Homework for 1/13 Due 1/22

1. [§5-23] An irregularly shaped object of unknown area A is located in the unit square $0 \leq x \leq 1, 0 \leq y \leq 1$. Consider a random point distributed uniformly over the square; let $Z = 1$ if the point lies inside the object and $Z = 0$ otherwise. Show that $E[Z] = A$. How could A be estimated from a sequence of n independent points uniformly distributed on the square?

(*Hint:* Imagine this is actually a coin tossing experiment with unknown probability of getting Head, that is, the coin land on H if the point is inside the object and on T otherwise. How will you estimate the probability of getting H?)

2. [§5-26] Suppose that a basketball player can score on a particular shot with probability .3. Use the central limit theorem to find the approximate distribution of S, the number of successes out of 25 independent shots. Find the approximate probabilities that S is less than or equal to 5, 7, 9, and 11 and compare these to the exact probabilities. (*Hint:* Let X_1, X_2, \ldots, X_{25} be the indicator random variables of the 25 shots, that is, $X_i = 1$ if the player scores on the ith shot and $X_i = 0$ otherwise.)