and Hampel et al. (1986).

In addition to being a measure of local robustness of a functional T (F ),
the influence function can also be very useful for the calculation of the
asymptotic variance of T (Fn). Indeed, if T (Fn) is asymptotically normal,
then the asymptotic variance of T (Fn) is just E(IF (X;T, F ))2 in general.
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Furthermore, under some regularity conditions, the following asymptotic
representation is obtained in terms of the influence function:

T (Fn)− T (F ) =
∫

IF (x;T, F )d(Fn − F )(x) + op(n−1/2),

which leads to the asymptotic normality of the statistic T (Fn).

2.2. Breakdown point

The influence function captures the local robustness of a functional T (·).
The breakdown point, on the other hand, depicts the global robustness of
T (F ) or T (Fn). Hampel (1968) and Hampel (1971) apparently are the first
ones to consider the breakdown point of T (F ) in an asymptotic sense.

Donoho and Huber (1983) considered a finite sample version of the
notion, which since then has become the most popular quantitative measure
of global robustness of an estimator Tn = T (Fn), largely due to its intuitive
appeal, non-probabilistic nature of the definition, and easy calculation in
many cases. Roughly speaking, the finite sample breakdown point of an
estimator Tn is the minimum fraction of “bad” (or contaminated) data
points in a data set Xn = {X1, · · · , Xn} that can render the estimator
useless. More precisely, Donoho and Huber (1983) defined the finite sample
breakdown point of a location estimator T (Xn) := T (Fn) as

BP (T ;Xn) = min{m

n
: sup

Xn
m

|T (Xn
m)− T (Xn)| = ∞}, (2)

where Xn
m is a contaminated data set resulting from replacing (contaminat-

ing) m points of Xn with arbitrary m points in Rd. The above notion some-
times is called replacement breakdown point. Donoho (1982) and Donoho
and Huber (1983) also considered addition breakdown point. The two ver-
sions, however, are actually interconnected quantitatively; see Zuo (2001).
Thus we focus on the replacement version throughout in this paper.

For a scatter (or covariance) estimator S of the matrix Σ in the proba-
bility density function f((x−µ)′Σ−1(x−µ)), to define its breakdown point
one can still use (2) but with T on the left side replaced by S and T (·)
on the right side by the vector of the logarithms of the eigenvalues of S(·).
Note that for a location estimator, it becomes useless if it approaches ∞.
On the other hand, for a scatter estimator, it becomes useless if one of its
eigenvalues approaches 0 or ∞ (this is why we use the logarithm).

Clearly, the higher the breakdown point of an estimator, the more ro-
bust the estimator against outliers (or contaminated data points). It is not
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difficult to see that one bad (or contaminating one) point of a data set of
size n is enough to ruin the sample mean or the sample covariance ma-
trix. Thus, their breakdown point is 1/n, the lowest possible value. That is,
the sample mean vector and the sample covariance matrix are not robust
globally (and locally as well due to the unbounded influence functions).

On the other hand, to have the sample median (Med) breakdown (un-
bounded), one has to move 50% of data points to the infinity. Precisely,
the univariate median has a breakdown point b(n + 1)/2c/n for any data
set of size n, where bxc is the largest integer no larger that x. Likewise, it
can be seen that the median of the absolute deviations (from the median)
(MAD) has a breakdown point bn/2c/n for a data set with no overlapping
data points. These breakdown point results turn out to be the best for any
reasonable location and covariance (or scale) estimators, respectively. Note
that the breakdown point of a constant estimator is 1 but the estimator is
not reasonable since it lacks some equivariance property.

Location and scatter estimators T and S are called affine equivariant if

T (AXn + b) = A · T (Xn) + b, S(AXn + b) = A · S(Xn) ·A′, (3)

respectively, for any d × d non-singular matrix A and any vector b ∈ Rd,
where AXn + b = {AX1 + b, · · · , AXn + b}. They are called rigid-body or
translation equivariant if (3) holds for any orthogonal A or any identity A

(A = Id), respectively. When b = 0 and A = sId for a scalar s 6= 0, T and
S are called scale equivariant. The following breakdown point upper bound
results are due to Donoho (1982). We provide here a much simpler proof.

Lemma 1: For any translation (scale) equivariant location (scatter) esti-
mator T (S) at any sample Xn in Rd, BP (T (S), Xn) ≤ b(n + 1)/2c/n.

Proof: It suffices to consider the location case. For m = b(n + 1)/2c and
b ∈ Rd, let Y n

m = {X1+b, · · · , Xm +b,Xm+1, · · · , Xn}. Both Y n
m and Y n

m−b

are data sets resulting from contaminating at most m points of Xn. Observe

‖b‖ = ‖T (Y n
m)−T (Y n

m−b)‖ ≤ sup
Xn

m

2 ·‖T (Xn
m)−T (Xn)‖ → ∞ as ‖b‖ → ∞.

Here (and hereafter) ‖ · ‖ is the Euclidean norm for a vector and ‖A‖ =
sup‖u‖=1 ‖Au‖ for a matrix A.

The coordinate-wise and the L1 (also called spatial) medians are two
known location estimators that can attain the breakdown point upper
bound in the lemma; see Lopuhaä and Rousseeuw (1991), for example.
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Both estimators, however, are not affine equivariant (the first is only trans-
lation and the second is just rigid-body equivariant). On the other hand,
no scatter matrices constructed can reach the upper bound in the lemma.
In fact, for affine equivariant scatter estimators and for data set Xn in a
general position (that is, no more than d data points lie in the same d− 1
dimensional hyperplane), Davies (1987) provided a negative answer and
proved the following breakdown point upper bound result.

Lemma 2: For any affine equivariant scatter estimator S and data set Xn

in general position in Rd, BP (S,Xn) ≤ b(n− d + 1)/2c/n.

MAD is a univariate affine equivariant scale estimator that attains the
upper bound in this lemma. Higher dimensional affine equivariant scatter
estimators that reach this upper bound have been proposed in the literature.
The following questions about location estimators, however, remain open:

(1) Is there any affine equivariant location estimator in high dimensions
that can attain the breakdown point upper bound in Lemma 1? If not,

(2) What is the breakdown point upper bound of an affine equivalent lo-
cation estimator?

A partial answer to the first question is given in Zuo (2004a) where
under a slightly narrow definition of the finite sample breakdown point a
location estimator attaining the upper bound in Lemma 1 is introduced.

2.3. Maximum bias

The point-mass contamination in the definition of influence function is very
special. In practice, a deviation from the assumed distribution can be due to
the contamination of any distribution. The influence function consequently
measures a special local robustness of a functional T (·) at F . A very broad
measure of global robustness of T (·) at F is the so-called maximum bias;
see Huber (1964) and Huber (1981). Here any possible contaminating dis-
tribution G and the contaminated model (1− ε)F + εG are considered for
a fixed ε > 0 and the maximum bias of T (·) at F is defined as

B(ε;T, F ) = sup
G
‖T ((1− ε)F + εG)− T (F )‖. (4)

B(ε;T, F ) measures the worst case bias due to an ε amount contamination
of the assumed distribution. T (·) is regarded as robust if it has a moderate
maximum bias curve for small ε. It is seen that the standard mean and
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covariance functionals have an unbounded maximum bias for any ε > 0
and hence are not robust in terms of this maximum bias measure.

The minimum contamination amount ε∗ that can lead to an unbounded
maximum bias is called the asymptotic breakdown point of T at F . Its fi-
nite sample version is exactly the one given by (2). On the other hand, if G

is restricted to a point-mass contamination, then the rate of the change
of B(ε;T, F ) relative to ε, for ε arbitrarily small, is closely related to
IF(x;T, F ). Indeed the “slope” of the maximum bias curve B(ε;T, F ) at
ε = 0 is often the same as the supremum (over x) of ‖IF (x;T, F )‖. Thus,
the maximum bias really depicts the entire picture of the robustness of the
functional T whereas the influence function and the breakdown point serve
for two extreme cases. Though a very important robustness measure, the
challenging derivation of B(ε;T, F ) for a location or scatter functional T

in high dimensions makes the maximum bias a less popular one than the
influence function and the finite sample breakdown point in the literature.

To end this section, we remark that robustness is one of the most im-
portant performance criteria of a statistical procedure. There are, however,
other important performance criteria. For example, efficiency is always a
very important performance measure for any statistical procedure. In his
seminal paper, Huber (1964) took into account both the robustness and
the efficiency (in terms of the asymptotic variance) issues in the famous
“minimax” (minimizing worst case asymptotic variance) approach. Robust
estimators are commonly not very efficient. The univariate median serves
as a perfect example. It is the most robust affine equivariant location es-
timator with the best breakdown point and the lowest maximum bias at
symmetric distributions (see Huber 1964). Yet for its best robustness, it
has to pay the price of low efficiencies relative to the mean at normal and
other light-tailed models. In our following discussion about the robustness
of location and scatter estimators, we will also address the efficiency issue.

3. Robust multivariate location and scatter estimators

This section surveys important affine equivariant robust location and scat-
ter estimators in high dimensions. The efficiency issue will be addressed.

3.1. M-estimators and variants

As pointed out in Section 1, affine equivariant M -estimators of location and
scatter parameters were the early robust alternatives to the classical sam-
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ple mean vector and sample covariance matrix. Extending Huber (1964)’s
idea of the univariate M -estimators as minimizers of objective functions,
Maronna (1976) defined multivariate M -estimators as the solutions T (in
Rd) and V (a positive definite symmetric matrix) of

1
n

n∑

i=1

u1(((Xi − T )′V −1(Xi − T ))1/2)(Xi − T ) = 0, (5)

1
n

n∑

i=1

u2((Xi − T )′V −1(Xi − T ))(Xi − T )(Xi − T )′ = V, (6)

where ui, i = 1, 2, are weight functions satisfying some conditions. They
are a generalization of the maximum likelihood estimators and can be re-
garded as weighted mean and covariance matrix as well. Maronna (1976)
discussed the existence, uniqueness, consistency, asymptotic normality, in-
fluence function and breakdown point of estimators. Though possessing
bounded influence functions for suitable ui’s, i = 1, 2, T and V have rela-
tively low breakdown points (≤ 1/(d+1)) (see, Maronna (1976) and p. 226
of Huber (1981)) and hence are not robust globally in high dimensions. The
latter makes the M -estimators less appealing choices in robust statistics,
though they can be quite efficient at normal and other models.

Tyler (1991) considered some sufficient conditions for the existence and
uniqueness of M -estimators with special redescending weight functions.
Constrained M -estimators, which combine both good local and good global
robustness properties, are considered in Kent and Tyler (1996).

3.2. Stahel-Donoho estimators and variants

Stahel (1981) and Donoho (1982) “outlyingness” weighted mean and co-
variance matrix appear to be the first location and scatter estimators in
high dimensions that can integrate affine equivariance with high breakdown
points. In R1, the outlyingness of a point x with respect to (w.r.t.) a data set
Xn = {X1, · · · , Xn} is simply |x−µ(Xn)|/σ(Xn), the absolute deviation of
x to the center of Xn standardized by the scale of Xn. Here µ and σ are uni-
variate location and scale estimators with typical choices including (mean,
standard deviation), (median, median absolute deviation), and more gener-
ally, univariate M -estimators of location and scale (see Huber (1964, 1981)).
Mosteller and Tukey (1977) (p. 205) introduced an outlyingness weighted
mean in R1. Stahel and Donoho (SD) considered a multivariate analog and
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defined the outlyingness of a point x w.r.t. Xn in Rd (d ≥ 1) as

O(x,Xn) = sup
{u: u∈Rd, ‖u‖=1}

|u′x− µ(u ·Xn)|/σ(u ·Xn) (7)

where u′x =
∑d

i=1 uixi and u ·Xn = {u′X1, · · · , u′Xn}. If u′x−µ(u ·Xn) =
σ(u ·Xn) = 0, we define |u′x− µ(u ·Xn)|/σ(u ·Xn) = 0. Then

TSD(Xn) =
n∑

i=1

wiXi

/ n∑

i=1

wi, (8)

SSD(Xn) =
n∑

i=1

wi(Xi − TSD(Xn))(Xi − TSD(Xn))′
/ n∑

i=1

wi (9)

are the SD outlyingness weighted mean and covariance matrix, where wi =
w(O(Xi, X

n)) and w is a weight function down-weighting outlying points.
Since µ and σ2 are usually affine equivariant, O(x,Xn) is then affine

invariant : O(x,Xn) = O(Ax+b, AXn+b) for any non-singular d×d matrix
A and vector b ∈ Rd. It follows that TSD and SSD are affine equivariant.

Stahel (1981) considered the asymptotic breakdown point of the estima-
tors. Donoho (1982) derived the finite sample breakdown point for (µ, σ)
being median (Med) and median absolute deviation (MAD), for X in a
general position, and for suitable weight function w. His result, expressed
in terms of addition breakdown point, amounts to (see, e.g., Zuo (2001))

BP (TSD, Xn) =
b(n− 2d + 2)/2c

n
, BP (SSD, Xn) =

b(n− 2d + 2)/2c
n

.

Clearly, BPs of the SD estimators depend essentially on the BP of MAD
(since Med already provides the best possible BP). As a scale estimator,
MAD breaks down (explosively or implosively) as it tends to ∞ or 0. Real-
izing that it is easier to implode MAD with a projected data set u ·Xn for
Xn in high dimension (since there will be d overlapping projected points
along some projection directions), Tyler (1994), Gather and Hilker (1997),
and Zuo (2000) all modified MAD to get a higher BP of the SD estimators:

BP (T ∗SD, Xn) = b(n− d + 1)/2c/n, BP (S∗SD, Xn) = b(n− d + 1)/2c/n.

Note that the latter is the best possible BP result for SSD by Lemma 2.

The SD estimators stimulated tremendous researches in robust statis-
tics. Seeking affine equivariant estimators with high BPs indeed was one
primary goal in the field in the last two decades. The asymptotic behavior
of the SD estimators, however, was a long-standing problem. This hindered
the estimators from becoming more popular in practice. Maronna and Yohai
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(1995) first proved the
√

n-consistency. Establishing the limiting distribu-
tions, however, turned out to be extremely challenging. Indeed, there once
were doubts in the literature about the existence or the normality of their
limit distributions; see, e.g., Lopuhaä (1999) and Gervini (2003).

Zuo, Cui and He (2004) and Zuo and Cui (2005) studied general data
depth weighted estimators, which include the SD estimators as special cases,
and established a general asymptotic theory. The asymptotic normality of
the SD estimators thus follows as a special case from the general results
there. The robustness studies of the general data depth induced estimators
carried out in Zuo, Cui and Young (2004) and Zuo and Cui (2005) also
show that the SD estimators have bounded influence functions and moder-
ate maximum bias curves for suitable weight functions. Furthermore, with
suitable weight functions, the SD estimators can outperform most leading
competitors in the literature in terms of robustness and efficiency.

3.3. MVE and MCD estimators and variants

Rousseeuw (1985) introduced affine equivariant minimum volume ellipsoid
(MVE) and minimum covariance determinant (MCD) estimators as follows.
The MVE estimators of location and scatter are respectively the center and
the ellipsoid of the minimum volume ellipsoid containing (at least) h data
points of Xn. It turns out that the MVE estimators can possess a very high
breakdown point with a suitable h (= b(n + d + 1)/2c) (Davies (1987)).
They, however, are neither asymptotically normal nor

√
n consistent (Davis

(1992a)) and hence are not very appealing in practice. The MCD estimators
are the mean and the covariance matrix of h data points of Xn for which
the determinant of the covariance matrix is minimum. Again with h =
b(n+d+1)/2c, the breakdown point of the estimators can be as high as b(n−
d + 1)/2c/n, the best possible BP result for any affine equivariant scatter
estimator by Lemma 2; see Davies (1987) and Lopuhaä and Rousseeuw
(1991). The MCD estimators have bounded influence functions that have
jumps (Croux and Haesbroeck (1999)). The estimators are

√
n-consistent

(Butler, Davies and Jhun (1993)) and the asymptotical normality is also
established for the location part but not for the scatter part (Butler, Davies
and Jhun (1993)). The estimators are not very efficient at normal models
and this is especially true at the h selected in order for the estimators to
have a high breakdown point; see Croux and Haesbroeck (1999). In spite of
their low efficiency, the MCD estimators are quite popular in the literature,
partly due to the availability of fast computing algorithms of the estimators
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(see, e.g., Hawkins (1994) and Rousseeuw and Van Driessen (1999)).
To overcome the low efficiency drawback of the MCD estimators, re-

weighted MCD estimators were introduced and studied; see Lopuhaä and
Rousseeuw (1991), Lopuhaä (1999), and Croux and Haesbroeck (1999).

3.4. S-estimators and variants

Davis (1987) introduced and studied S-estimators for multivariate location
and scatter parameters, extending an earlier idea of Rousseeuw and Yohai
(1984) in regression context to the location and scatter setting. Employing
a smooth ρ function, the S-estimators extend Rousseeuw’s MVE estimators
which are special S-estimators with a non-smooth ρ function. The estima-
tors become

√
n-consistent and asymptotically normal. Furthermore they

can have a very high breakdown point b(n− d + 1)/2c/n, again the upper
bound for any affine equivariant scatter estimator; see Davies (1987). The
S-estimators of location and scatter are defined as the vector Tn and the
positive definite symmetric (PDS) matrix Cn which minimize the determi-
nant of Cn, det(Cn), subject to

1
n

n∑

i=1

ρ
(
((Xi − Tn)C−1

n (Xi − Tn))1/2
)
≤ b0, (10)

where the non-negative function ρ is symmetric and continuously differ-
entiable and strictly increasing on [0, c0] with ρ(0) = 0 and constant on
[c0,∞) for some c0 > 0 and b0 < a0 := sup ρ. As shown in Lopuhaä (1989),
S-estimators have a close connection with M -estimators and have bounded
influence functions. They can be highly efficient at normal models; see Lop-
uhaä (1989) and Rocke (1996). The latter author, however, pointed out that
there can be problems with the breakdown point of the S-estimators in high
dimensions and provided remedial measures. Another drawback is that the
S-estimators can not simultaneously attain a high breakdown point and a
given efficiency at the normal models. Modified estimators that can over-
come the drawback were given in Lopuhaä (1991, 1992) and Davies (1992b).
The S-estimators can be computed with a fast algorithm such as the one
given in Ruppert (1992).

3.5. Depth weighted and maximum depth estimators

Data depth has recently been increasingly pursued as a promising tool in
multi-dimensional exploratory data analysis and inference. The key idea of
data depth in the location setting is to provide a center-outward ordering
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of multi-dimensional observations. Points deep inside a data cloud receive
high depth and those on the outskirts get lower depth. Multi-dimensional
points then can be ordered based on their depth. Prevailing notions of data
depth include Tukey (1975) halfspace depth, Liu (1990) simplicial depth and
projection depth (Liu (1992), Zuo and Serfling (2000a) and Zuo (2003)).
All these depth functions satisfy desirable properties for a general depth
functions; see, e.g., Zuo and Serfling (2000b). Data depth has found appli-
cations to nonparametric and robust multivariate analysis. In the following
we focus on the application to multivariate location and scatter estimators.

For a give sample Xn from a distribution F , let Fn be the empirical
version of F based on Xn. For a general depth function D(·, ·) in Rd, depth-
weighted location and scatter estimators can be defined as

L(Fn) =
∫

xw1(D(x, Fn))dFn(x)∫
w1(D(x, Fn))dFn(x)

, (11)

S(Fn) =
∫

(x− L(Fn))(x− L(Fn))′w2(D(x, Fn))dFn(x)∫
w2(D(x, Fn))dFn(x)

, (12)

where w1 and w2 are suitable weight functions and can be different; see Zuo,
Cui and He (2004) and Zuo and Cui (2005). These depth-weighted estima-
tors can be regarded as generalizations of the univariate L-statistics. A sim-
ilar idea is first discussed in Liu (1990) and Liu, Parelius and Singh (1999),
where the depth-induced location estimators are called DL-statistics. Note
that equations (11) and (12) include as special cases depth trimmed and
Winsorized multivariate means and covariance matrices; see Zuo (2004b)
for related discussions. With the projection depth (PD) as the underlying
depth function, these equations lead to as special cases the Stahel-Donoho
location and scatter estimators, where the projection depth is defined as

PD(x, Fn) = 1/(1 + O(x, Fn)), (13)

where O(x, Fn) is defined in (7). Replacing Fn with its population version
F in (11), (12) and (13), we obtain population versions of above definitions.

Common depth functions are affine invariant. Hence L(Fn) and S(Fn)
are affine equivariant. They are unbiased estimators of the center θ of sym-
metry of a symmetric F of X (i.e., ±(X − θ) have the same distribution)
and of the covariance matrix of an elliptically symmetric F , respectively;
see Zuo, Cui and He (2004) and Zuo and Cui (2005). Under mild assump-
tions on w1 and w2 and for common depth functions, L(Fn) and S(Fn)
are strongly consistent and asymptotically normal. They are locally robust
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with bounded influence functions and globally robust with moderate max-
imum biases and very high breakdown points. Furthermore, they can be
extremely efficient at normal and other models. For details, see Zuo, Cui
and He (2004) and Zuo and Cui (2005).

General depth weighted location and scatter estimators include as spe-
cial cases the re-weighted estimators of Lopuhaä (1999) and Gervini (2003),
where Mahalanobis type depth (see Liu (1992)) is utilized in the weight cal-
culation of sample points. With appropriate choices of weight functions, the
re-weighted estimators can possess desirable efficiency and robustness prop-
erties. Since Mahalanobis depth entails some initial location and scatter es-
timators, the performance of the re-weighted estimators depends crucially
on the initial choices in both finite and large sample sense, though.

Another type of depth induced estimators is the maximum depth es-
timators, which could be regarded as an extension of the univariate me-
dian type estimators to the multivariate setting. For a given location depth
function DL(·, ·) and scatter depth function DS(·, ·) and a sample Xn (or
equivalently Fn), maximum depth estimators can be defined as

MDL (Fn) = arg sup
x∈Rd

DL(x, Fn) (14)

MDS (Fn) = arg sup
Σ∈M

DS(Σ, Fn), (15)

where M is the set of all positive definite d× d symmetric matrices. Afore-
mentioned depth notions are all location depth functions. An example of
the scatter depth function, given in Zuo (2004b), is defined as follows. For a
given univariate scale measure σ, define the outlyingness of a matrix Σ ∈M
with respect to Fn (or sample Xn) as

O(Σ, Fn) = sup
u∈Sd−1

g
(
σ2(u ·Xn)/u′Σu

)
, (16)

where g is a nonnegative function on [0,∞) with g(0) = ∞ and g(∞) = ∞;
see, e.g., Maronna et al. (1992) and Tyler (1994). The (projection) depth
of a scatter matrix Σ ∈M then can be defined as (Zuo (2004b))

DS(Σ, Fn) = 1/(1 + O(Σ, Fn)). (17)

A scatter depth defined in the same spirit was first given in Zhang (2002).
The literature is replete with discussions on location depth DL and its

induced deepest estimator MDL (Fn); see, e.g., Liu (1990), Liu et al. (1999),
Zuo and Serfling (2000a), Arcones et al. (1994), Bai and He (1999), Zuo
(2003) and Zuo, Cui and He (2004). There are, however, very few discussions
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on scatter depth DS and its induced deepest estimator MDS (Fn) (excep-
tions are made in Maronna et al. (1992), Tyler (1994), Zhang (2002), and
Zuo (2004b) though). Further studies on DS and MDS such as robustness,
asymptotics, efficiency, and inference procedures are called for.

Maximum depth estimators tend to be highly robust locally and globally
as well. Indeed, the maximum projection depth estimators of location have
bounded influence functions and moderately maximum biases; see Zuo, Cui
and Young (2004). Figure 1 clearly reveals the boundedness of the influ-
ence functions of the maximum projection depth estimator (PM) (and the
projection depth weighted mean (PWM)) with Med and MAD for µ and σ.
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Fig. 1. (a) The first coordinate of the influence function of maximum projection depth
estimator of location (projection median (PM)). (b) The first coordinate of the influence

function of the projection depth weighted mean (PWM).

Maximum depth estimators can also possess high breakdown points. For
example, both the maximum projection depth estimators of location and
scatter can possess the highest breakdown points among their competitors,

BP (MDL, Xn) =
b(n− d + 2)/2c

n
, BP (MDS, Xn) =

b(n− d + 1)/2c
n

,

where PD is the depth function with Med and a modified version of MAD
as µ and σ in its definition; see Zuo (2003) and Tyler (1994). Maximum
depth estimators can also be highly efficient. For example, with appropriate
choices of µ and σ, the maximum projection depth estimator of location
can be highly efficient; see Zuo (2003) for details.
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4. Applications

Robust location and scatter estimators find numerous applications to multi-
variate data analysis and inference. In the following we survey some major
applications including robust Hotelling’s T 2, robust multivariate control
charts, robust principal component analysis, robust factor analysis, robust
canonical correlation analysis and robust discrimination and clustering. We
skip the application to the multivariate regression (see, e.g., Croux et al.
(2001), Croux et al. (2003) and Rousseeuw et al. (2004) for related studies).

4.1. Robust T 2 and control charts

Hotelling’s T 2: n(X̄−E(X))S−1(X̄−E(X)) is the single most fundamental
statistic in the classical inference about the multivariate mean vectors of
populations as well as in the classical multivariate analysis of variance.
It is also the statistic for the classical multivariate quality control charts.
Built on the sample mean X̄ and the sample covariance matrix S, T 2,
unfortunately, is not robust. The T 2 based procedures also depend heavily
on the normality assumption.

A simple and intuitive way to robustify the Hotelling’s T 2 is to replace X̄

and S with robust location and scatter estimators, respectively. An example
was given in Willems et al. (2002), where re-weighted MCD estimators were
used instead of the mean and the covariance matrix. A major issue here is
the (asymptotic) distribution of the robust version of T 2 statistic. Based
on the multivariate sign and sign-rank tests of Randles (1989), Peters and
Randles (1991) and Hettmansperger et al. (1994), robust control charts are
constructed by Ajmani and Vining (1998) and Ajmani et al. (1998).

Another approach to construct robust multivariate quality charts is via
data depth. Here a quality index is introduced based on the depth of points
and the multivariate processes are monitored based on the index. Represen-
tative studies include Liu (1995) and Liu and Singh (1993). Others include
Ajmani et al. (1997) and Stoumbos and Allison (2000).

Finally, the projection (depth) pursuit idea has also been employed to
construct multivariate control charts; see, e.g., Ngai and Zhang (2001).

4.2. Robust principal component analysis

Classical principal component analysis (PCA) is carried out based on the
eigenvectors (eigenvalues) of the sample covariance (or correlation) matrix.
Such analysis is extremely sensitive to outlying observations and the conclu-
sions drawn based on the principal components may be adversely affected by
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the outliers and misleading. A most simple and appealing way to robustify
the classical PCA is to replace the matrix with a robust scatter estimator.
Robust PCA studies started in as early as 1970’s and include Maronna
(1976), Campbell (1980) and Devlin et al. (1981), where M -estimators of
location and scatter were utilized instead of the sample mean and covari-
ance matrix. Some recent robust PCA studies focus on the investigation of
the influence function of the eigenvectors and eigenvalues; see, e.g., Jaupi
and Saporta (1993), Shi (1997) and Croux and Haesbroeck (2000).

A different approach to robust PCA uses projection pursuit (PP) tech-
niques; see Li and Chen (1985), Croux and Ruiz-Gazen (1996) and Hubert
et al. (2002). It seeks to maximize a robust measure of spread to obtain con-
secutive directions along which the data points are projected. This idea has
been generalized to common principal components in Boente et al. (2002).

Recently, Hubert et al. (2005) combined the advantages of the above
two approaches and proposed a new method to robust PCA where the PP
part is used for the initial dimension reduction and then the ideas of robust
scatter estimators are applied to this lower-dimensional data space.

4.3. Robust factor analysis

The classical factor analysis (FA) starts with the usual sample covariance
(or correlation) matrix and then the eigenvectors and eigenvalues of the
matrix are employed for estimating the loading matrix (or the matrix is
used in the likelihood equation to obtain the maximum likelihood estimates
of the loading matrix and specific variances). The analysis, however, is not
robust since outliers can have a large effect on the covariance (or correlation
matrix) and the results obtained may be misleading or unreliable.

A straightforward approach to robustify the classical FA is to replace
the sample covariance (or correlation) matrix with a robust one. One such
example was given in Pison et al. (2003) where MCD estimators were em-
ployed. Further systematic studies on robust FA such as robustness, effi-
ciency and performance, and inference procedures are yet to be conducted.

4.4. Robust canonical correlation analysis

The classical canonical correlation analysis (CCA) seeks to identify and
quantify the associations between two sets of variables. It focuses on the
correlation between a linear combination of the variables in one set and a
linear combination of the variables in another set. The idea is to determine
first the pair of linear combinations having the largest correlation, then the
next pair of linear combinations having the largest correlation among all
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pairs uncorrelated with the previous selected pair, and so on. In practice,
sample covariance (or correlation) matrix is utilized to achieve the goal.
The result obtained, however, is not robust to outliers in the data since the
sample covariance (or correlation) matrix is extremely sensitive to unusual
observations. To robustify the classical approach, Karnel (1991) proposed to
use M -estimators and Croux and Dehon (2002) the MCD estimators. The
latter paper also studied the influence functions of canonical correlations
and vectors. Robustness and asymptotics of robust CCA were discussed in
Taskinen et al. (2005). More studies on robust CCA are yet to be seen.

4.5. Robust discrimination, classification and clustering

In the classical discriminant analysis and classification, the sample mean
and the sample covariance matrix are often used to build discriminant rules
which however are very sensitive to outliers in data. Robust rules can be
obtained by inserting robust estimators of location and scatter into the
classical procedures. Croux and Dehon (2001) employed S-estimators to
carry out a robust linear discriminant analysis. A robustness issue related
to the quadratic discriminant analysis is addressed by Croux and Joossens
recently. He and Fung (2000) discussed the high breakdown estimation and
applications in discriminant analysis. Hubert and Van Driessen (2004) dis-
cussed fast and robust discriminant analysis based on MCD estimators.

In the classical clustering methods, the sample mean and the sample
covariance matrix likewise are often employed to build clustering rules.
Robust estimators of location and scatter could be used to replace the
mean vector and the covariance matrix to obtain robust clustering rules.
References on robust clustering methods include Kaufman and Rousseeuw
(1990). Robust clustering analysis is a very active research area of computer
scientists; see, e.g., Davé and R Krishnapuram (1997) and Fred and Jain
(2003) and references therein. More studied on clustering analysis from sta-
tistical perspective with robust location and scatter estimators are needed.

5. Conclusions and future works

Simulation studied by Maronna and Yohai (1995), Gervini (2002), Zuo, Cui
and He (2004), Zuo, Cui and Young (2004) and Zuo and Cui (2005) indicate
that the projection depth weighted mean and covariance matrix (the Stahel-
Donoho estimators) with suitable weight functions can outperform most of
its competitors in terms of local and global robustness as well as efficiency
at a number of distribution models. We thus recommend the Stahel-Donoho
estimators and more generally projection depth weighted mean and covari-
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ance matrix as favorite choices of robust location and scatter estimators.
Maximum depth estimators of location and scatter are strong competitors,
especially from robustness view point. They (especially maximum depth
scatter estimators) deserve further attention and investigations.

Computing high breakdown point robust affine equivariant location and
scatter estimators is always a challenging task and there is no exception for
the projection depth related estimators. Recent studies of this author, how-
ever, indicate that some of these estimators can be computed exactly in two
and higher dimensions for robust µ and σ such as Med and MAD. Though
fast approximate algorithms for computing these estimators already exist
for moderately high dimensional data, issues involving the computing of
these depth estimators such as how accurate and how robust are the ap-
proximate algorithms are yet to be addressed.

At this point, all applications of robust location and scatter estimators
to multivariate data analysis are centered around the MCD based proce-
dures. Since MCD estimators are not very efficient and can sometime have
unstable behavior, we thus recommend replacing MCD estimators with the
projection depth weighted estimators and expect that more reliable and
efficient procedures are to be obtained. Asymptotic theory involving the
robust multivariate analysis procedures is yet to be established.

Finally we comment that data depth is a natural tool for robust mul-
tivariate data analysis and more researches along this direction which can
lead to very fast, robust, and efficient procedures are needed.
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