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Abstract

Climate data often provides a periodically stationary time series, due to seasonal variations in
the mean and covariance structure. Periodic ARMA models, where the parameters vary with the
season, capture the nonstationary behavior. High frequency data collected weekly or daily results
in a large number of model parameters. In this paper, we apply discrete Fourier transforms to
the parameter vectors, and develop a test for the statistically significant harmonics. An example
of daily high temperatures illustrates the method, whereby a periodic autoregressive model with
1095 parameters is reduced to a parsimonious 12 parameter version without any apparent loss
of fidelity.

Keywords: Periodic autoregressive moving average, discrete Fourier transform, climate
data, parsimony.

1 Introduction

A stochastic process {X̃t} is called periodically stationary in the wide sense if µt = EX̃t and
γt(h) = Cov(X̃t, X̃t+h) for h = 0,±1,±2, . . . are all periodic functions of time t with the same
period ν > 1. The process is stationary if all of the parameter functions are constant functions
of the season. Periodically stationary processes manifest themselves in such fields as hydrology,
climatology, geophysics, and economics, where the observed time series are characterized by seasonal
variations in both the mean and covariance structure. Periodic ARMA time series, which allow the
model parameters in the classical ARMA model to vary with the season, are useful for modeling
such behavior. A periodic ARMA process {X̃t} with period ν, denoted by PARMAν (p, q), takes
the form

Xt −

p
∑

j=1

φt(j)Xt−j = εt −

q
∑

j=1

θt(j)εt−j (1)

where Xt = X̃t − µt, and {εt} is a sequence of noise random variables with mean zero and scale σt
such that {δt = σ−1

t εt} is independent and identically distributed. The notation in (1) is consistent
with that of Box and Jenkins (1976). The model parameters φt(j), θt(j), µt, and σt are all periodic
with the same period ν ≥ 1. Periodic time series models and their practical applications are
discussed for example in Adams and Goodwin (1995), Anderson and Vecchia (1993), Anderson
and Meerschaert (1997,1998), Anderson, Meerschaert and Veccia (1999), Basawa, Lund and Shao
(2004), Dudek, Hurd and Wojtowicz (2016), Franses and Paap (2011), Jones and Brelsford (1967),
Lund and Basawa (1999,2000), Mei, Shao and Liu (2017), Pagano (1978), Salas, Boes, and Smith
(1982), Salas, Tabios, and Bartolini (1985), Shao and Lund (2004), Troutman (1979), Vecchia
(1985a,1985b), Vecchia and Ballerini (1991), Ula (1990,1993), Ula and Smadi (1997,2003) and
Tesfaye, Meerschaert, and Anderson (2005).
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High-frequency PARMA models are plagued with a very large number of parameters. Discrete
Fourier transforms (DFT) were applied by Anderson, Tesfaye and Meerschaert (2007) to develop a
parsimonious model of weekly time series in hydrology. Asymptotics of the estimated autoregressive
and moving average parameters in (1) were used to derive hypothesis tests for the DFT coefficients,
to identify the statistically significant harmonics. In this paper, we complete this program by de-
riving the asymptotic distributions of the sample mean µt, autocovariance γt(·), and noise-variance
σ2t . These results are then applied to test for the significant DFT harmonics for all the PARMA
model parameters. The effectiveness of this modeling approach is illustrated using a time series of
daily high temperatures.

In Section 2, asymptotic results are derived for a two-sided periodic moving-average process
of infinite order. In particular, we derive the asymptotic distributions of moment estimates of
the periodic mean µt, and the periodic autocovariance γt(·). In Section 3, asymptotic results are
derived for estimators of the periodic noise-variance function σ2t , using the innovations algorithm.
Section 4 develops a test to determine which of the real DFT harmonics are statistically significantly
different from zero. We illustrate in detail the computations required for this test, in the case of a
PARMAν(1, 0) time series, i.e., a periodic autoregressive model of order 1. In Section 5, we apply
the results of this paper to a time series of daily maximum temperatures. The data comes from a
sophisticated NARCCAP climate model. A simple periodic autoregressive model of order 1 with
Gaussian noise is found to be adequate to fit this data. Then our Fourier-PARMA methods are
applied to reduce the 3 × 365 = 1095 model parameters to just 12 DFT harmonics, without any
apparent loss of model fidelity.

2 Asymptotics of the periodic mean and autocovariance

We assume throughout this section that {Xt} is a two-sided infinite order periodic moving average

Xt =

∞
∑

j=−∞

ψt(j)εt−j (2)

where Xt = X̃t − µt, ψt(0) = 1, and:

(i)
∑∞

j=−∞ |ψt(j)| <∞ for all t; and

(ii) {εt} is a sequence of noise variables with mean 0 and standard deviation σt such that
{δt = σ−1

t εt} is iid(0,1), i.e., independent and identically distributed with mean zero and
variance 1.

Suppose we have N years of data given by X̃0, X̃1, . . . , X̃Nν−1. Define the sample mean vector,
µ̂ = (µ̂0, µ̂1, . . . , µ̂ν−1)

′ where

µ̂i = N−1
N−1
∑

j=0

X̃jν+i. (3)

Then, E(µ̂i) = µi, i = 0, 1, . . . , ν − 1.

Proposition 2.1 Let X̃t = µt +
∑∞

j=−∞ ψt(j)εt−j where εt is as in (2). Then,

lim
N→∞

NVar(µ̂) = Σµ (4)

where the (i, j)th element of Σµ, i, j = 0, 1, . . . , ν − 1, is

(Σµ)ij =

∞
∑

n=−∞

γi(nν + j − i) (5)

with γi(`) = Cov(X̃tν+i, X̃tν+i+`).
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PROOF. Note that

NCov(µ̂i, µ̂j) = N [E(µ̂iµ̂j)− µiµj]

= [N−1
N−1
∑

t=0

N−1
∑

u=0

E(X̃tν+iX̃uν+j)]−N−1
N−1
∑

t=0

N−1
∑

u=0

µiµj

=
∑

|n|<N

(

1−
|n|

N

)

γi(nν + j − i).

(6)

Since
∑

|γi(k)| < ∞ by the absolute summability of {ψt(j)σt−j}, the dominated convergence
theorem gives

lim
N→∞

NCov(µ̂i, µ̂j) =
∞
∑

n=−∞

γi(nν + j − i),

which finished the proof. �

Proposition 2.2 If X̃t is the periodic moving average

X̃t = µt +

∞
∑

j=−∞

ψt(j)εt−j , (7)

then µ̂ is AN(µ,N−1Σµ) where µ =(µ0, µ1, . . . , µν−1)
′, meaning that N1/2(µ̂ − µ) ⇒ N (0,Σµ).

PROOF. Consider the truncated sequence

X̃t,m = µt,m +

m
∑

j=−m

ψt(j)εt−j .

Define µ̂i,m = N−1
∑N−1

t=0 X̃tν+i,m and the ν-dimensional vector process, Yt,m by

Yt,m = (X̃tν,m, X̃tν+1,m, . . . , X̃tν+ν−1,m)′.

For λ in R
ν we have that {λ′Yt,m} is a strictly stationary {1 + b2m−1

ν c}-dependent sequence. Since

N−1
∑N−1

t=0 Yt,m = µ̂m where µ̂m = (µ̂0,m, µ̂1,m, . . . , µ̂ν−1,m)′, by the Cramer-Wold Device it suffices
to show that λ′µ̂m is AN(λ′µm, N

−1λ′(Σµ)mλ) for all λ such that λ′(Σµ)mλ > 0. Noting that
E(µ̂m − µm) = 0, by Proposition 2.1, we have limN→∞NVar[λ′(µ̂m − µm)] = λ′(Σµ)mλ > 0 where
µm = (µ0,m, µ1,m, . . . , µν−1,m)′, and the (i, j)th element of (Σµ)m is

(Σµ)ij,m =

∞
∑

n=−∞

γi,m(nν + j − i),

where γi,m(nν + j − i) = Cov(X̃tν+i,m, X̃(t+n)ν+j,m). By the Central Limit Theorem for strictly
stationary m-dependent sequences (Brockwell and Davis, 1991, Theorem 6.4.2), λ′(µ̂m − µm) is
AN(0, N−1λ′(Σµ)mλ).

Since (Σµ)m → Σµ as m→ ∞, it suffices to show, by Proposition 6.3.9 of Brockwell and Davis
(1991), that for every ε > 0

lim
m→∞

lim sup
N→∞

P [|N1/2(µ̂i − µi)−N1/2(µ̂i,m − µi,m)| > ε] = 0. (8)

By Chebyschev’s inequality,

P [|N1/2(µ̂i − µi)−N1/2(µ̂i,m − µi,m)| > ε] ≤ ε−2Var[N1/2(µ̂i − µi)−N1/2(µ̂i,m − µi,m)].
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The right-hand side of the above inequality is

ε−2

[

Var[N1/2(µ̂i − µi)] +Var[N1/2(µ̂i,m −µi,m)]− 2Cov

(

N1/2(µ̂i −µi), N
1/2(µ̂i,m − µi,m)

)]

. (9)

Taking the limit as N → ∞ in (9) yields ε−2[(Σµ)ii + (Σµ)ii,m − 2 limN→∞NCov(µ̂i, µ̂i,m)] where
(Σµ)ii is the (i, i)th element of Σµ and (Σµ)ii,m is the (i, i)th element of (Σµ)m. By calcula-
tions analogous to those in the proof of Proposition 2.1, it can be shown that as m → ∞,
limN→∞Cov(µ̂i, µ̂i,m) = (Σµ)ii and (Σµ)ii,m → (Σµ)ii. Consequently

lim
m→∞

ε−2[(Σµ)ii + (Σµ)ii,m − 2 lim
N→∞

NCov(µ̂i, µ̂i,m)] = ε−2[(Σµ)ii + (Σµ)ii − 2(Σµ)ii] = 0,

establishing (8) and the proposition. �
Let Π be the orthogonal ν × ν cyclic permutation matrix defined as

Π =













0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
1 0 0 0 · · · 0













. (10)

Note that Π−n = (Π
′
)n. Also, Π0 = Πν = I. We use the Π-matrix in the following theorem and in

Sections 3 and 4.

Theorem 2.3 Let X̃t = µt +
∑∞

j=−∞ ψt(j)εt−j . Then,

N1/2(µ̂− µ) ⇒ N (0,Σµ) (11)

where Σµ =
∑∞

n=−∞BnΠ
n, Bn = diag (γ0(n), γ1(n), . . . , γν−1(n)), and Πn is defined in (10).

PROOF. By Proposition 2.2 the theorem follows. Knowing that (Σµ)ij =
∑∞

n=−∞ γi(nν + j − i)

is the (i, j)th element of Σµ, the representation of Σµ given in the theorem can be shown through
algebraic manipulation. �

The estimated periodic noise-variance (EPNV) function is directly related to the estimated
periodic autocovariance function. We thus establish the asymptotic properties of estimators of the
periodic autocovariance function, γt(h) = Cov(Xt,Xt+h), at various lags h. Consider first the case
when {µt} is known, and define

Ci(`) = N−1
N−1
∑

t=0

Xtν+iXtν+i+`. (12)

Proposition 2.4 Let Xt =

∞
∑

j=−∞

ψt(j)εt−j . Let Eδ4t = η < ∞, where we recall that {δt = σ−1
t εt}

is iid(0,1), and
∑

|ψi(j)| < ∞ for all i = 0, 1, . . . , ν − 1. Then, if m1 ≥ 0 and m2 ≥ 0,
limN→∞NCov(Ci(m1), C`(m2)) = (Wm1m2)i,` where

(Wm1m2)i,` = (η − 3)
∑∞

`1=−∞ ψi(`1)ψi+m1(`1 +m1)

·
∑∞

n=−∞ ψ`(`1 + nν + `− i)ψ`+m2(`1 + nν + `− i+m2)σ
4
i−`1

+
∑∞

n=−∞[γi(nν + `− i)γi+m1(nν + `− i−m1 +m2)
+γi(nν + `− i+m2)γi+m1(nν + `− i−m1)]

(13)

for all 0 ≤ i, ` ≤ ν − 1.
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PROOF. We first observe that

E(δsδtδuδv) =











η s = t = u = v

1 s = t 6= u = v
0 s 6= t, s 6= u, s 6= v.

(14)

Also,

E(Xtν+iXtν+i+jXtν+i+h+jXtν+i+h+j+k)

=
∑

`1

∑

`2

∑

`3

∑

`4

ψi(`1)ψi+j(`2 + j)ψi+h+j(`3 + h+ j)ψi+h+j+k(`4 + h+ j + k)

×σi−`1σi−`2σi−`3σi−`4E(δtν+i−`1δtν+i−`2δtν+i−`3δtν+i−`4)

and the sum can be rewritten using (14) as

(η − 3)
∑

`1
ψi(`1)ψi+j(`1 + j)ψi+h+j(`1 + h+ j)ψi+h+j+k(`1 + h+ j + k)σ4i−`1

+γi(j)γi+h+j(k) + γi(h+ j)γi+j(h+ k) + γi(h+ j + k)γi+j(h).

Hence,

E(Ci(m1)C`(m2)) = N−2E

[

∑N−1
s=0

∑N−1
t=0 Xtν+iXtν+i+m1Xsν+`Xsν+`+m2

]

= N−2
∑N−1

s=0

∑N−1
t=0

[

(η − 3)
∑

`1

{

ψi(`1)ψi+m1(`1 +m1)ψ`(`1 + (s− t)ν + `− i)

·ψ`+m2(`1 + (s− t)ν + `− i+m2)σ
4
i−`1

}

+γi(m1)γ`(m2) + γi((s − t)ν + `− i)γi+m1((s− t)ν + `− i−m1 +m2)

+γi((s − t)ν + `− i+m2)γi+m1((s− t)ν + `− i−m1)

]

.

Letting n = s− t we have

Cov(Ci(m1), C`(m2)) = E[Ci(m1)C`(m2)]− γi(m1)γ`(m2)

= N−1
∑

|n|<N

(1−N−1|n|)Tn
(15)

where

Tn = (η − 3)
∑

`1
ψi(`1)ψi+m1(`1 +m1)ψ`(`1 + nν + `− i)ψ`+m2(`1 + nν + `− i+m2)σ

4
i−`1

+γi(nν + `− i))γi+m1(nν + `− i−m1 +m2)

+γi(nν + `− i+m2)γi+m1(nν + `− i−m1).

The covariance term, γi(nν+ `− i), in the expression for Tn as expressed in terms of the ψ-weights
is

γi(nν + `− i) =
∞
∑

r=−∞

ψi(r)ψ`(r + nν + `− i)σ2i−r (16)
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and hence
∞
∑

n=−∞

γi(nν + `− i) =

∞
∑

n=−∞

∞
∑

r=−∞

ψi(r)ψ`(r + nν + `− i)σ2i−r. (17)

Note that,

∞
∑

n=−∞

|γi(nν + `− i)| ≤
ν−1
∑

i=0

ν−1
∑

i′=0

∑

r

∑

r′

|ψi(r)||ψi(r
′)| ×max(σ2i ; i = 0, 1, . . . , ν − 1). (18)

The other covariance terms in Tn can be treated equally, hence

∞
∑

n=−∞

[∣

∣

∣

∣

γi(nν + `− i))γi+m1(nν + `− i−m1 +m2)

∣

∣

∣

∣

+

∣

∣

∣

∣

γi(nν + `− i+m2)γi+m1(nν + `− i−m1)

∣

∣

∣

∣

]

≤ 2

[ ν−1
∑

i=0

ν−1
∑

i′=0

∑

r

∑

r′

|ψi(r)||ψi′(r
′)|

]2

×max(σ4i ; i = 0, 1, . . . , ν − 1).

Similarly, (η−3)
∑

`1

ψi(`1)ψi+m1(`1+m1)

∞
∑

n=−∞

ψ`(`1+nν+ `− i)ψ`+m2(`1+nν+ `− i+m2)σ
4
i−`1

≤ |(η − 3)|

[ ν−1
∑

i=0

ν−1
∑

i′=0

∑

r

∑

r′

|ψi(r)||ψi′(r
′)|

]2

×max(σ4i ; i = 0, 1, . . . , ν − 1).

Thus,
∞
∑

n=−∞

|Tn| ≤M , where

M = (2 + |η − 3|)

[ ν−1
∑

i=0

ν−1
∑

i′=0

∑

r

∑

r′

|ψi(r)||ψi′(r
′)|

]2

×max(σ4i ; i = 0, 1, . . . , ν − 1). (19)

We can apply the dominated convergence theorem in (15) to show that

limN→∞NCov(Ci(m1), C`(m2)) =

∞
∑

n=−∞

Tn

= (η − 3)
∑

`1

ψi(`1)ψi+m1(`1 +m1)

∞
∑

n=−∞

ψ`(`1 + nν + `− i)ψ`+m2(`1 + nν + `− i+m2)σ
4
i−`1

+
∞
∑

n=−∞

[

γi(nν+`−i)γi+m1(nν+`−i−m1+m2)+γi(nν+`−i+m2)γi+m1(nν+`−i−m1)

]

.

which completes the proof. �

Proposition 2.5 Under the assumptions of Proposition 2.4, we have for any non-negative
integer j,





C(0)
...

C(j)



 is AN









γ(0)
...

γ(j)



 , N−1W



 (20)

where C(m) = (C0(m), . . . , Cν−1(m))′, γ(m) = (γ0(m), . . . , γν−1(m))′, and

W =









W00 W01 · · · W0j

W10 W11 · · · W1j
...

... · · ·
...

Wj0 Wj1 · · · Wjj









,

where Wm1m2 , m1,m2 = 0, 1, . . . , j, is the ν × ν matrix with (i, `)th element given by (13).
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PROOF. We define the truncated sequence Xt,s =
∑s

j=−s ψt(j)εt−j , and let γt,s(·) be the autoco-
variance function of {Xt,s}. Next, define the (j + 1)ν-vectors

Yt,s = (Xtν,sXtν,s,Xtν+1,sXtν+1,s, . . . ,Xtν+ν−1,sXtν+ν−1,s, . . . ,

Xtν,sXtν+j,s,Xtν+1,sXtν+1+j,s, . . . ,Xtν+ν−1,sXtν+ν−1+j,s)
′.

Then, {Yt,s} is a strictly stationary {b2s+j
ν c+ 1}-dependent sequence. Also,

N−1
N−1
∑

t=0

Yt =





Cs(0)
...

Cs(j)





where Cs(m) = (C0,s(m), C1,s(m), . . . , Cν−1,s(m))′, and for 0 ≤ m1,m2 ≤ j we have

Ci,s(m1) = N−1
N−1
∑

t=0

Xtν+i,sXtν+i+m1,s and C`,s(m2) = N−1
N−1
∑

t=0

Xtν+`,sXtν+`+m2,s

for 0 ≤ i, ` ≤ ν − 1. By the Cramer-Wold Device it suffices to show that, as N → ∞,

λ′





Cs(0)
...

Cs(j)



 is AN



λ′





γs(0)
...

γs(j)



 , N−1λ′Wsλ



 (21)

for all λ in R
(j+1)ν such that λ′Wsλ > 0. Here, γs(m) = (γ0,s(m), γ1,s(m), . . . , γν−1,s(m))′ and

Ws =









W00,s W01,s · · · W0j,s

W10,s W11,s · · · W1j,s
...

... · · ·
...

Wj0,s Wj1,s · · · Wjj,s









.

Here, (Wm1m2,s), m1,m2 = 0, 1, . . . , j, is the ν × ν matrix with (i, `)th element given by

(Wm1m2,s)i,` = (η − 3)

s
∑

`1=−s

ψi(`1)ψi+m1(`1 +m1)

·
∞
∑

n=−∞

ψ`,s(`1 + nν + `− i)ψ`+m2,s(`1 + nν + `− i+m2)σ
4
i−`1

·
∞
∑

n=−∞

[

γi,s(nν + `− i)γi+m1,s(nν + `− i−m1 +m2)

+γi,s(nν + `− i+m2)γi+m1,s(nν + `− i−m1)

]

where:






ψi,s(m) = ψi(m) |m| ≤ s; and

ψi,s(m) = 0 |m| > s.
(22)

Noting that

E









Cs(0)− γs(0)
Cs(1)− γs(1)

...
Cs(j) − γs(j)









= 0
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we have by Proposition 2.4,

lim
N→∞

NVar

(

λ′









Cs(0)− γs(0)
Cs(1)− γs(1)

...
Cs(j)− γs(j)









)

= λ′Wsλ

and by the Central Limit Theorem for strictly stationary s-dependent sequences,

λ′









Cs(0)− γs(0)
Cs(1)− γs(1)

...
Cs(j)− γs(j)









is AN
[

0, N−1λ′Wsλ
]

. (23)

Since Ws → W as s → ∞, by Proposition 6.3.9 of Brockwell and Davis (1991) it suffices to show
that for every ε > 0

lim
s→∞

lim sup
N→∞

P [|N1/2(Ci(m)− γi(m))−N1/2(Ci,s(m)− γi,s(m))| > ε] = 0. (24)

By Chebyschev’s inequality,

P [|N1/2(Ci(m)− γi(m))−N1/2(Ci,s(m)− γi,s(m))| > ε]

≤ ε−2Var[N1/2(Ci(m)− γi(m))−N1/2(Ci,s(m)− γi,s(m))].

The right-hand side of the above inequality is

ε−2

[

Var[N1/2(Ci(m)− γi(m))] + Var[N1/2(Ci,s(m)− γi,s(m))] (25)

−2Cov

(

N1/2(Ci(m)− γi(m)), N1/2(Ci,s(m)− γi,s(m))

)]

Taking the limit as N → ∞ in (25) we obtain

ε−2[(Wmm)ii + (Wmm)ii,s − 2 lim
N→∞

NCov{Ci(m), Ci,s(m)}],

where (Wmm)ii is the (i, i)-element of Wmm and (Wmm,s)ii is the (i, i)-element of Wmm,s.
By calculations analogous to those in Proposition 2.4, it can be shown that

limN→∞NCov(Ci(m), Ci,s(m))

= (η − 3)

∞
∑

n=−∞

s−nν−m
∑

`1=−s−nν

ψi(`1)ψi+m(`1 +m)ψi(`1 + nν)ψi+m(`1 + nν +m)σ4i−`1

+
∞
∑

n=−∞

[γi,s(nν)γi+m,s(nν) + γi,s(nν +m)γi+m,s(nν −m)]

Thus as s→ ∞, limN→∞NCov(Ci(m), Ci,s(m)) → (Wmm)ii and (Wmm)ii,s → (Wmm)ii and
consequently

lim
s→∞

ε−2[(Wmm)ii + (Wmm)ii,s − 2 lim
N→∞

NCov{Ci(m), Ci,s(m)}] = 0

establishing (25). �
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Theorem 2.6 Let X̃t = µt +
∑∞

j=−∞ ψt(j)σt−jδt−j where δt is iid(0,1). Let Eδ4t = η < ∞ and
∑

|ψi(j)| <∞ for all i = 0, 1, . . . , ν − 1. Then, for any non-negative integer j,





γ̂(0)
...

γ̂(j)



 is AN









γ(0)
...

γ(j)



 , N−1W



 (26)

where γ̂(m) = (γ̂0(m), γ̂1(m), . . . , γ̂ν−1(m))′ and given N years of data X̃0, X̃1, . . . , X̃Nν−1, the
estimated periodic autocovariance function at season i and lag m is defined by

γ̂i(m) = N−1
N−1
∑

j=0

(X̃jν+i − µ̂i)(X̃jν+i+m − µ̂i+m) (27)

where µ̂i is defined by (3) and any terms involving X̃t are set equal to 0 whenever t > Nν−1. Also,

W =









W00 W01 · · · W0j

W10 W11 · · · W1j
...

... · · ·
...

Wj0 Wj1 · · · Wjj









where Wm1m2 , m1,m2 = 0, 1, . . . , j, is the ν × ν matrix with (i, `)th element given by (13).

PROOF. We want to show that for any season i, i = 0, 1, . . . , ν− 1 and any lag m, 0 ≤ m ≤ j, that

N1/2(γ̂i(m)− Ci(m)) = op(1).

Put µ̂i = N−1
N−1
∑

t=0

X̃tν+i and observe that

N1/2(γ̂i(m)− Ci(m))

= N1/2

[

N−1
N−1
∑

t=0

(X̃tν+i − µ̂i)(X̃tν+i+m − µ̂i+m)−N−1
N−1
∑

t=0

(X̃tν+i − µi)(X̃tν+i+m − µi+m)

]

= N1/2(µiµ̂i+m + µi+mµ̂i − µ̂iµ̂i+m − µiµi+m)

= N1/2(µ̂i+m − µi+m)(µi − µ̂i).

Now N1/2(µ̂i+m − µi+m) ⇒ Y where Y is distributed N (0, Vi+m,i+m) according to Theorem 2.3
where Vi+m,i+m =

∑∞
n=−∞ γi+m(nν). Note that (i+m) is modulo ν. This implies that

N1/2(µ̂i+m − µi+m) = Op(1), and by the weak law of large numbers, µi − µ̂i = op(1), hence

N1/2(γ̂i(m)− Ci(m)) = N1/2(µ̂i+m − µi+m)(µi − µ̂i) = op(1),

which completes the proof. �

Remark 2.7 Tjøstheim and Paulsen (1982) derived asymptotics of the sample mean and covari-
ance functions of a multivariate second-order stationary process. Since a periodic moving-average
process can be expressed in terms of an equivalent multivariate stationary moving-average process,
their results are relevant to PARMA modeling. However, the prediction problem is different for the
two models. For example, a PARMA model of daily data uses observations from earlier days in
the same year to make forecasts, whereas the vector model uses only observations from past years.
Thus, our results are essential for complete model description, parsimony, and forecasting.
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3 Asymptotics of the estimated noise-variance

Using the innovations algorithm from Section 2 in Anderson, Meerschaert, and Vecchia (1999), the
asymptotic distributions of the autoregressive parameters φ̂t(j) and moving average parameters θ̂t(i)
for the PARMAν(p, q) process (1) were derived by Anderson and Meerschaert (2005), Theorems 1
and 2. The asymptotics of the seasonal sample mean µ̂t were laid out in the previous Section 2.
Finally, we will develop the asymptotics of the noise-variance σ̂2t in this section. Assume:

(i) Finite Fourth Moment: Eε4t <∞.

(ii) The model admits a causal representation

Xt =
∞
∑

j=0

ψt(j)εt−j (28)

where ψt(0) = 1 and
∑∞

j=0 |ψt(j)| < ∞ for all t. Note that ψt(j) = ψt+kν(j) for all j. Also,

Xt = X̃t − µt and εt = σtδt where {δt} is iid(0,1).

(iii) The model satisfies an invertibility condition

εt =

∞
∑

j=0

πt(j)Xt−j (29)

where πt(0) = 1 and
∑∞

j=0 |πt(j)| <∞ for all t. Again, πt(j) = πt+kν(j) for all j.

(iv) The spectral density matrix f(λ) of the equivalent vector ARMA process (see Anderson and
Meerschaert, 1997, pg. 778) is such that for some 0 < c ≤ C <∞ we have

cz′z ≤ z′f(λ)z ≤ Cz′z, −π ≤ λ ≤ π,

for all z in Rν .

(v) The number of iterations k of the iterations algorithm satisfies k ≤ Nν − 1, and k2/N → 0
as N → ∞ and k → ∞.

Proposition 3.1 Define VN,k,j = (V
(0)
N,k,j, V

(1)
N,k,j, . . . , V

(ν−1)
N,k,j )′ and Vj = (V

(0)
j , V

(1)
j , . . . , V

(ν−1)
j )′

where V
(i)
N,k,j =

j
∑

`=0

πi(`)N
1/2(γ̂i−`(`)− γi−`(`)), (Wm1m2)i−m1,i−m2 is given by (13), and

V
(i)
j ∼ N

(

0,

j
∑

m1=0

j
∑

m2=0

πi(m1)πi(m2)(Wm1m2)i−m1,i−m2

)

.

If assumptions (i) through (v) hold, then as N → ∞ and k → ∞, it follows that

VN,k,j ⇒ Vj ∼ N (0, AjWA′
j) (30)

for fixed lag j ≥ 0, where 0 is the ν-dimensional 0-vector, Aj is a ν × (j +1)ν block matrix defined
by

Aj =
[

I F1Π
ν−1 · · · FjΠ

ν−j
]

(31)

where I is the ν × ν identity matrix, Fj = diag(π0(j), π1(j), . . . , πν−1(j)), Π is the the orthogonal
ν× ν cyclic permutation matrix defined in Equation (10), and W is the matrix defined in Theorem
2.6.
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PROOF. Since VN,k,j = AjN
1/2Γj where

Γj =









γ̂(0)− γ(0)
γ̂(1)− γ(1)

...
γ̂(j)− γ(j)









and γ̂(`)− γ(`) =









γ̂0(`)− γ0(`)
γ̂1(`)− γ1(`)

...
γ̂ν−1(`)− γν−1(`)









the result follows from Theorem 2.6 and the continuous mapping theorem, Proposition 6.4.2 in
Brockwell and Davis (1991). �

Remark 3.2 Matrix multiplication shows that

AjWA′
j =







s0,0,j · · · s0,ν−1,j
... · · ·

...
sν−1,0,j · · · sν−1,ν−1,j







where si,`,j =

j
∑

m1=0

j
∑

m2=0

πi(m1)π`(m2)(Wm1m2)i−m1,`−m2 , 0 ≤ i, ` ≤ ν−1, and (i−m1) and (`−m2)

are modulo ν.

Proposition 3.3 From Proposition 3.1 and Remark 3.2 we have, as j → ∞,

Vj ⇒ V ∼ N

(

0,







s0,0 · · · s0,ν−1
... · · ·

...
sν−1,0 · · · sν−1,ν−1







)

(32)

where for all 0 ≤ i, ` ≤ ν − 1 we have

si,` =

∞
∑

m1=0

∞
∑

m2=0

πi(m1)π`(m2)(Wm1m2)i−m1,`−m2 . (33)

PROOF. In Remark 3.2, we see that

si,`,j =

j
∑

m1=0

j
∑

m2=0

πi(m1)π`(m2)(Wm1m2)i−m1,`−m2 .

Noting that

|si,`,j| ≤M

∞
∑

m1=0

|πi(m1)|
∞
∑

m2=0

|π`(m2)|

for all non-negative lags j and all 0 ≤ i, ` ≤ ν − 1, where M is the bound given in Equation (19),
we can write si,` = limj→∞ si,`,j. Let φV (0)

j ,...,V
(ν−1)
j

(t1, . . . , tν) be the characteristic function of the

vector (V
(0)
j , . . . , V

(ν−1)
j )′. Then

lim
j→∞

φ
V

(0)
j ,...,V

(ν−1)
j

(t1, . . . , tν) = lim
j→∞

exp

(

−
1

2
(t1, . . . , tν)







s0,0,j · · · s0,ν−1,j
... · · ·

...
sν−1,0,j · · · sν−1,ν−1,j











t1
...
tν





)

= exp

(

−
1

2
(t1, . . . , tν) lim

j→∞







s0,0,j · · · s0,ν−1,j
... · · ·

...
sν−1,0,j · · · sν−1,ν−1,j











t1
...
tν





)

= exp

(

−
1

2
(t1, . . . , tν)







s0,0 · · · s0,ν−1
... · · ·

...
sν−1,0 · · · sν−1,ν−1











t1
...
tν





)

= φV (0),...,V (ν−1)(t1, . . . , tν),
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which is the characteristic function of

V ∼ N

(

0,







s0,0 · · · s0,ν−1
... · · ·

...
sν−1,0 · · · sν−1,ν−1







)

,

and this completes the proof. �

Lemma 3.4 As N → ∞ we have

lim
j→∞

lim sup
k→∞

P (|V
(i)
N,k − V

(i)
N,k,j| > ε) = 0 (34)

for every ε > 0, i = 0, 1, . . . , ν − 1.

PROOF. By Chebyshev’s inequality with r = 2 (e.g., see Proposition 6.2.1 in Brockwell and
Davis, 1991), we have

P (|V
(i)
N,k − V

(i)
N,k,j| > ε) ≤ ε−2E|V

(i)
N,k − V

(i)
N,k,j|

2

= ε−2

∥

∥

∥

∥

∥

k
∑

`=j+1

πi(`)N
1/2(γ̂i−`(`)− γi−`(`))

∥

∥

∥

∥

∥

2

≤ ε−2

(

k
∑

l=j+1

√

π2i (`)NVar(γ̂i−`(`))

)2

= ε−2

(

k
∑

l=j+1

|πi(`)|

)2

M

(35)

where M is defined in Equation (19). Then, as N → ∞, M(
∑k

l=j+1 |πi(`)|)
2 → 0 as j, k → ∞

by the absolute summability of the π-weights. Hence, as N → ∞, (34) holds for every ε > 0,
i = 0, 1, . . . , ν − 1. �

Lemma 3.5 As N → ∞ we have

lim
j→∞

lim sup
k→∞

P (|λ1V
(0)
N,k + · · ·+ λνV

(ν−1)
N,k − (λ1V

(0)
N,k,j + · · ·+ λνV

(ν−1)
N,k,j )| > ε) = 0

for every ε > 0 where λ = (λ1, . . . , λν)
′ is any vector in R

ν.

PROOF. Write
∣

∣

∣
λ1V

(0)
N,k+· · ·+λνV

(ν−1)
N,k −(λ1V

(0)
N,k,j+· · ·+λνV

(ν−1)
N,k,j )

∣

∣

∣
=
∣

∣

∣
λ1(V

(0)
N,k−V

(0)
N,k,j)+· · ·+λν(V

(ν−1)
N,k −V

(ν−1)
N,k,j )

∣

∣

∣
.

If
∣

∣

∣λ1(V
(0)
N,k − V

(0)
N,k,j) + · · ·+ λν(V

(ν−1)
N,k − V

(ν−1)
N,k,j )

∣

∣

∣ > ε, then either

∣

∣

∣
λ1

∣

∣

∣

∣

∣

∣
V

(0)
N,k − V

(0)
N,k,j

∣

∣

∣
> ε/ν, or, . . ., or,

∣

∣

∣
λν

∣

∣

∣

∣

∣

∣
V

(ν−1)
N,k − V

(ν−1)
N,k,j

∣

∣

∣
> ε/ν.

Hence,

P (|λ1V
(0)
N,k + · · ·+ λνV

(ν−1)
N,k − (λ1V

(0)
N,k,j + · · ·+ λνV

(ν−1)
N,k,j )| > ε)
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≤ P
(∣

∣

∣
λ1

∣

∣

∣

∣

∣

∣
V

(0)
N,k − V

(0)
N,k,j

∣

∣

∣
> ε/ν

)

+ · · ·+ P
(∣

∣

∣
λν

∣

∣

∣

∣

∣

∣
V

(ν−1)
N,k − V

(ν−1)
N,k,j

∣

∣

∣
> ε/ν

)

→ 0

as N → ∞, k → ∞ and j → ∞ according to Lemma 3.4. �

Proposition 3.6 As N → ∞, we have







V
(0)
N,k
...

V
(ν−1)
N,k






⇒





V (0)

...
V (ν−1)





as k → ∞, where V
(i)
N,k =

k
∑

`=0

πi(j)N
1/2(γ̂i−`(`)− γi−`(`)), si,` is given by (33), and





V (0)

...
V (ν−1)



 ∼ N

(

0,







s0,0 · · · s0,ν−1
... · · ·

...
sν−1,0 · · · sν−1,ν−1







)

,

PROOF. By Propositions 3.1, 3.3, and Lemma 3.5, as well as the Cramer-Wold Device, we have
by Proposition 6.3.9 of Brockwell and Davis (1991) that λ′VN,k ⇒ λ′V for all λ = (λ1, . . . , λν)

′ in
R
ν . By the Cramer-Wold Device we can conclude that VN,k ⇒ V as N → ∞ and k → ∞. �

Let X̂
(i)
i+k = PHk,i

Xi+k denote the one-step predictor of Xi+k, where the orthogonal projection

X̂
(i)
i+k = φ

(i)
k,1Xi+k−1 + · · ·+ φ

(i)
k,kXi, k ≥ 1, (36)

onto the space Hk,i = sp{Xi, ...,Xi+k−1} minimizes the mean squared error

vk,i = 〈Xi+k − X̂
(i)
i+k,Xi+k − X̂

(i)
i+k〉 = ‖Xi+k − X̂

(i)
i+k‖

2 = E(Xi+k − X̂
(i)
i+k)

2. (37)

The error vk,i estimates the noise variance. The vector of coefficients φ
(i)
k = (φ

(i)
k,1, . . . , φ

(i)
k,k)

′ solves

the prediction equations Γk,iφ
(i)
k = γ

(i)
k , where γ

(i)
k = (γi+k−1(1), γi+k−2(2), . . . , γi(k))

′ and

Γk,i =

[

γi+k−`(`−m)

]

`,m=1,...,k
(38)

is the covariance matrix of (Xi+k−1, ...,Xi)
′ for each i = 0, ..., ν − 1. Proposition 4.1 of Lund and

Basawa (1999) shows that if σ2i > 0 for i = 0, . . . , ν − 1, then for a causal PARMAν(p, q) process

the covariance matrix Γk,i is nonsingular for every k ≥ 1 and each i. Hence φ
(i)
k = Γ−1

k,iγ
(i)
k for every

k ≥ 1 and each i. Given N years of data, X̃0, X̃1, . . . , X̃Nν−1, if we replace the autocovariances in

Γk,i and γ
(i)
k with sample autocovariances defined in (27), then we get φ̂

(i)
k = Γ̂−1

k,i γ̂
(i)
k . Writing

X̂
(i)
i+k =

k
∑

j=1

θ
(i)
k,j(Xi+k−j − X̂

(i)
i+k−j) (39)

yields the one-step predictors in terms of the innovations Xi+k−j − X̂
(i)
i+k−j . Proposition 2.2.1 in

Anderson, Meerschaert, and Vecchia (1999) shows that if EXt = 0 and Γk,i is nonsingular for each

k ≥ 1, then θ
(i)
k,j and vk,i can be computed using the innovations algorithm. If we have N years of

data, X̃0, X̃1, . . . , X̃Nν−1 and we replace the autocovariances in γ
(i)
k with sample autocovariances
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defined in (27), we obtain the innovations estimates θ̂
(i)
k,j and v̂k,i. If k is chosen as a function of

the sample size N such that k2/N → 0 as N → ∞ and k → ∞, then the results in Section 3 of
Anderson, Meerschaert, and Vecchia (1999) show that

θ̂
(〈i−k〉)
k,j

P
→ ψi(j), v̂k,(〈i−k〉)

P
→ σ2i and φ̂

(〈i−k〉)
k,j

P
→ −πi(j) (40)

for all i, j where “
P
→” denotes convergence in probability, 〈t〉 = t − ν[t/ν] for t = 0, 1, . . . and

〈t〉 = ν + t− ν[t/ν + 1] for t = −1,−2, . . . so that 〈t〉 denotes the season associated with time t.

Lemma 3.7 As N → ∞ and k → ∞, we have that

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )N1/2(γ̂i−`(`)− γi−`(`)) = op(1). (41)

PROOF. Since γ̂i−`(`) and Ci−`(`), defined in Equation (12), have the same asymptotic distribution

it suffices to show that
k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )N1/2(Ci−`(`) − γi−`(`)) = op(1). From Chebychev’s

inequality,

P
(∣

∣

∣

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )N1/2(Ci−`(`)− γi−`(`))

∣

∣

∣ > ε
)

≤ ε−2E
(

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )N1/2(Ci−`(`)− γi−`(`))

)2

= ε−2
[

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )2NVar(Ci−`(`))

+2
∑

m<n

(πi(m) + φ
(〈i−k〉)
k,m )(πi(n) + φ

(〈i−k〉)
k,n )×NCov(Ci−m(m), Ci−n(n))

]

.

Note that NVar(Ci−`(`) ≤ M where M is the upper bound given in equation (19). Similarly, by
the Cauchy-Schwarz inequality, NCov(Ci−m(m), Ci−n(n)) ≤M . Hence,

ε−2
[

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )2NVar(Ci−`(`))

+2
∑

m<n

(πi(m) + φ
(〈i−k〉)
k,m )(πi(n) + φ

(〈i−k〉)
k,n )×NCov(Ci−m(m), Ci−n(n))

]

≤ ε−2M
[

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )

]2
= ε−2M · 0 = 0

since from the proof of Corollary 2.2.4 in Anderson, Meerschaert, and Vecchia (1999), we have
k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` ) → 0, as N → ∞ and k → ∞. �

Lemma 3.8 In addition to assumptions (i–v) in this section, suppose that

N3/4
∑

`>k

|πi(`)| → 0 as N → ∞ and k → ∞. (42)
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Then
k
∑

`=0

N1/2(πi(`) + φ
(〈i−k〉)
k,` )γi−`(`) → 0 (43)

as N → ∞ and k → ∞.

PROOF. It is easily shown that γi−`(`) =

∞
∑

k=0

ψi−`(k)ψi(`+ k)σ2i−`−k. Hence

|γi−`(`)| ≤ max(σ2i ; i = 0, 1, . . . , ν − 1)×
ν−1
∑

i′=0

ν−1
∑

i=0

∣

∣

∣

∞
∑

k=0

ψi′(k)
∣

∣

∣

∣

∣

∣

∞
∑

k=0

ψi(k)
∣

∣

∣

where the right-hand side of the above inequality is a constant, call it B. Hence, |γi−`(`)| is bounded
for 0 ≤ ν − 1 and all `. Next, apply Corollary 2.2.4 in Anderson, Meerschaert, and Vecchia (1999)
to see that

k
∑

`=0

N1/2|πi(`) + φ
(〈i−k〉)
k,` | ≤ N1/2

k
∑

`=0

|πi(`) + φ
(〈i−k〉)
k,` |

≤ N1/2k1/2

√

√

√

√

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )2.

(44)

From assumption (v), we have (k2/N)1/4 → 0, i.e., k1/2/N1/4 → 0, so for N > N0 for some integer
N0, we have

N1/2k1/2

√

√

√

√

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )2 ≤ N1/2N1/4

√

√

√

√

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )2

≤ N3/4

√

√

√

√

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )2.

(45)

The proof of Corollary 2.2.4 in Anderson, Meerschaert, and Vecchia (1999) contains the inequality
k
∑

`=0

(πi(`)+φ
(〈i−k〉)
k,` )2 ≤

2K

πC

(

∑

`>k

|πi(`)
)2

whereK = max(γi(0); i = 0, 1, . . . , ν−1) and the constant

C is as in assumption (iv) of this section. Hence,

k
∑

`=0

[

N3/4(πi(`) + φ
(〈i−k〉)
k,` )

]2
≤

2K

πC

(

∑

`>k

N3/4|πi(`)|
)2
.

If N3/4
∑

`>k

|πi(`)| → 0 as N → ∞ and k → ∞, then
2K

πC

(

∑

`>k

N3/4|πi(`)|
)2

→ 0, therefore

k
∑

`=0

N1/2(πi(`) + φ
(〈i−k〉)
k,` )γi−`(`) → B · 0 = 0 and the Lemma is proved. �

Lemma 3.9 If (42) holds along with assumptions (i–v), we have that

∞
∑

`=k+1

N1/2πi(`)γi−`(`) → 0 (46)

as N → ∞ and k → ∞.
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PROOF. Note that

∣

∣

∣

∞
∑

`=k+1

N1/2πi(`)γi−`(`)
∣

∣

∣
≤

∞
∑

`=k+1

N1/2|πi(`)||γi−`(`)|

≤ B ·
∞
∑

`=k+1

N1/2|πi(`)|

→ 0,

(47)

where B is as in Lemma 3.8. �

Proposition 3.10 Given assumptions (i–v) as well as the condition (42), we have

V
(i)
N,k −N1/2(v̂k,〈i−k〉 − σ2i ) = op(1).

PROOF. Let Ht = sp{Xj ,−∞ < j ≤ t}. Then

E(ε2t ) = σ2t = E[Xt +
∞
∑

j=1

πt(j)Xt−j ]
2 = 〈Xt − PHt−1Xt,Xt − PHt−1Xt〉

where PHt−1Xt is the projection of Xt onto the closed subspace Ht−1. Since PHt−1Xt ⊥ (Xt −
PHt−1Xt), and

〈Xt,Xt − PHt−1Xt〉 = γt(0) + πt(1)γt(−1) + · · ·

we have σ2t =

∞
∑

j=0

πt(j)γt(−j) =
∞
∑

j=0

πt(j)γt−j(j). Hence,

v̂k,〈i−k〉 − σ2i =

k
∑

`=0

−φ
(〈i−k〉)
k,` γ̂i−`(`)−

∞
∑

`=0

πi(`)γi−`(`)

and

N1/2(v̂k,〈i−k〉 − σ2i ) =

k
∑

`=0

−φ
(〈i−k〉)
k,` N1/2γ̂i−`(`)−

∞
∑

`=0

πi(`)N
1/2γi−`(`).

Then,

V
(i)
N,k −N1/2(v̂k,〈i−k〉 − σ2i )

=
k
∑

`=0

πi(`)N
1/2(γ̂i−`(`)− γi−`(`)) +

k
∑

`=0

φ
(〈i−k〉)
k,` N1/2γ̂i−`(`) +

∞
∑

`=0

πi(`)N
1/2γi−`(`)

=

k
∑

`=0

(πi(`) + φ
(〈i−k〉)
k,` )N1/2(γ̂i−`(`)− γi−`(`)) +

k
∑

`=0

N1/2(πi(`) + φ
(〈i−k〉)
k,` )γi−`(`)

+

∞
∑

`=k+1

N1/2πi(`)γi−`(`).

As N → ∞ and k → ∞, the first summand above approaches 0 in probability by Lemma 3.7, the
second summand approaches 0 by Lemma 3.8, and the last approaches 0 by Lemma 3.9. �

Proposition 3.11 Given assumptions (i) through (v) as well as the condition (42), we have

N1/2











v̂k,〈0−k〉 − σ20
v̂k,〈1−k〉 − σ21

...
v̂k,〈ν−1−k〉 − σ2ν−1











− VN,k = op(1). (48)
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where VN,k = (V
(0)
N,k, V

(1)
N,k, . . . , V

(ν−1)
N,k )′ and

V
(i)
N,k =

k
∑

j=0

πi(j)N
1/2(γ̂i−j(j)− γi−j(j)). (49)

PROOF. The Proposition follows from Proposition 3.6 and from Definition 6.1.4 in Brockwell and
Davis (1991). �

Theorem 3.12 Suppose that the PARMA time series defined in (1) is causal, invertible, Eε4t <∞,
and that for some 0 < c ≤ C < ∞ we have cz′z ≤ z′f(λ)z ≤ Cz′z, −π ≤ λ ≤ π, for all z in
R
ν, where f(λ) is the spectral density matrix of the equivalent vector moving average process (see

Anderson and Meerschaert, 1997, pg. 778). Then for any sequence of positive integers {k(N), N =
1, 2, . . .} such that k ≤ Nν − 1, k → ∞ and k2/N → 0 as N → ∞ and (42) holds, we have that











v̂k,〈0−k〉

v̂k,〈1−k〉

...
v̂k,〈ν−1−k〉











is AN

















σ20
σ21
...

σ2ν−1









, N−1







s0,0 · · · s0,ν−1
... · · ·

...
sν−1,0 · · · sν−1,ν−1















(50)

where si,` is given by (33) and (Wm1m2)i,` is given by (13), with η = E(δ4t ) and δt = σ−1
t εt.

PROOF. Theorem 3.12 follows from Propositions 3.6 and 3.11 and from Proposition 6.3.3 in Brock-
well and Davis (1991). �

Corollary 3.13 The convergence in Theorem 3.12 can be rewritten as

N1/2











v̂k,〈0−k〉 − σ20
v̂k,〈1−k〉 − σ21

...
v̂k,〈ν−1−k〉 − σ2ν−1











⇒ N (0, lim
j→∞

AjWA
′

j) (51)

where we recall from equation (31) that Aj is the ν × (j + 1)ν block matrix given by

Aj =
[

I F1Π
ν−1 · · · FjΠ

ν−j
]

(52)

and

A
′

j =











I

ΠF1
...

ΠjFj











. (53)

where I is the ν×ν identity matrix, Fj = diag(π0(j), π1(j), . . . , πν−1(j)), and Π is the the orthogonal
ν × ν cyclic permutation matrix in Equation (10), and the matrix W is defined in Theorem 2.6.

PROOF. The corollary follows by Propositions 3.1 and 3.3 and Remark 3.2.

4 Fourier-PARMA modeling

The general PARMAν(p, q) model has p+q+2 parameter vectors, meaning that there are (p+q+2)ν
parameter values, a large number for high frequency data. Each parameter in an ARMA model
becomes a periodic function in the corresponding PARMA model, written as a vector of parameters.
In this section, we detail a hypothesis test to identify the statistically significant DFT harmonics.
The remaining harmonics can be then zeroed out, leading to a parsimonious Fourier-PARMA model.
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4.1 The discrete Fourier transform

For any given parameter vector x, the DFT of the periodic function x = [xt : 0 ≤ t ≤ ν − 1] is

xt = cx0 +

k
∑

r=1

{

cxrcos

(

2πrt

ν

)

+ sxrsin

(

2πrt

ν

)}

(54)

where cxr and sxr are the DFT harmonics, r is the Fourier frequency, and k is the total number of
frequencies.Write the vector of DFT harmonics in the form

fx =







[

cx0, cx1, sx1, . . . , cx(ν−1)/2, sx(ν−1)/2

]′
(ν odd)

[

cx0, cx1, sx1, . . . , sx(ν/2−1), cx(ν/2)
]′

(ν even).
(55)

The complex DFT and its inverse

x∗r = ν−1/2
ν−1
∑

t=0

exp

(

−2iπrt

ν

)

xt and xt = ν−1/2
ν−1
∑

r=0

exp

(

2iπrt

ν

)

x∗r (56)

can be expressed in matrix form x∗ = Ux using the ν × ν matrix

U = ν−1/2
(

e
−i2πrt

ν

)

r,t=0,1,...,ν−1
. (57)

Since U is a unitary matrix, the complex DFT inverse x̂ = Ũ−1x̂∗ = Ũ ′x̂∗ where the tilde denotes
taking the complex conjugate of each entry. Define

[P ]`j =











































1 if ` = j = 0;

2−1/2 if ` = 2r − 1 and j = r for some 1 ≤ r ≤ [(ν − 1)/2];

2−1/2 if ` = 2r − 1 and j = ν − r for some 1 ≤ k ≤ b(ν − 1)/2c;

i2−1/2 if ` = 2r and j = r for some 1 ≤ r ≤ [(ν − 1)/2];

−i2−1/2 if ` = 2r and j = ν − r for some 1 ≤ k ≤ b(ν − 1)/2c;
1 if ` = ν − 1 and j = ν/2 and ν is even; and
0 otherwise.

(58)

The matrix P is also unitary, and if we let

L =







diag(ν−1/2,
√

2/ν, . . . ,
√

2/ν) (ν odd)

diag(ν−1/2,
√

2/ν, . . . ,
√

2/ν, ν−1/2) (ν even)
(59)

it follows that (see Section 5 of Tesfaye, Anderson and Meerschaert (2011) for complete details)

fx = LPUx and f̂x = LPU x̂. (60)

Now suppose that the parameter vector x̂ has normal asymptotics

N1/2(x̂− x) ⇒ N (0,Σx), (61)

so that x̂ is an asymptotically unbiased estimator of x with asymptotic variance-covariance matrix
Σx. Let G = LPU so that fx = Gx and f̂x = Gx̂. Then it follows by a straightforward application
of the Continuous Mapping Theorem that

N1/2
[

f̂x − fx

]

⇒ N (0, Rx) (62)
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where
Rx = GΣxG̃

′ = LPUΣxŨ
′P̃ ′L. (63)

The goal of this section is to determine which real DFT harmonics are statistically significantly
different from zero. Then by zeroing out the insignificant terms, a more parsimonious PARMA
model can be obtained. The null hypothesis of the test is therefore H0 : fx = (cx0, 0, . . . , 0)

′, in
which case it follows from (54) that xt = cx0 is a constant function. If all the parameter vectors are
constant functions, then the PARMA process reduces to a stationary ARMA process, with mean
µ = µt for all 0 ≤ t ≤ ν − 1 and likewise for the remaining parameters. In this sense, the null
hypothesis is that the model is stationary.

Now (62) leads directly to the desired test for significance. Letting [M ]ij denote the ij entry of
a matrix M , it follows from (62) that

N1/2
[

[f̂x]i − [fx]i

]

⇒ N (0, [Rx]ii). (64)

Recalling that we index the vector fx as 0, 1, 2, . . . , ν − 1, for each cosine term i = 1, 2, 3, . . . , k, we
wish to test the null hypothesis H0 : [fx]2i−1 = cxi = 0 versus Ha : [fx]2i−1 = cxi 6= 0. For each of
these two-sided z-tests, the test statistic is

z2i−1 =
[f̂x]2i−1

√

[Rx]2i−1,2i−1/N
(65)

and then we reject the null hypothesis at level α = 0.5 when the test statistic |z2i−1| > 3.81. This
Bonferroni test uses the α′ = α/(ν − 1) tail quantile with ν = 365, so that P [Z > 3.81] = α′/2
when Z ∼ N (0, 1). For each sine term i = 1, 2, 3, . . . , k we wish to test the null hypothesis
H0 : [fx]2i = sxi = 0 versus Ha : [fx]2i = sxi 6= 0. The test statistic is

z2i =
[f̂x]2i

√

[Rx]2i,2i/N
(66)

and again we reject the null hypothesis at level α = 0.5 when the test statistic |z2i| > 3.81.
The Fourier-PARMA model for the real harmonics fx of the DFT of this parameter vector is

obtained by setting [f̂x]i = 0 whenever the null hypothesis is not rejected. This leaves us with a
sparse parameter vector f̂x′ where (hopefully) most of the vector entries are zero. Inverting the
DFT, we obtain the Fourier-PARMAmodel x′ = G−1f̂x′ , which is a smoothed version of the original
parameter estimates. Substituting all these p+ q+2 smoothed parameter vectors into the PARMA
model (1) yields the Fourier-PARMA model for this time series, a parsimonious alternative with
a greatly reduced number of parameters. For the autoregressive and moving average parameters,
this procedure for fitting a Fourier-PARMA model was laid out in Section 4 of Tesfaye, Anderson,
and Meerschaert (2011), and illustrated with an application to weekly river flows in Section 5 of
Anderson, Tesfaye and Meerschaert (2007). The Fourier-PARMA model for the seasonal mean and
standard deviation is the subject of the present paper, and together with our previous results, it
completes the construction of Fourier-PARMA modeling for high frequency data.

4.2 Periodic autoregression of order one

Here we describe the calculations needed to test for statistically significant real DFT harmonics in
a PARMAν(1, 0) model with Gaussian innovations. This is the model we will apply to the climate
data in the next section. We write this model in the form X̃t = Xt + µt where

Xt = φtXt−1 + εt

and σ−1
t εt are IID Gaussian. The three parameter vectors are µ, σ2, and φ. Section 3.2 in Tesfaye,

Anderson, and Meerschaert (2011) shows that ψ(1) = φ in the PMA(∞) representation (28) of this
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PAR(1) model. Corollary 1 in Anderson and Meerschaert (2005) shows that the variance-covariance
matrix for the ψ̂(1) vector from the innovations algorithm is I, the ν × ν identity matrix. Then
Σφ = I and Rφ = LPUIŨ ′P̃ ′L′ = L2 since both P and U are unitary, and L is a diagonal matrix.
Then:

Rφ = L2 =







diag(1/ν, 2/ν, . . . , 2/ν) for ν odd; and

diag(1/ν, 2/ν, . . . , 2/ν, 1/ν) for ν even.
(67)

Under the null hypothesis we have φt = φ and γt(h) = γ(h) for all integers t. Then for a PAR(1)
model, it is not hard to check using γt(1) = E[XtXt+1] = E[Xt(φt+1Xt + εt+1)] = φt+1γt(0) and so
forth that the autocovariance function is

γ(h) = φ|h|γ(0) for any integer h. (68)

Then using Theorem 2.3 along with (5), if i = j, we have

(Σµ)ii =
∞
∑

n=−∞

γi(nν) =
∞
∑

n=−∞

φ|nν|γ(0) = γ(0)

[

1 + r

1− r

]

(69)

where r = φν , using the formula for a geometric series (twice). If j > i we have

(Σµ)ij = φj−iγ(0) +

∞
∑

n=1

rnφj−iγ(0) +

∞
∑

n=1

rn−1φν+i−jγ(0) = γ(0)

[

φj−i + φν+i−j

1− r

]

. (70)

Since Σµ is a symmetric matrix, this completes the calculation.
To calculate Σσ2 , we apply Theorem 3.12. Since εt are iid Gaussian, the first term in the

formula (13) for (Wm1m2)i,` vanishes. The invertible representation (29) of the PAR(1) process is

εt =

∞
∑

j=0

πt(j)Xt−j = Xt − φXt−1

and hence we have πt(0) = 1, πt(1) = π(1) = −φ, and πt(j) = 0 for all j > 1. Then

si` = (W00)i` − φ(W01)i,`−1 − φ(W10)i−1,` + φ2(W11)i−1,`−1. (71)

From Proposition 2.5 we have that, for ` ≥ i, the first term (with m1 = m2 = 0) is

(W00)i` = 2

∞
∑

n=−∞

γi(nν + `− i)2 = 2

∞
∑

n=−∞

φ2|nν+`−i|γ(0)2

= 2φ2(`−i)γ(0)2
∞
∑

n=0

φ2nν + 2φ2(ν+i−`)γ(0)2
∞
∑

n=0

φ2nν (72)

= 2γ(0)2

[

φ2(`−i) + φ2(ν+i−`)

1− r2

]

.

The remaining calculations are similar. If ` = i, the second term (with m1 = 0 and m2 = 1) is

(W01)i,`−1 = 2γ(0)2
[

φ+ φ2ν−1

1− r2

]

. (73)

If ` > i we have

(W01)i,`−1 = 2γ(0)2
[

φ2`−2i−1

1− r2
+
φ2ν−2`+2i+1

1− r2

]

.
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If ` = i the second and third terms are the same, and we get

si` = 2γ(0)2

[

φ2(`−i) + φ2(ν+i−`)

1− r2

]

− 2φ× 2γ(0)2
[

φ+ φ2ν−1

1− r2

]

+ φ2γ(0)2
[

φ2 +
1 + 3r2

1− r2

]

. (74)

If ` > i we obtain

si` = 2γ(0)2

[

φ2(`−i) + φ2(ν+i−`)

1− r2

]

− 2γ(0)2φ

[

φ2`−2i−1

1− r2
+
φ2ν−2`+2i+1

1− r2

]

−2γ(0)2φ

[

φ2`−2i+1 + φ2ν−2`+2i−1

1− r2

]

+ 2γ(0)2φ2
[

φ2`−2i + φ2ν−2`+2i

1− r2

]

.

(75)

Since Σσ2 is symmetric, this completes the calculation.

5 High frequency climate data

A North American Regional Climate Change Assessment Program (NARCCAP) simulation used
a global circulation climate model called CCSM from the USA National Center for Atmospheric
Research (NCAR) in Boulder, Colorado, together with a detailed local climate model (CRCM)
from the Canadian Centre for Climate Modelling and Analysis. This produced a complete data set
(no missing values) of maximum daily surface air temperature (◦K) on a 140× 115 grid over much
of North America, for a period of N = 29 years, from 2041 through 2069. Each year has 365 days.
We consider a single (typical) site on this grid, located at −98.229 degrees west and 37.783 degrees
north. This is about 60 miles west of Wichita, Kansas.
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Figure 1: Upper left panel: The first ten years of daily maximum surface temperature data indicate
strong seasonal variations. Upper right panel: The autocorrelation function also has strong seasonal
variations. Lower left panel: The autocorrelation function of the model residuals are consistent with
white noise. Lower right panel: The model residuals fit a Gaussian distribution.
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The time series, X̃t, records the maximum daily surface temperature on the tth day, with t = 1
corresponding to January 1, 2041. The sample size is n = 29× 365 = 10, 585. The first 10 years of
data, shown in the upper left panel of Figure 1, exhibits significant seasonal variation. The right
panel shows the seasonal autocorrelation function

ρt(m) =
γt(m)

√

γt(0)γt+m(0)
(76)

at lag m = 1. Since this plot also varies significantly with the time of year, neither differencing
nor subtracting the seasonal mean will produce a second order stationary time series. Hence a
periodically stationary time series model is indicated. We will attempt to fit this data using a
PARMAν(p, q) with ν = 365 days per year, p = 1 autoregressive terms, and q = 0 moving average
terms in Equation (1). The calculations for this model were detailed at the end of Section 4. This
PAR365(1) model can be written in the simplified form

Xt = φtXt−1 + εt (77)

where Xt = X̃t − µt, and {εt} are independent with mean zero and standard deviation σt. The
innovations algorithm was used to compute the estimates σ̂2 and φ̂ = ψ̂(1) of the model parameters.
For N = 29 years of data, we found that k = 5 iterations of the innovations algorithm were sufficient,
since the parameter estimates settled down around this value. The standardized model residuals
(estimates of the noise series) were then computed using

ε̂t =
X̂t − φ̂tX̂t−1

σ̂t
(78)

where X̂t = X̃t − µ̂t and µ̂t is given by (3). The autocorrelation function of the model residuals,
shown in the lower left panel of Figure 1, indicates no serial correlation. Hence the PAR(1) model is
sufficient to capture the dependence structure in this time series data. The histogram in the lower
right panel of Figure 1 indicates that the residuals are reasonably well fit by a normal distribution.
Hence we consider the PAR365(1) model with normal innovations to be an adequate representation
of this time series data.

While the PAR365(1) model gives a reasonable fit to the data, the model has 3 × 365 = 1095
parameters [(µt, σ

2
t , φt) : 0 ≤ t < 365]. Next we will use the methods of this paper to obtain a

significant reduction in the number of parameters, leading to a parsimonious time series model for
this climate data. Table 1 shows the results of applying the tests from Section 4 to the climate
data. The test statistics (66) were computed using the diagonal entries of the covariance matrices
Σµ, Σσ2 , and Σφ The table shows all the harmonics of order r ≤ 4. The only significant harmonic
of order r > 4 was ĉφ26 = 0.055 with z = 3.992. Using only the statistically significant harmonics,
we arrive at the Fourier-PARMA model

µt = 284.132 − 13.304 cos

(

2πt

365

)

− 2.716 sin

(

2πt

365

)

+ 3.312 sin

(

4πt

365

)

σ2t = 10.742 + 1.522 sin

(

2πt

365

)

− 1.236 cos

(

4πt

365

)

+ 1.437 sin

(

4πt

365

)

+ 1.257 cos

(

6πt

365

)

φt = 0.761 − 0.164 cos

(

2πt

365

)

− 0.054 sin

(

2πt

365

)

+ 0.133 cos

(

4πt

365

)

+ 0.063 sin

(

4πt

365

)

+ 0.078 cos

(

6πt

365

)

+ 0.073 sin

(

6πt

365

)

+0.055 cos

(

52πt

365

)

.

Figure 2 shows the estimated parameter vectors [(µ̂t, σ̂
2
t , φ̂t) : 0 ≤ t < 365] together with the

smoothed Fourier model. The bottom right panel in Figure 2 shows the autocorrelation function of
the model residuals. The plot shows no evidence of serial dependence, and hence we conclude that
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Table 1: First line: Low order harmonics of the discrete Fourier transform for the sample mean,
variance, and φ-weights in the PAR365(1) model for the time series of daily high surface temperature
near Wichita, Kansas. Second line: Test statistic z in parentheses. The ∗ denotes statistically
significant harmonics, with test statistic |z| > 3.81.

DFT harmonics r
0 1 2 3 4

ĉµr 284.132* -13.304* 0.734 -0.056 -0.731
(1961.156) (-65.061) (3.609) (-0.280) (-3.678)

ŝµr -2.716* 3.312* -0.758 0.241
(-13.284) (16.293) (-3.767) (1.212)

0 1 2 3 4
ĉσ2r 10.742* 1.146 -1.236* 1.257* 0.183

(47.449) (3.598) (-3.859) (3.926) (0.571)
ŝσ2r 1.522* 1.437* 0.207 -0.558

(4.752) (4.487) (0.646) (-1.744)
0 1 2 3 4

ĉφr 0.761* -0.164* 0.133* 0.078* 0.014
(78.309) (-11.958) (9.706) (5.656) (1.036)

ŝφr -0.054* 0.063* 0.073* -0.033
(-3.909) ( 4.556) (5.340) ( -2.413)

*Fourier coefficients with test statistic |z| ≥ 3.81

this Fourier-PARMA model provides a reasonable, parsimonious fit to the climate data, with only
16 parameters. In our view, the estimated parameter vectors are “fitting the noise” in this data,
and the smoothed Fourier models uncover the basic structure.

Next we consider a reduced model, with a smaller number of parameters. We discard the terms
ĉσ22 = −1.236 (−3.859), ĉσ23 = 1.257 (3.926), ĉφ1 = −0.054 (−3.909) and ĉφ26 = 0.055 (3.992)
whose test statistic is barely over the cutoff of 3.81. The resulting plots for the mean and variance
appear unchanged. Figure 3 shows the resulting model of the φ-weights, and the autocorrelation
plot of the model residuals. The φ plot is smoother, since we zeroed out the high frequency term.
The autocorrelation plot is consistent with white noise, and hence we conclude that the reduced
model is adequate. Given the complexity of the NARCCAP model, we consider this modeling
exercise a success. Using a parsimonious Fourier-PARMA model with only 12 parameters, we are
able to capture all the essential features of this time series.

Remark 5.1 For a purely autoregressive PAR(p) model, it should also be possible to develop
Fourier-PARMA modeling using Yule-Walker estimates instead of the innovations algorithm. The
parameter estimates will be different, and the asymptotic variance-covariance matrices will change,
so the entire theory would have to be developed from first principles. One possible advantage of this
approach would be that the nuisance parameter k in the innovations algorithm need not be selected.
On the other hand, the innovations algorithm applies to a general PARMA(p, q) model.

An alternative approach to the Fourier-PARMA model developed in this paper considers the
z-scores as a stationary time series, e.g., see French et al. (2019). Compute the seasonal mean µ̂t
using (3), the seasonal variance γ̂t(0) using (27), and then consider the time series

Zt =
X̃t − µ̂t
γ̂t(0)

(79)

of z-scores. The autocorrelation function of this time series, shown in the left panel in Figure 4,
suggests long range dependence, which can be captured using an ARFIMA (fractionally integrated
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Figure 2: Parameters for the PAR365(1) model (77) of daily maximum surface temperature near
Wichita, Kansas: Upper left, the seasonal mean µt; upper right, the seasonal variance σ

2
t of the noise

term εt; lower left, the seasonal autoregressive parameters φt; and lower right, the autocorrelation
function of the model residuals using the discrete Fourier transform model of the parameters.

ARMA) model. Using the arfima package in R, a good fit is obtained using a fractionally inte-
grated white noise with fractional differencing parameter d = 0.495, indicating a strong long range
dependence. The spectral density of the z-scores is shown in the right panel of Figure 4. It appears
to follow a straight line with slope −2d on a log-log plot, consistent with the long range dependent
ARFIMA(0, d, 0) model. A different model using tempered fractional differencing is discussed in
Example 4.5 of Sabzikar, McLeod, and Meerschaert (2019). In our experience, the autocorrelation
function of periodically stationary PARMA time series can often mimic long range dependence.
Therefore, when a time series with strong seasonal variations shows the hallmarks of long range
dependence, it may also be worth while to consider an alternative PARMA model.

Remark 5.2 Another possible source of nonstationarity in this NARCCAP time series is a warm-
ing trend. We tested for this by regressing the data against the time variable. The slope term
0.000130 is statistically significant (p = 0.000) and represents a mean temperature change of 1.4
◦K over 29 years. Using the regression equation temp = 283.442 + 0.000130t, we repeated the
Fourier-PARMA modeling using y = 283.442 + residual. The resulting model has the same nonzero
harmonics, and the coefficients are close. For example, the coefficients for the mean are 283.442,
-13.304, -2.701, and 3.320.

6 Data Availability Statement

The data used in Section 4 are freely available at http://www.narccap.ucar.edu/ from the North
American Regional Climate Change Assessment Program (NARCCAP). The data can also be
downloaded in compressed R format from https://data.mendeley.com/datasets/jz553h7ytw/1,
using array indices c(68, 34), or from the authors.
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Figure 3: Left panel: reduced model for the seasonal autoregressive parameter φt. Right panel:
autocorrelation function of the model residuals.
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Figure 4: Left panel: The autocorrelation function of the z-scores suggests long range dependence.
Right panel: The corresponding power spectrum follows a straight line on a log-log plot, providing
further evidence of long range dependence.
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