1. Suppose that X is a discrete random variable with
 $P[X = 0] = \frac{1}{3}, P[X = 1] = \frac{2\theta}{3}, P[X = 2] = \frac{1 - \theta}{2}$ and $P[X = 3] = \frac{1 - \theta}{2}$.
 Five independent observations of X are made:
 $x_1 = 1, x_2 = 0, x_3 = 3, x_4 = 2, x_5 = 0$.
 Find the maximum likelihood estimate of θ.

2. Suppose that the data (X_1, \ldots, X_n) are i.i.d. with
 X. The density function of X is
 $f(x|\theta) = e^{-x - 2\theta}, x \geq 2\theta$ and $f(x|\theta) = 0$, otherwise.
 Find the maximum likelihood estimator of θ.

3. Let X_1, \ldots, X_n i.i.d. $N(\mu, \sigma^2)$, where $N(\mu, \sigma^2)$
 denotes the normal distribution with mean μ
 and Variance $= \sigma^2$. Derive the Cramér–Rao
 lower bound of σ^2.

 From text book:

 Section 8.10

 (Question numbers: 50, 51, 52, 73)