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Superdiffusion, characterized by a spreading rate t1/α of the probability density function p(x, t ) =
t−1/α p(t−1/αx, 1), where t is time, may be modeled by space-fractional diffusion equations with order 1 < α < 2.
Some applications in biophysics (calcium spark diffusion), image processing, and computational fluid dynamics
utilize integer-order and fractional-order exponents beyond this range (α > 2), known as high-order diffusion
or hyperdiffusion. Recently, space-time duality, motivated by Zolotarev’s duality law for stable densities,
established a link between time-fractional and space-fractional diffusion for 1 < α � 2. This paper extends
space-time duality to fractional exponents 1 < α � 3, and several applications are presented. In particular, it
will be shown that space-fractional diffusion equations with order 2 < α � 3 model subdiffusion and have
a stochastic interpretation. A space-time duality for tempered fractional equations, which models transient
anomalous diffusion, is also developed.
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I. INTRODUCTION

Non-Fickian, or anomalous, diffusion is observed in many
areas of physics, including hydrology [1–3], turbulent trans-
port [4], and biophysics [5,6]. Anomalous superdiffusion is
characterized by a spreading rate t1/α of the probability den-
sity function p(x, t ) = t−1/α p(t−1/αx, 1) that is faster than the
classical t1/2 rate predicted by Fickian diffusion [7], where
t is time, while anomalous subdiffusion is characterized by
a spreading rate that is slower than t1/2. Fractional PDEs
(FPDEs), where local time and space derivatives are replaced
by nonlocal fractional derivatives, are often used to study
anomalous diffusion. FPDEs with a γ -fractional derivative
in time and an α-fractional derivative in space lead to a
spreading rate of tγ /α . Subdiffusion may be modeled by a
time-fractional derivative (e.g., Caputo derivative) with order
γ < 1 and a second derivative in space (α = 2) [7], whereas
superdiffusion may be modeled by a space-fractional deriva-
tive (e.g., Riemann-Liouville derivative) of order 1 < α < 2
and a first-order derivative in time (γ = 1) [8]. These FPDEs
may be derived from a continuous time random walk (CTRW)
framework: time-fractional diffusion equations involve long-
waiting times between particle jumps, where the chance of
waiting longer than some time t > 0 is proportional to t−γ ,
while space-fractional diffusion equations involve long parti-
cle jumps, where the chance of jumping longer than some dis-
tance x > 0 is proportional to x−α . Transient anomalous sub-
and superdiffusion, which transition from early time anoma-
lous behavior to late-time diffusive behavior, may be modeled
with tempered time-fractional [9] and space-fractional [10,11]
derivatives, respectively.

Recently, we have established a link between time-
fractional and space-fractional diffusion equations, called
space-time duality [12,13]. Zolotarev [14,15] first proved a
duality law between stable densities with indices 1 < α �
2 and 1/2 � 1/α < 1. The duality principle was applied
to the space-fractional diffusion equation in Ref. [12], and
later to the space-fractional advection-dispersion equation in

Ref. [13]. The latter study was motivated by a controversy in
river-flow hydrology: both space-fractional dispersion (diffu-
sion) equations and time-fractional PDEs provide reasonably
good fits to breakthrough curve measurements [16]. From
a stochastic point of view, space-time duality established a
connection between long, power-time waiting times and long
negative jumps, thereby justifying a space-fractional PDE
for modeling retention of contaminant particles. In short, a
particle that rests while the plume moves downstream ends up
in the same position as a particle that moves downstream, but
then makes a long upstream jump.

In both Refs. [12] and [13], the equivalence was re-
stricted to space-fractional PDEs modeling superdiffusion
(1 < α < 2). The equivalent time-fractional equation has or-
der γ = 1/α. Space-fractional derivatives of order α > 2
have recently been used to model subdiffusion of calcium
sparks in cardiac myocytes by Chen et al. [17] and Tan
et al. [18], exhibiting good agreement with experimental
data. This subdiffusion results from the multiscale nature of
cytoplasm, which has polymer networks and complex macro-
molecules that immobilize diffusing particles. Recall that
time-fractional PDEs are often used to model subdiffusion
since the time-fractional Caputo derivative results from long
waiting times in the CTRW formalism. A question arises: can
the space-fractional model with order 2 < α � 3 proposed in
Refs. [17,18] be linked with time-fractional [5] and CTRW [6]
diffusion models also used in biophysics? Space-fractional
exponents with α > 2 (high-order diffusion or hyperdiffusion)
are also found in fluid mechanics [19], image processing [20],
and transport of cosmic rays [21].

The goal of this paper is to extend space-time duality
to fractional (and integer) spatial derivatives of order 1 <

α � 3. Our duality result shows how both superdiffusion
and subdiffusion can be modeled by a space-fractional PDE.
Then we illustrate the method with applications to the time-
fractional diffusion wave equation, multidimensional time-
changed Brownian motion, and tempered fractional diffusion.
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In Sec. II we briefly review the space-fractional diffusion
equation and hyperdiffusion. Section III generalizes the space-
time duality argument presented in Ref. [13] to all space-
fractional exponents 1 < α � 3. Section IV connects solu-
tions of the time-fractional diffusion-wave equation to a cor-
responding system of space-fractional diffusion equations. A
governing equation for subordinated multidimensional Brow-
nian motion is proposed in Sec. V using a vector space-
fractional PDE. Section VI extends space-time duality to
tempered fractional diffusion, followed by conclusions in
Sec. VII.

II. SPACE-FRACTIONAL DIFFUSION

The two-sided space-fractional diffusion equation is given
by [22, Eq. (1.26)]

∂

∂t
u(x, t ) =

(
1 + θ

2

)
C

∂α

∂xα
u(x, t )

+
(

1 − θ

2

)
C

∂α

∂ (−x)α
u(x, t ), (1)

where C is a fractional diffusion coefficient, the fractional
index is α > 1, and the skewness is θ ∈ [−1, 1]. The positive
(left) and negative (right) Riemann-Liouville (RL) fractional
derivatives are defined by [23, p. 87]

∂α

∂xα
f (x) = 1

�(n − α)

∂n

∂xn

∫ x

−∞
f (y)(x − y)n−1−α dy, (2a)

∂α

∂ (−x)α
f (x) = (−1)n

�(n − α)

∂n

∂xn

∫ ∞

x
f (y)(y − x)n−1−α dy,

(2b)

where n = �α� and �(z) is the gamma function. For 1 < α �
2 subject to an impulse initial condition u(x, 0) = δ(x), the
fundamental solution of (1) is a stable probability density
function (PDF) with index α and skewness θ [24]. In river-
flow hydrology, breakthrough curve measurements of relative
concentration u(x, t ) with x fixed are well fit by negatively
skewed (θ = −1) PDFs [16].

For the special case of θ = −1, (1) reduces to the nega-
tively skewed space-fractional diffusion equation

∂

∂t
u(x, t ) = C

∂α

∂ (−x)α
u(x, t ). (3)

The coefficient C is chosen such that the eigenvalues of (3)
have a nonpositive real part so energy is not created. Denote
the Fourier transform (FT) of u(x, t ) by û(k, t ) and apply a FT
to (3), yielding

∂

∂t
û(k, t ) = C(−ik)α û(k, t ).

Since the real part of C(−ik)α is C cos(πα/2), we take
C = (−1)m+1 where 2m − 1 < α < 2m + 1 and m ∈ N to
produce eigenvalues with nonpositive real part. In particular,
C = 1 if 1 < α � 3 and C = −1 if 3 < α � 5. Under this
condition, (3) reduces to a hyperdiffusion equation [19,25]

∂

∂t
u(x, t ) = (−1)m+1 ∂α

∂ (−x)α
u(x, t ). (4)

For integer α = 2m, (4) is used in turbulence modeling [19],
stabilizing numerical methods such as the spectral element
method [26], and modeling the transport of cosmic rays [27].
In the remainder of this paper, we consider (3) with C = 1 for
1 < α � 3, which is a special case of (4).

We consider solutions with an impulse initial condition
u(x, 0) = δ(x). For 1 < α � 2, solutions to (3) are negatively
skewed stable densities [24], which model anomalous diffu-
sion where particles experience large jumps in the negative
direction. This equation, complemented with a drift term,
successfully models contaminant transport in rivers [2,28],
as well as source identification problems in groundwater
hydrology [29], where u(x, t ) is the release location-time PDF.
These hydrology applications assume a fractional exponent
1 < α � 2, so that the contaminant particles experience su-
perdiffusion and there is stochastic interpretation to u(x, t ).

Remark II.1 The term “hyperdiffusion” has several usages
in the literature. For example, Metzler et al. [30] define
hyperdiffusion as a process with mean-squared displacement
that has a scaling rate of tα , where α > 2. In this paper, the
term “hyperdiffusion” refers to the FPDE (4) with α > 2 and
its solutions. Hyperdiffusion (or hyperviscosity) is popular
in turbulence modeling and computational fluid dynamics,
where integer powers greater than two are used to stabilize
numerical methods by reducing the range of scales over
which dissipation acts [19]. Hyperdiffusion is used in spectral
element models to damp high-order modes and eliminate
numerical noise [26]. The most commonly used value for
hyperdiffusion is α = 4 (m = 2) [26,31]. Wei [20] applied
integer-order hyperdiffusion for image denoising and edge
detection problems, while Malkov and Sagdeev [27] derived
a hyperdiffusion model with α = 4 (m = 2) for cosmic ray
transport. Fractional-order hyperdiffusion with orders larger
than two have also been used in the surface generation of pro-
teins by Hu et al. [32] and modeling calcium sparks in cardiac
myocytes by Tan et al. [18]. Recently, Tawfik et al. [21] used
a space-time hyperdiffusion equation with a Riesz derivative
in space of order α > 2 and Caputo derivative in time of order
0 < γ < 1 to model cosmic rays.

III. SPACE-TIME DUALITY

Although space-time duality was first noted using sta-
ble PDFs [14,15], the basic idea may be illustrated us-
ing Fourier transforms and dispersion relationships. Ap-
plying a space-time FT to (3) using the relationship∫ ∞
−∞

∂α

∂ (−x)α f (x)e−ikx dx = (−ik)α f̂ (k) yields a dispersion re-
lationship iω = (−ik)α , where ω is angular frequency and k
the wave number, and f̂ (k) is the spatial FT of f (x). Formally
take the αth root, yielding an equivalent dispersion rela-
tionship (iω)γ = −ik, where γ = 1/α, which characterizes a
time-fractional PDE of order γ < 1.

Although this argument is heuristic, it motivates a
Fourier-Laplace transform (FLT) argument first presented in
Ref. [13], where we restricted our attention to fractional orders
1 < α � 2 in (3) with C = 1. In this section, this restriction
on α is relaxed, allowing the fractional order to be larger than
two and less than or equal to three and providing a stochastic
model for hyperdiffusion. Our motivation comes from Hu
et al. [32]: “Currently, most attention in the field is paid

022122-2



SPACE-TIME DUALITY AND HIGH-ORDER FRACTIONAL … PHYSICAL REVIEW E 99, 022122 (2019)

to the fractional derivatives of order less than 2. High-order
fractional derivatives are hardly used, partly due to the limited
understanding of their physical meanings.” In this section,
we assign a physical meaning to (3) with 2 < α � 3 using
a space-time duality argument.

Define the FLT of u(x, t ) via

u(k, s) =
∫ ∞

0

∫ ∞

−∞
u(x, t )e−st e−ikx dx dt (5)

and the Laplace transform (LT) by ũ(x, s). Then apply (5)
to (3) with C = 1, yielding

u(k, s) = 1

s − (−ik)α
. (6)

The inverse FT of (6) can be expressed as [33, (4.8.18)]

ũ(x, s) = 1

2π
lim

R→∞

∫ R+iτ

−R+iτ

eikx

s − (−ik)α
dk, (7)

where τ > 0 is chosen to avoid the branch cut along the
negative real axis.

For 1 < α � 3, the integrand of (7) has a single, simple
pole at k∗ = is1/α and remains analytic for all other points in
the upper half-plane (UHP) for any choice of 1 < α � 3. To
prove this, write the wave number in polar form k = |k|eiθ ,
where |θ | � π is the phase angle. The poles k∗ then satisfy

|k∗|αeiα(θ−π/2) = s, (8)

where s is positive and real. Hence, the phase angle satisfies
α(θ − π/2) = 2πn with n ∈ N. Since we are interested only
in poles that reside in the UHP, take 0 < θ < π . Solving for
n yields −α/3 < n < α/3. Hence, if 1 < α � 3, the only in-
teger solution is n = 0, implying that only one pole lies in the
UHP. If 3 < α � 5, then the coefficient on the right-hand side
of (4) is negative, yielding a FLT of u(k, s) = (s + (−ik)α )−1.
Repeating the pole calculation yields at least two poles in
the UHP for 3 < α � 5, while for α > 5, there are at least
three poles in the UHP. Hence, the complex plane argument
described below is not applicable, and we cannot assign
a stochastic interpretation to the space-fractional diffusion
equation for α > 3.

By converting the path of integration in (7) into a closed
contour in the upper half-plane by attaching a semicircle of
radius R (see Appendix A in Ref. [13] for details), (7) is
evaluated using the Cauchy residue theorem as

ũ(x, s) = γ sγ−1 exp(−xsγ ), (9)

where 1/3 � γ = 1/α < 1. The contribution along the semi-
circle CR vanishes as R → ∞ using the bounds in Appendix A
of Ref. [13].

Inverting the LT yields

u(x, t ) = γ hγ (x, t ), (10)

where hγ (x, t ) is the inverse stable density (see Remark III.1
below) with index γ [34]. To derive the governing equation of
the inverse stable density, take the FT of (9), yielding

ũ(x, s) = γ sγ−1

ik + sγ
. (11)

Recall that the LT of the Caputo derivative ∂
γ
t u(x, t ) is given

by Lt [∂
γ
t u(x, t )] = sγ ũ(x, s) − sγ−1u(x, 0) for 0 < γ < 1

[43, Eq. (1.27)]. Cross-multiply and invert, yielding

∂
γ
t u(x, t ) = − ∂

∂x
u(x, t ); u(x, 0) = γ δ(x), (12)

which is valid for any 1/3 � γ < 1. Hence, we have trans-
formed the space-fractional equation (3) into an equivalent
time-fractional equation (12) on the half-axis. This result
extends the results of Refs. [12] and [13] to a larger range
of fractional (and integer) exponents 1 < α � 3 and time-
fractional exponents 1/3 � γ < 1.

For α �= 2, 3, the spatial nonlocality of the negative RL
derivative is exchanged for the temporal nonlocality of the
Caputo derivative. The time-fractional equation (12) governs
the long term limit of a random walk where the particles
experience power-law waiting times T with tail probability
P(T > t ) ≈ t−γ for t 
 1. Hence, we can assign a stochastic
intepretation to (3) for 2 < α � 3: the fractional order α codes
long, power-law waiting times that scale like t−1/α . Note that
the tail of the waiting time distribution associated with (3) is
heavier than those considered in Ref. [13], indicating a higher
probability of very long waiting times.

Remark III.1 The time-fractional equation (12) is the gov-
erning equation of the inverse stable subordinator [34]

Et = inf{x > 0 : Dx > t} (13)

that models the first passage times of the stable subordinator
t = Dx, where Dx has density g(t, x) with Laplace transform
e−xsγ

. From a CTRW perspective, the inverse process Et

models particles undergoing long waiting times.
Example III.2. The inverse γ -stable subordinator of order

γ = 1/3 satisfies the integer-order PDE

∂

∂t
h1/3(x, t ) = − ∂3

∂x3
h1/3(x, t ), (14)

which is a linearized KdV equation [35] used to model long
wavelength water waves. Equation (14) may be evaluated in
closed form [15, Eq. (2.10.3)]

h1/3(x, t ) = 1

γ
F−1

x [exp(t (−ik)3)]

= 3

2π

∫ ∞

−∞
exp[i(kx + tk3)] dk

= 3

(3t )1/3
Ai

[
x

(3t )1/3

]
, (15)

where Ai(z) is the Airy function. Hence, h1/3(x, t ) spreads at
rate t1/3, which is clearly subdiffusive.

Remark III.3. The density hγ (x, t ) is self-similar with a
scaling relationship hγ (x, t ) = t−1/αhγ (xt−1/α, 1) [34]. We
can distinguish three types of behavior: (i) if 1 < α < 2, the
plume spreads faster than the diffusive rate of t1/2, (ii) if
α = 2, the solution is classically diffusive, and (iii) if 2 < α �
3, the solution spreads slower than the diffusive rate of t1/2.
Hence, a wide range of anomalous diffusion may be modeled
with a negatively skewed space-fractional diffusion equation.

Remark III.4. Space-time duality may be applied to the
positively skewed case θ = 1 on the negative half-axis x < 0
by the same argument. Zolotarev wrote a general duality
law involving stable PDFs for α � 2 [15, Eq. 2.3.3] and
transstable distributions for α > 2 [15, Eq. 2.11.7]. This
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duality law is valid for a range of skewness parameters θ .
These duality relations may be extended to the negative half-
axis using the reflection property of stable and transstable
PDFs. Using these relationships, we derived a time-fractional
equation involving both positive and negative temporal RL
derivatives that is equivalent to (3) for x < 0 in Appendix C
of Ref. [13]. It should be possible to extend this result to the
two-sided diffusion equation (1) by a similar argument. Unlike
the negative spatial RL derivative, it is not known how to
assign any physical meaning to a negative (right) temporal RL
derivative, which models temporal nonlocality into the future.

Remark III.5. It is also interesting to consider the physical
meaning of a time derivative of order γ > 1. Some results in
this direction can be found in Ref. [36] for the case 1 < γ < 2.
For a diffusion with drift, introducing a fractional time deriva-
tive of order 1 < γ < 2 results in a kind of superdiffusion,
where the plume variance spreads like t3−γ , see Ref. [36],
Sec. 6.2]. We do not know whether there is a duality result
for γ > 1.

Remark III.6. Conservative explicit Euler [37] and implicit
Euler [38] methods are available to solve (3) subject to the
reflecting boundary condition (A3). Feng [39] proposed an
unconditionally stable Crank-Nicolson scheme for fractional
orders 2 < α < 3 that is first-order accurate in space and
second-order accurate in time. Baeumer et al. [25], Proposi-
tion 4.2] proposed a stable scheme for (4) for any α that is
high-order in space based on a Grünwald discretization [40]
with shift m, where m is given by 2m − 1 < α < 2m + 1.

IV. TIME-FRACTIONAL DIFFUSION-WAVE EQUATION

A wide variety of anomalous phenomena can be modeled
by the time-fractional diffusion-wave equation on the real line

∂
β
t u(x, t ) = ∂2

∂x2
u(x, t ), (16)

where 0 < β � 2, β = 2γ , and the left-hand side is the Ca-
puto derivative of order β. Equation (16) interpolates be-
tween the diffusion equation (β = 1) and the wave equation
(β = 2). For 0 < β < 1, (16) models anomalous subdiffusion
and Hamiltonian chaos [41]. In particular, u(x, t ) is the lim-
iting density of a CTRW with a Pareto (power-law) waiting
time distribution P(Jn > t ) = Bt−β [42]. For 1 < β < 2, (16)
models wave propagation in viscoelastic materials [43], in-
cluding seismic waves [44] and acoustic waves in biological
media [45].

A. Analytical solution

Fundamental solutions to (16) on the real line are computed
using the initial condition u(x, 0) = βδ(x). For 1 < β � 2,
we impose the additional initial condition ut (x, 0) = 0. The
Laplace transform of the Caputo derivative with order 1 <

β � 2 is given by [43, Eq. (1.27)]

Lt
[
∂

β
t u(x, t )

] = sγ ũ(x, s) − sγ−1u(x, 0)

−sγ−2ut (x, 0), (17)

while for 0 < β � 1, the Laplace transform is merely the first
two terms. Apply a FLT to (16), yielding

u(k, s) = βsβ−1

k2 + sβ
. (18)

Factor the denominator into (sβ/2 + ik)(sβ/2 − ik) and expand
in partial fractions, yielding

u(k, s) = γ sγ /2−1

ik + sγ
+ γ sγ /2−1

−ik + sγ
, (19)

where 1/2 < γ = β/2 � 1. Noting that the first term has a
pole k∗ = isγ in the upper-half k plane, and the second term
has a pole k∗ = −isγ in the lower-half k plane, we see that
the first term has support on x > 0 while the second term
has support on x < 0. Applying an inverse FLT to each term
in (19) yields a pair of one-way fractional wave equations

∂
γ
t u+(x, t ) = − ∂

∂x
u+(x, t ) for x > 0 and (20a)

∂
γ
t u−(x, t ) = ∂

∂x
u−(x, t ) for x < 0. (20b)

Much like the classical wave equation, (16) consists of
left- and right-moving components. A similar decomposition
was reported in [[45, Eq. (5.4)] for 1 � β � 2. The solution
of (20a) is the density of the inverse γ -stable subordinator

hγ (x, t ) = t

x1+1/γ
gγ (tx−1/γ ), (21)

where gγ (x) is the density of the γ -stable subordinator with
Laplace transform e−sγ

. The left-moving component is given
by u−(x, t ) = γ hγ (−x, t ). Combining these two components
yields

u(x, t ) = γ

2
hγ (|x|, t ), (22)

which is also given in Mainardi et al. [24, Eq. (4.23)] using
the Wright function. Note that (22) is continuous but not dif-
ferentiable at x = 0 with a “cusp” at x = 0 [46], Proposition
6.1]. See also Refs. [7,47].

B. Duality solution

By duality, the system of one-way time-fractional equa-
tions (20) may be converted into a system of space-fractional
equations on the real line. We see that u+(x, t ) also solves (3)
with α = 1/γ = 2/β and C = 1. Applying Remark III.4, the
solutions to (16) also solve a system of space-fractional PDEs

∂

∂t
u(x, t ) = ∂α

∂ (−x)α
u(x, t ) for x > 0 and (23a)

∂

∂t
u(x, t ) = ∂α

∂xα
u(x, t ) for x < 0, (23b)

which may be expressed for any real x via

∂

∂t
u(x, t ) = Aα

x u(x, t ) (24)

using the operator

Aα
x f (x) =

{
∂α

∂ (−x)α f (x) x > 0

∂α

∂xα f (x) x < 0
. (25)
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FIG. 1. Numerical solutions of the space-fractional diffusion equation (3) on the entire real line using the implicit Euler scheme outlined
in Refs. [37] and [38] for α = 2.5 (left) and α = 3 (right). Note that the solutions are nonnegative for x > 0 but assume both positive and
negative values for x < 0.

In the case of subdiffusion (2/3 � β < 1), 2 < α � 3, while
for superdiffusion (1 < β < 2), 1 < α < 2.

Remark IV.1. For 1 < α � 2, (23a) complemented by the
boundary condition (A3) governs spectrally negative Lévy
motion conditioned to stay positive [48], while (23b) governs
spectrally positive Lévy motion conditioned to stay negative.
On the positive half-axis, particles may drift to the right or
jump to the left. On the negative half-axis, particles may drift
left or jump to the right.

Remark IV.2. Note that solutions to either (23a) or (23b)
on the entire real line are not positive for α > 2, which may
be shown by calculating moments using

∫ ∞
−∞ xnu(x, t ) dx =

inû(n)(0, t ). Hence, these solutions on the real line are not
PDFs. Numerical solutions to (3) on the real line are shown
in Fig. 1 for α = 2.5 and 3, illustrating this nonpositivity.

Remark IV.3. The space-fractional diffusion equation of
order α = 2.25 was proposed by Tan et al. [18] to model
subdiffusion of calcium sparks in the heart. Since the space-
fractional diffusion equation (3) of order 2 < α � 3 is math-
ematically equivalent to a time-fractional diffusion equation
of order 1/α, (3) is the limit of a CTRW with waiting
times Jn that are asymptotically Pareto with index 1/3 �
γ < 1/2. Hence the space-fractional PDE with 2 < α � 3
models anomalous subdiffusion caused by particle sticking or
trapping.

C. Numerical experiments

As noted in [12, Sec. 5], Equation (21) is the solution of
the space-fractional PDE (3) on the half-line x > 0. To make
the problem (3) well posed on the half-line [48], Theorem
2.3], it is necessary to impose a fractional reflecting boundary
condition given by (A3) at x = 0 (see the Appendix). We
numerically solved the negatively skewed space-fractional
equation (3) subject to the reflecting boundary condition (A3)
at x = 0 on the domain [0, 3] and an impulse initial condition
using an implicit Euler scheme with reflecting (Neumann)
boundary conditions outlined in Refs. [37] and [38]. Since

2 � α � 3 in these examples, a shift of m = 1 was applied
to the Grünwald discretization. The simulation was stopped
before the signal reached the right boundary in order to mimic
an infinite domain. A total of n = 1501 grid points and a
time step of �t = 0.00001 was utilized to ensure sufficient
accuracy. Figure 2 displays these numerical solutions of (3)
evaluated at t = 0, 0.001, 0.002, 0.005, and 0.01 for α = 2,
2.5, and 3, while the analytical solution (21) is shown in
circles. For α = 2, the solution is a normal density, while for
α = 3, the dual solution is given by the Airy function (15). For
α = 2.5, the solution was checked against a numerical inverse
Fourier transform

hγ (x, t ) = α

2π

∫ ∞

−∞
exp[t (−ik)α] exp(ikx) dk (26)

evaluated using adaptive quadrature. There is excellent agree-
ment between the inverse stable density hγ (x, t ) and these
numerical solutions.

V. SUBORDINATED BROWNIAN MOTION
IN MULTIPLE DIMENSIONS

All of the above examples are limited to one spatial
dimension. In this section, we show that multidimensional
Brownian motion subordinated to a vector of independent
inverse stable subordinators, defined by (13) in each dimen-
sion, is governed by a vector space-fractional PDE. This
multidimensional subordinated Brownian motion model may
be useful for modeling contaminant transport in anisotropic
media (multiscaling anomalous subdiffusion) [49], where the
retardation rate differs along each coordinate axis.

A. Inverse stable subordinator vector

Let (u, v) = (E1
t , E2

t ) be a pair of independent, inverse
stable subordinators with densities hγ1 (u, t ) and hγ2 (v, t )
with indices 1/3 � γ1, γ2 < 1. Physically, the indices γ1 and
γ2 code the retention (retardation) that particles experience
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FIG. 2. Numerical solutions of (3) with a reflecting boundary condition evaluated at t = 0, 0.001, 0.002, 0.005, and 0.01 (lines) for α = 2
(top left), 2.5 (top right), and 3 (bottom) and dual solution (21) (circles).

due to heterogeneity. By independence, the joint density of
(E1

t , E2
t ) is given by

h(u, v, t ) = hγ1 (u, t )hγ2 (v, t ). (27)

Since the FLT of each density is sγ1−1/(sγ1 + iku) and
sγ2−1/(sγ2 + ikv ), respectively, the convolution theorem [50]
yields

h(ku, kv, s) = sγ1−1/(sγ1 + iku) ∗ sγ2−1/(sγ2 + ikv ), (28)

where the convolution “*” is with respect to s. Since the FLT is
not a simple algebraic expression, it is difficult to find a simple
time-nonlocal governing equation for the joint-density (27).

Although the order of the time-fractional derivative in
one dimension determines the retardation factor, here there
are two different retardation factors, and only one time vari-
able. Hence, a time-fractional operator does not have enough
degrees of freedom to code for both retardation factors.
However, we may find a vector space-fractional equation.
By space-time duality, each factor in (27) satisfies a space-
fractional PDE

∂

∂t
hγ1 (u, t ) = ∂α1

∂ (−u)α1
hγ1 (u, t ) for u > 0 and (29a)

∂

∂t
hγ2 (v, t ) = ∂α2

∂ (−v)α2
hγ2 (v, t ) for v > 0. (29b)

where α1 = 1/γ1 and α2 = 1/γ2. Apply a time derivative
to (27) and apply the chain rule and (29), yielding

∂

∂t
h(u, v, t ) = ∂α1

∂ (−u)α1
h(u, v, t ) + ∂α2

∂ (−v)α2
h(u, v, t ) (30)

for u > 0 and v > 0, which is the space-fractional governing
equation of the process (E1

t , E2
t ). Note that (30) also governs

operator stable Lévy motion [22] with backward, independent
jumps in both the u and v directions.

B. Application to two-dimensional independent
Brownian motion

Next, we consider a pair of independent Brownian mo-
tions subordinated (time-changed) by a pair of independent
inverse stable subordinators. Anisotropic superdiffusion may
be modeled with the multidimensional fractional advection
dispersion equation [51]; however, we are not aware of any
FPDE that models subdiffusion in anisotropic media where
the retardation factor in each coordinate is different. In this
section, we write the density of this two-dimensional process
and determine the corresponding governing equation.

Let x = B1(u) and y = B2(v) be independent Brownian
motions with densities p(x, u) and p(y, v), respectively. Let
(u, v) = (E1

t , E2
t ) be a pair of independent, inverse stable
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subordinators with densities hγ1 (u, t ) and hγ2 (v, t ) with in-
dices 0 � γ1, γ2 < 1, respectively. By a conditioning argu-
ment, we can write the joint density q(x, y, t ) of (x, y) =
(B1(E1

t ), B2(E2
t )) as

q(x, y, t ) =
[∫ ∞

0
p(x, u)hγ1 (u, t ) du

][∫ ∞

0
p(y, v)hγ2 (v, t ) dv

]

=
∫ ∞

0

∫ ∞

0
p(x, u)p(y, v)h(u, v, t ) du dv.

The variables u and v are the temporal scaling of B1(u) and
B2(v). Hence, q(x, y, t ) is characterized by two timescales.

Using a partial fraction expansion, we may evaluate the
subordination integrals above in closed form. For example,∫ ∞

0
p(x, u)hγ (u, t ) du = 1

2
hγ /2(|x|, t ) (31)

and similarly for the v integral. Alternatively, one may use
the composition formulas in Mainardi et al. [24], Sec. 5] to
derive (31). Applying (31) yields

q(x, y, t ) = 1
4 hγ1/2(|x|, t )hγ2/2(|y|, t ). (32)

Hence, the density q(x, y, t ) is symmetric about the x and y
axes, but is not radially symmetric in general.

Now let 2/3 � γ1, γ2 � 1 and α1 = 2/γ1 and α2 = 2/γ2.
For x > 0 and y > 0, space-time duality implies that the the
density of each inverse stable subordinator satisfies

∂

∂t
hγ1/2(x, t ) = ∂α1

∂ (−x)α1
hγ1/2(x, t ) for x > 0 and (33a)

∂

∂t
hγ2/2(y, t ) = ∂α2

∂ (−y)α2
hγ2/2(y, t ) for y > 0. (33b)

Apply the product rule to (32), yielding

∂

∂t
q(x, y, t ) =1

4

∂hγ1/2(x, t )

∂t
hγ2/2(y, t )

+ 1

4
hγ1/2(x, t )

∂hγ2/2(y, t )

∂t

=1

4

∂α1

∂ (−x)α1
hγ1/2(x, t )hγ2/2(y, t )

+ 1

4
hγ1/2(x, t )

∂α2

∂ (−y)α2
hγ2/2(y, t )

= ∂α1

∂ (−x)α1
q(x, y, t ) + ∂α2

∂ (−y)α2
q(x, y, t )

for x > 0 and y > 0. Using the argument in Sec. IV B, we
see that hγ1/2(x, t ) satisfies (23b) for x < 0. By the same
token, hγ2/2(y, t ) satisfies a similar system of space-fractional
equations, yielding the two-dimensional governing equation

∂

∂t
q(x, y, t ) = Aα1

x q(x, y, t ) + Aα2
y q(x, y, t ), (34)

where Aα
x is defined by (25). The governing equation (34)

is the two-dimensional generalization of (24). Since 2/3 �
γ1, γ2 � 1, it follows that 2 � α1, α2 � 3. We conclude that
the governing equation of (B1(E1

t ), B2(E2
t )) is the space-

fractional PDE (34) utilizing both negative (right) and positive
(left) RL fractional derivatives with orders greater than or

equal to two. This is another example of subdiffusion modeled
with a space-fractional PDE. Generalization of (34) to n-
dimensional Brownian motion time-changed by n indepen-
dent inverse stable subordinators (E1

γ1
, . . . , En

γn
) is straightfor-

ward.
Figure 3 displays contour plots of the joint density (32)

of (B1(E1
t ), B2(E2

t )) for Brownian motion γ1 = γ2 = 1 (top
left), subdiffusion in the x dimension and Brownian motion
in the y dimension γ1 = 0.5 and γ2 = 1 (top right), Brownian
motion in the x dimension and subdiffusion in the y dimension
γ1 = 1 and γ2 = 0.5 (bottom left), and subdiffusion along
both axes γ1 = γ2 = 0.5 (bottom right). Except for the top left
panel (Brownian motion), these densities do not have radial
symmetry, including the bottom right panel, where the inverse
stable indices are the same in both directions. In the case of
subdiffusion along both axes (bottom right), the density is not
differentiable along the lines x = 0 and y = 0, which follows
from Ref. [46, Proposition 6.1].

VI. TEMPERED DUALITY

Tempered fractional time derivatives impose an exponen-
tial cutoff to power-law waiting times [9,46], while tem-
pered fractional space derivatives cool power-law jumps in
space [10,11]. Tempered fractional diffusion equations tran-
sition from anomalous to Fickian transport [9]. This transition
is governed by the spatial tempering rate λ > 0 or the tem-
poral tempering rate μ > 0, which is typically small relative
to the characteristic spatial or temporal scales, respectively.
For tempered space-fractional diffusion, the cross-over time
(relaxation time) from anomalous to Fickian transport is pro-
portional to λ−α , while for tempered time-fractional diffusion,
the cross-over time is proportional to μ−1/γ [11]. The temper-
ing parameter also increases the effective diffusivity, which
is given by Eq. (31) in Ref. [11]. An alternative approach
for modeling the transition from anomalous short time be-
havior to Fickian long term behavior are persistent random
walks [52], where a self-propulsion mechanism competes
with random fluctuations.

In this section, we apply space-time duality to connect tem-
pered space-fractional and tempered time-fractional diffusion
equations. A negative Riemann-Liouville tempered fractional
derivative of order α may be defined via

∂α,λ

∂ (−x)α,λ
f (x) = eλx ∂α

∂ (−x)α
[e−λx f (x)] − λα f (x), (35)

where ∂α/∂ (−x)α is the negative RL fractional derivative
given by (2b). The negatively skewed tempered space-
fractional diffusion equation is written using nondimension-
alized units as

∂

∂t
u(x, t ) = ∂α,λ

∂ (−x)α,λ
u(x, t ). (36)

The second term in (35) is needed to ensure that solutions
to (36) are proportional to a PDF (mass-conserving). For 1 <

α � 2, solutions to (36) with an impulse initial condition are
given by [10]

u(x, t ) = eλx p(x, t )e−tλα

, (37)
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FIG. 3. Contour plots of the solution (32) to the fractional diffusion equation (34) for delayed Brownian motion in two dimensions, with
delay factors γ1 = 1 and γ2 = 1 (top left), γ1 = 1 and γ2 = 0.5 (top right), γ1 = 1 and γ2 = 0.5 (bottom left), and γ1 = 0.5 and γ2 = 0.5
(bottom right).

where p(x, t ) is a negatively skewed α-stable density that
solves (3). By space-time duality, p(x, t ) also satisfies

∂
γ
t p(x, t ) = −∂x p(x, t ) (38)

for x > 0, where γ = 1/α and the left-hand side is the Ca-
puto derivative or order γ . Solving (37) for p(x, t ), inserting
into (38), and applying the product rule yields

e−tλα

∂
γ
t [etλα

u(x, t )] − λu(x, t ) = − ∂

∂x
u(x, t ).

Letting μ = λα , we see u(x, t ) solves the equivalent tempered
time-fractional PDE

∂
γ ,μ
t u(x, t ) = − ∂

∂x
u(x, t ), (39)

where

∂
γ ,μ
t f (t ) = e−μt∂

γ
t [etμ f (t )] − μγ f (t ). (40)

Hence, the tempered time-fractional equation (39) has the
same solution as the tempered space-fractional equation (36),
where the tempering rates are related by μ = λα . From a
stochastic point of view, (36) governs tempered spectrally
negative Lévy motion conditioned to stay positive with neg-
ative jumps, while (39) governs power-law waiting times
with an exponential cutoff. By the equivalence between (39)
and (36), backward jumps with power-law index α and
tempering parameter λ have the same governing equation
as waiting times with power-law index 1/α and tempering
parameter λα .
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VII. CONCLUSIONS

This paper extends space-time duality to fractional dif-
fusion for orders 1 < α � 3. An equivalence with a time-
fractional PDE is established using a Fourier-Laplace trans-
form argument. Since the equivalent time-fractional PDE gov-
erns the long-term limit of a power-law waiting time process,
space-fractional diffusion equations with 2 < α � 3 gain a
stochastic interpretation. Using space-time duality, we show
that the time-fractional diffusion-wave equation is equivalent
to a system of space-fractional diffusion equations. Then we
show that multidimensional Brownian motion subordinated to
an independent inverse stable subordinator in each dimension
is governed by a vector space-fractional PDE. Finally, we
extend the space-time duality to tempered fractional models
for transient anomalous diffusion.
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APPENDIX: REFLECTING BOUNDARY CONDITION

We demonstrate that (3) restricted to the half-line x > 0
is equivalent to a boundary-value problem with a reflecting
boundary condition at x = 0 [37,56]. Observe that since
hγ (x, t ) is a PDF with support on the half-line x > 0, the
total mass

∫ ∞
0 u(x, t ) dx on the half-line is a constant γ for all

times t . Write (3) in a conservation form

∂

∂t
u(x, t ) = −C

∂

∂x
q(x, t ), (A1)

where q(x, t ) is the fractional flux constitutive equation

q(x, t ) = C
∂α−1

∂ (−x)α−1
u(x, t ), (A2)

which has been proposed for superdiffusion (α < 2) by Para-
disi et al. [54] and Schumer et al. [55] and for hyperdiffusion
(α > 2) by Wei [20] and Hu et al. [32]. Due to the factor
of (−1)n in (2b), the derivative of the (α − 1) negative RL
derivative is − ∂α

∂ (−x)α . Assuming that u(x, t ) is bounded for
t > 0, we have

∂

∂t

∫ ∞

0
u(x, t ) dx = −

∫ ∞

0

∂

∂x
q(x, t ) dx = q(0, t ),

where the flux is assumed to be zero at infinity. Mass con-
servation on x > 0 yields the no-flux (or reflecting) boundary
condition

∂α−1

∂ (−x)α−1
u(0, t ) = 0, (A3)

which was studied by Baeumer et al. [56].
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