Name (Print):______ A#____ If you sign below, your score will be posted on the course webpage based on the last four digits of the A#

Signature: _____ (No credit will be given unless you show all of your work.)

- 1. Let X have the distribution $f(x) = P(X = x) = 3/4^{x+1}, x = 0, 1, 2, \cdots$.
 - (a) Find the moment generating function of X. (10%)
 - (b) Find E(X) and Var(X). (10%)
- 2. Let $(X, Y, Z) \sim \text{Multinomial}(n, p_x, p_y, p_z)$.
 - (a) Find the conditional distribution (pdf) of Y given X = x. (10%)
 - (b) Find E(Y|X) (10%)
 - (c) Find Cov(X, Y). (10%)
- 3. Let $X_i \sim BIN(1, p_i)$ be independent, $i = 1, \dots, n$ and Z_1, \dots, Z_n be i.i.d N(0, 1).
 - (a) Show that $\sum_{i=1}^{n} (X_i p_i)/n \xrightarrow{p} 0$ as $n \to \infty$. (10%)
 - (b) Find the limiting distribution of $\sum_{i=1}^{n} (Z_i + \frac{1}{n}) / \sqrt{n}$ as $n \to \infty$. Justify your answer. (10%)
- 4. Let X_i be i.i.d from $X \sim N(0, \theta)$ with $\theta > 0$ unknown.
 - (a) Find the MLE $\hat{\theta}$ of θ and the MLE of $\tau(\theta)$ such that $P(X \leq \tau(\theta)) = 0.95$. (10%)
 - (b) Find a pivotal quantity and an exact 95% confidence interval for θ . (10%)
- 5. Let X_i be i.i.d from $X \sim \text{EXP}(\lambda_1)$, $i = 1, \dots, m$, and Y_j be i.i.d from $Y \sim \text{EXP}(\lambda_2)$, $j = 1, \dots, n$.
 - (a) Find the MLE of $1/\lambda_1$ and a 90% confidence interval for λ_1 . (10%)
 - (b) Find a pivotal quantity and an exact 90% confidence interval for λ_1/λ_2 . (10%)
- 6. Let X_i be i.i.d from X with pdf $f(x, \eta) = e^{-(x-\eta)}I(x \ge \eta)$.
 - (a) Find the MME $\tilde{\eta}$ of η . (10%)
 - (b) Find the MLE $\hat{\eta}$ of η . (10%)
 - (c) Find the exact distribution of $\hat{\eta}$ and $\hat{\eta} \eta$. (10%)
 - (d) Find an exact $100(1-\alpha)\%$ confidence interval for η . (10%)
 - (e) Find an approximate $100(1-\alpha)\%$ confidence interval for η . (10%)
- 7. Let X_i , $i = 1, \dots, n$, be i.i.d from $X \sim \text{POI}(\lambda)$ with $\lambda > 0$ unknown.
 - (a) Find the MLE of $\tau(\lambda) = P(X = 0)$. (10%)
 - (b) Is the MLE of $\tau(\lambda)$ in (a) unbiased? Justify your answer. (10%)
 - (c) Show that $\tilde{\tau}(\lambda) = (\frac{n-1}{n})^{\sum_{i=1}^{n} X_i}$ is unbiased for P(X = 0). (10%)
 - (d) For $\tilde{\tau}(\lambda)$ in (c), find Var($\tilde{\tau}(\lambda)$) and compare it with its asymptotic variance $(nI(\tau(\lambda)))^{-1}$. (10%)