STT 459: Construction & Evaluation of Actuarial Models

Ashoke Kumar Sinha
Frequency and severity with coverage modifications

- Frequency and Severity
- Various type of coverage modifications
- Policies with deductible

Ordinary deductible
Franchise deductible
Policy Limits
Coinsurance
Deductibles and Claim Frequency

Frequency and severity with coverage modifications
In actuary we are mostly interested in

- **Frequency**: how frequently loss event occurs,
- **Severity**: the size of the loss events.

Since both of the above are non-deterministic and non-negative in nature, we model them using non-negative random variables.
In actuary we are mostly interested in

- **Frequency**: how frequently loss event occurs,
- **Severity**: the size of the loss events.

Since both of the above are non-deterministic and non-negative in nature, we model them using non-negative random variables.

Frequencies are modeled using suitable non-negative discrete rv’s, and the corresponding probability distributions are known in actuarial literature as *frequency distributions*.

The severities, based on the type of coverage, are modeled using either continuous or mixed rv’s, and the corresponding probability distributions are known as *severity distributions*.
Various types of coverage modifications

Insurance companies sell various types of policies. Here we shall discuss properties of the following:

- policies with deductible
 - ordinary deductible,
 - franchise deductible,
Various type of coverage modifications

Insurance companies sell various types of policies. Here we shall discuss properties of the following:

- policies with deductible
 - ordinary deductible,
 - franchise deductible,
- policy limit,
Various type of coverage modifications

Insurance companies sell various types of policies. Here we shall discuss properties of the following:

- policies with deductible
 - ordinary deductible,
 - franchise deductible,
- policy limit,
- coinsurance with deductibles and limits.
Various type of coverage modifications

Insurance companies sell various types of policies. Here we shall discuss properties of the following:

- policies with deductible
 - ordinary deductible,
 - franchise deductible,
- policy limit,
- coinsurance with deductibles and limits.

We shall also consider the effect of inflation on payment. Finally the effect of deductibles on claim frequency will be discussed.
Various type of coverage modifications

Insurance companies sell various types of policies. Here we shall discuss properties of the following:

- policies with deductible
 - ordinary deductible,
 - franchise deductible,
- policy limit,
- coinsurance with deductibles and limits.

We shall also consider the effect of inflation on payment. Finally the effect of deductibles on claim frequency will be discussed.

Relevant chapters from the textbook: Ch 8 and 3.
Policies with deductible

Suppose,

- \(X \): severity (a continuous non-negative rv with cdf \(F_X \)),
- \(d \): deductible amount where \(P(X > d) > 0 \).

In ordinary deductible case, the insurance company will pay nothing for any damage up to amount \(d \), and will pay \((X - d) \) if the damage is more than \(d \).
Suppose,

- X: severity (a continuous non-negative rv with cdf F_X),
- d: deductible amount where $P(X > d) > 0$.

In **ordinary deductible** case, the insurance company will pay nothing for any damage up to amount d, and will pay $(X - d)$ if the damage is more than d.

In **franchise deductible** case, the insurance company will pay nothing for any damage up to amount d, and will pay X if the damage is more than d.
Suppose,

- \(X \) : severity (a continuous non-negative rv with cdf \(F_X \)),
- \(d \) : deductible amount where \(P(X > d) > 0 \).

In **ordinary deductible** case, the insurance company will pay nothing for any damage up to amount \(d \), and will pay \((X - d)\) if the damage is more than \(d \).

In **franchise deductible** case, the insurance company will pay nothing for any damage up to amount \(d \), and will pay \(X \) if the damage is more than \(d \).

In both deductible situations, we need to distinguish between payment per-loss \((Y^L)\) and payment per-payment \((Y^P)\).
Policies with deductible

Suppose,

- X: severity (a continuous non-negative rv with cdf F_X),
- d: deductible amount where $P(X > d) > 0$.

In **ordinary deductible** case, the insurance company will pay nothing for any damage up to amount d, and will pay $(X - d)$ if the damage is more than d.

In **franchise deductible** case, the insurance company will pay nothing for any damage up to amount d, and will pay X if the damage is more than d.

In both deductible situations, we need to distinguish between payment per-loss (Y^L) and payment per-payment (Y^P).

N.B.: Since severity and payment are all non-negative in values, we shall consider their cdf, pdf, survival function etc. only for non-negative values.
Ordinary deductible

- Y^L in ordinary deductible
- Moments of Y^L
- Loss elimination ratio
- Payment per-payment variable
- cdf, pdf, survival and hazard functions of Y^P
- Moments of Y^P
- Effect of inflation

Franchise deductible

Policy Limits

Coinsurance

Deductibles and Claim Frequency
Payment per-loss \((Y^L)\) in ordinary deductible

In ordinary deductible, the **payment per-loss** variable is defined as

\[
Y^L := (X - d)_+ = \begin{cases}
0, & \text{if } X \leq d, \\
X - d, & \text{if } X > d.
\end{cases}
\]
In ordinary deductible, the **payment per-loss** variable is defined as

\[
Y^L := (X - d)_+ = \begin{cases}
0, & \text{if } X \leq d, \\
X - d, & \text{if } X > d.
\end{cases}
\]

cdf:

\[
F_{Y^L}(y) = \begin{cases}
F_X(d), & \text{if } y = 0, \\
F_X(y + d), & \text{if } y > 0.
\end{cases}
\]
Payment per-loss (Y^L) in ordinary deductible

In ordinary deductible, the payment per-loss variable is defined as

$$Y^L := (X - d)_+ = \begin{cases} 0, & \text{if } X \leq d, \\ X - d, & \text{if } X > d. \end{cases}$$

\[\text{cdf:} \]

$$F_{Y^L}(y) = \begin{cases} F_X(d), & \text{if } y = 0, \\ F_X(y + d), & \text{if } y > 0. \end{cases}$$

\[\text{Survival function:} \]

$$S_{Y^L}(y) = \begin{cases} S_X(d), & y = 0, \\ S_X(y + d), & y > 0. \end{cases}$$
Payment per-loss (Y^L) in ordinary deductible

In ordinary deductible, the **payment per-loss** variable is defined as

$$Y^L := (X - d)_+ = \begin{cases} 0, & \text{if } X \leq d, \\ X - d, & \text{if } X > d. \end{cases}$$

<table>
<thead>
<tr>
<th>cdf:</th>
<th>Survival function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{Y^L}(y) = \begin{cases} F_X(d), & \text{if } y = 0, \ F_X(y + d), & \text{if } y > 0. \end{cases}$</td>
<td>$S_{Y^L}(y) = \begin{cases} S_X(d), & \text{if } y = 0, \ S_X(y + d), & \text{if } y > 0. \end{cases}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pdf:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{Y^L}(y) = \begin{cases} F_X(d), & \text{if } y = 0, \ f_X(y + d), & \text{if } y > 0. \end{cases}$</td>
</tr>
</tbody>
</table>
Payment per-loss \((Y^L)\) in ordinary deductible

In ordinary deductible, the **payment per-loss** variable is defined as

\[
Y^L := (X - d)_+ = \begin{cases}
0, & \text{if } X \leq d, \\
X - d, & \text{if } X > d.
\end{cases}
\]

<table>
<thead>
<tr>
<th>cdf:</th>
<th>Survival function:</th>
</tr>
</thead>
</table>
| \(F_{Y^L}(y) = \begin{cases}
F_X(d), & \text{if } y = 0, \\
F_X(y + d), & \text{if } y > 0.
\end{cases}\) |
| \(S_{Y^L}(y) = \begin{cases}
S_X(d), & y = 0, \\
S_X(y + d), & y > 0.
\end{cases}\) |

<table>
<thead>
<tr>
<th>pdf:</th>
<th>Hazard function:</th>
</tr>
</thead>
</table>
| \(f_{Y^L}(y) = \begin{cases}
F_X(d), & \text{if } y = 0, \\
f_X(y + d), & \text{if } y > 0.
\end{cases}\) |
| \(h_{Y^L}(y) = \begin{cases}
\text{undefined}, & y = 0, \\
h_X(y + d), & y > 0.
\end{cases}\) |

Note that at 0 there is a probability mass of \(F_X(d)\).
Moments of Y^L

The k^{th} raw moment of Y^L is

$$\mathbb{E}[(Y^L)^k] = \mathbb{E}[(X - d)^k_+] = \int_d^\infty (x - d)^k f_X(x) \, dx.$$
Moments of Y^L

The k^{th} raw moment of Y^L is

$$\mathbb{E}[(Y^L)^k] = \mathbb{E}[(X - d)_+] = \int_d^\infty (x - d)^k f_X(x) dx.$$

In particular,

$$\mathbb{E}(Y^L) = \mathbb{E}[(X - d)_+] = \int_d^\infty (x - d) f_X(x) dx = \int_d^\infty S_X(x) dx = \int_0^\infty S_X(x + d) dx,$$
Moments of Y^L

The k^{th} raw moment of Y^L is

$$\mathbb{E}[(Y^L)^k] = \mathbb{E}[(X - d)_+] = \int_d^\infty (x - d)^k f_X(x) \, dx.$$

In particular,

$$\mathbb{E}(Y^L) = \mathbb{E}[(X - d)_+] = \int_d^\infty (x - d) f_X(x) \, dx = \int_d^\infty S_X(x) \, dx = \int_0^\infty S_X(x + d) \, dx,$$

Notice that

$$X = (X - d)_+ + (X \wedge d), \text{ where } X \wedge d = \min\{X, d\}.$$
The k^{th} raw moment of Y^L is

$$\mathbb{E}[(Y^L)^k] = \mathbb{E}[(X - d)^k] = \int_d^\infty (x - d)^k f_X(x)dx.$$

In particular,

$$\mathbb{E}(Y^L) = \mathbb{E}[(X - d)_+] = \int_d^\infty (x - d) f_X(x)dx \quad = \quad \int_d^\infty S_X(x)dx \quad = \quad \int_0^\infty S_X(x + d)dx,$$

Notice that

$$X = (X - d)_+ + (X \wedge d), \quad \text{where} \quad X \wedge d = \min\{X, d\}.$$

$$\Rightarrow \quad \mathbb{E}(Y^L) = \mathbb{E}[(X - d)_+] = \mathbb{E}(X) - \mathbb{E}(X \wedge d).$$
The **loss elimination ratio** is the ratio of the decrease in the expected payment with an ordinary deductible to the expected payment without the deductible.

\[
\text{Loss elimination ratio} = \frac{\mathbb{E}(X) - \mathbb{E}[(X - d)_+]}{\mathbb{E}(X)} = \frac{\mathbb{E}(X \land d)}{\mathbb{E}(X)}.
\]

Loss elimination ratio is indicative of the percentage decrease in expected cost by introducing deductible, with respect to per unit expected cost without deductible.
In ordinary deductible, the **payment per-payment** variable is defined as

\[Y^P := \begin{cases} \text{undefined,} & \text{if } X \leq d, \\ X - d, & \text{if } X > d. \end{cases} \]

So we do not observe \(Y^P \) if \(X \leq d \). However, if \(X > d \), then a payment of \(X - d \) is made.

Thus \(Y^P \) represents the amount paid given the information that a payment is made.
In ordinary deductible, the payment per-payment variable is defined as

\[Y^P := \begin{cases}
\text{undefined}, & \text{if } X \leq d, \\
X - d, & \text{if } X > d.
\end{cases} \]

So we do not observe \(Y^P \) if \(X \leq d \). However, if \(X > d \), then a payment of \(X - d \) is made.

Thus \(Y^P \) represents the amount paid given the information that a payment is made.

On the other hand, \(Y^L \) is the amount paid per-loss, which is 0 if \(X \leq d \), and \((X - d)\) if \(X > d \).

Notice, \(Y^P = Y^L | Y^L > 0 \).
For $y > 0$, the cdf:

$$F_{YP}(y) = \frac{F_X(y + d) - F_X(d)}{1 - F_X(d)} = \frac{F_X(y + d) - F_X(d)}{S_X(d)},$$
For $y > 0$, the cdf:

$$F_{YP}(y) = \frac{F_X(y + d) - F_X(d)}{1 - F_X(d)} = \frac{F_X(y + d) - F_X(d)}{S_X(d)},$$

and survival function:

$$S_{YP}(y) = \frac{1 - F_X(y + d)}{1 - F_X(d)} = \frac{S_X(y + d)}{S_X(d)}.$$

The pdf:

$$f_{YP}(y) = \frac{f_X(y + d)}{S_X(d)}.$$
For \(y > 0 \), the cdf:

\[
F_{Y^P}(y) = \frac{F_X(y + d) - F_X(d)}{1 - F_X(d)} = \frac{F_X(y + d) - F_X(d)}{S_X(d)},
\]

and survival function:

\[
S_{Y^P}(y) = \frac{1 - F_X(y + d)}{1 - F_X(d)} = \frac{S_X(y + d)}{S_X(d)}.
\]

The pdf:

\[
f_{Y^P}(y) = \frac{f_X(y + d)}{S_X(d)}.
\]

Hazard function:

\[
h_{Y^P}(y) = h_X(y + d) = h_{Y^L}(y).
\]
Moments of Y^P

The k^{th} raw moment of Y^P is

$$
\mathbb{E}[(Y^P)^k] = \frac{\int_{d}^{\infty} (x - d)^k f_X(x) \, dx}{S_X(d)}.
$$
Moments of Y^P

The k^{th} raw moment of Y^P is

$$E[(Y^P)^k] = \frac{\int_0^{\infty} (x - d)^k f_X(x) dx}{S_X(d)}.$$

In particular, we define mean excess loss function

$$e_X(d) = E(Y^P) = \frac{\int_0^{\infty} S_X(x) dx}{S_X(d)} = \frac{\int_0^{\infty} S_X(x + d) dx}{S_X(d)},$$
Moments of Y^P

The k^{th} raw moment of Y^P is

$$
\mathbb{E}[(Y^P)^k] = \frac{\int_{d}^{\infty} (x - d)^k f_X(x)dx}{S_X(d)}.
$$

In particular, we define mean excess loss function

$$
e_X(d) = \mathbb{E}(Y^P) = \frac{\int_{d}^{\infty} S_X(x)dx}{S_X(d)} = \frac{\int_{0}^{\infty} S_X(x + d)dx}{S_X(d)},
$$

Note:

$$
e_X(d) = \frac{\mathbb{E}(Y^L)}{S_X(d)} = \frac{\mathbb{E}(X) - \mathbb{E}(X \wedge d)}{S_X(d)}.
$$
Moments of Y^P

The k^{th} raw moment of Y^P is

$$E[(Y^P)^k] = \frac{\int_d^{\infty} (x-d)^k f_X(x) dx}{S_X(d)}.$$

In particular, we define mean excess loss function

$$e_X(d) = E(Y^P) = \frac{\int_d^{\infty} S_X(x) dx}{S_X(d)} = \frac{\int_0^{\infty} S_X(x+d) dx}{S_X(d)}.$$

Note:

- $e_X(d) = \frac{E(Y^L)}{S_X(d)} = \frac{E(X) - E(X \land d)}{S_X(d)}.$
- If $P(X > 0) = 1$, i.e. X is positive almost surely, then $e_X(0) = E(X).$
Effect of inflation

Consider an ordinary deductible of d, and a uniform inflation $1 + r$.

Define, $d^* = \frac{d}{1 + r}$.

The effect of inflation on $\mathbb{E}(Y^L)$ is:

$$(1 + r)\{\mathbb{E}(X) - \mathbb{E}(X \wedge d^*)\} = (1 + r)\mathbb{E}[(X - d^*)_+] .$$
Consider an ordinary deductible of d, and a uniform inflation $1 + r$.

Define, $d^* = \frac{d}{1 + r}$.

The effect of inflation on $\mathbb{E}(Y^L)$ is:

$$(1 + r)\{\mathbb{E}(X) - \mathbb{E}(X \wedge d^*)\} = (1 + r)\mathbb{E}[(X - d^*)_+]$$.

If $F_X(d^*) < 1$, the effect of inflation on $\mathbb{E}(Y^P)$ is:

$$\frac{(1 + r)\{\mathbb{E}(X) - \mathbb{E}(X \wedge d^*)\}}{S_X(d^*)} = \frac{(1 + r)\mathbb{E}[(X - d^*)_+]}{S_X(d^*)}.$$
Franchise deductible

Frequency and severity with coverage modifications

Ordinary deductible

Franchise deductible

- Y^L in franchise deductible
- $\mathbb{E}(Y^L)$
- Payment per-payment variable
- $\mathbb{E}(Y^P)$

Policy Limits

Coinsurance

Deductibles and Claim Frequency

Franchise deductible
Payment per-loss (Y^L) in franchise deductible

In franchise deductible, the payment per-loss variable is defined as

$$Y^L := \begin{cases} 0, & \text{if } X \leq d, \\ X, & \text{if } X > d. \end{cases}$$
Payment per-loss (Y^L) in franchise deductible

In franchise deductible, the **payment per-loss** variable is defined as

\[
Y^L := \begin{cases}
0, & \text{if } X \leq d, \\
X, & \text{if } X > d.
\end{cases}
\]

<table>
<thead>
<tr>
<th>cdf:</th>
<th>Survival function:</th>
</tr>
</thead>
</table>
| \(F_{Y^L}(y) = \begin{cases}
F_X(d), & \text{if } 0 \leq y \leq d, \\
F_X(y), & \text{if } y > d.
\end{cases} \) | \(S_{Y^L}(y) = \begin{cases}
S_X(d), & 0 \leq y \leq d, \\
S_X(y), & y > d.
\end{cases} \) |

<table>
<thead>
<tr>
<th>pdf:</th>
<th>Hazard function:</th>
</tr>
</thead>
</table>
| \(f_{Y^L}(y) = \begin{cases}
F_X(d), & \text{if } y = 0, \\
0, & \text{if } 0 < y < d, \\
f_X(y), & \text{if } y > d.
\end{cases} \) | \(h_{Y^L}(y) = \begin{cases}
0, & 0 < y < d, \\
h_X(y), & y > d.
\end{cases} \) |

Note that at 0 there is a probability mass of \(F_X(d)\).
\[\mathbb{E}(Y^L) = \int_d^\infty x f_X(x) \, dx \]
\[= \int_d^\infty S_X(x) \, dx + dS_X(d) \]
\[= \int_0^\infty S_X(x + d) \, dx + dS_X(d). \]

Notice that, \(\int_d^\infty S_X(x) \, dx \) is the expected cost per-loss in ordinary deductible, which is also equal to
\[\mathbb{E}(X) - \mathbb{E}(X \wedge d). \]

Hence,
\[\mathbb{E}(Y^L) = \mathbb{E}(X) - \mathbb{E}(X \wedge d) + dS_X(d). \]
In franchise deductible, the **payment per-payment** variable is defined as

\[
Y^P := \begin{cases}
\text{undefined,} & \text{if } X \leq d, \\
X, & \text{if } X > d,
\end{cases}
\]

i.e. \(Y^P = Y^L | Y^L > 0 \).
Payment per-payment variable

In franchise deductible, the **payment per-payment** variable is defined as

\[
Y^P := \begin{cases}
 \text{undefined,} & \text{if } X \leq d, \\
 X, & \text{if } X > d,
\end{cases}
\]

i.e. \(Y^P = Y^L | Y^L > 0 \).

<table>
<thead>
<tr>
<th>cdf: (F_{Y^P}(y) =)</th>
<th>Survival function: (S_{Y^P}(y) =)</th>
</tr>
</thead>
</table>
| \[
\begin{align*}
F_{Y^P}(y) &= \begin{cases}
 0, & \text{if } 0 \leq y \leq d, \\
 \frac{F_X(y) - F_X(d)}{S_X(d)}, & \text{if } y > d.
\end{cases}
\end{align*}
\] | \[
\begin{align*}
S_{Y^P}(y) &= \begin{cases}
 1, & \text{if } 0 \leq y \leq d, \\
 \frac{S_X(y)}{S_X(d)}, & \text{if } y > d.
\end{cases}
\end{align*}
\] |

<table>
<thead>
<tr>
<th>pdf: (f_{Y^P}(y) =)</th>
<th>Hazard function: (h_{Y^P}(y) =)</th>
</tr>
</thead>
</table>
| \[
\begin{align*}
 f_{Y^P}(y) &= \frac{f_X(y)}{S_X(d)}, \quad y > d.
\end{align*}
\] | \[
\begin{align*}
 h_{Y^P}(y) &= \begin{cases}
 0, & \text{if } 0 < y < d, \\
 h_X(y), & \text{if } y > d.
 \end{cases}
\end{align*}
\] |
\[\mathbb{E}(Y^P) = \frac{\int_{d}^{\infty} x f_X(x) \, dx}{S_X(d)} \]

\[= \frac{\int_{d}^{\infty} S_X(x) \, dx}{S_X(d)} + d \]

\[= \frac{\int_{0}^{\infty} S_X(x + d) \, dx}{S_X(d)} + d. \]
\[\mathbb{E}(Y^P) \]

\[\mathbb{E}(Y^P) = \int_{d}^{\infty} \frac{x f_X(x) dx}{S_X(d)} \]

\[= \int_{d}^{\infty} \frac{S_X(x) dx}{S_X(d)} + d \]

\[= \int_{0}^{\infty} \frac{S_X(x + d) dx}{S_X(d)} + d. \]

Since \(E(Y^P) = \frac{\mathbb{E}(Y^L)}{S_X(d)} \), an alternative expression is:

\[\mathbb{E}(Y^P) = \frac{\mathbb{E}(X) - \mathbb{E}(X \wedge d)}{S_X(d)} + d. \]
Policy Limits

Frequency and severity with coverage modifications

Ordinary deductible

Franchise deductible

Policy Limits
- Policy limits

Coinsurance

Deductibles and claim frequency
In a **policy limit** coverage with limit u, the insurance pays the full amount if the loss is below u, but for losses above u the insurance only pays u. Thus in policy limit the payment (per-loss) is: $Y = X \wedge u = \min\{X, u\}$.
In a **policy limit** coverage with limit u, the insurance pays the full amount if the loss is below u, but for losses above u the insurance only pays u. Thus in policy limit the payment (per-loss) is: $Y = X \wedge u = \min\{X, u\}$.

CDF:

$F_Y(y) = \begin{cases} F_X(y), & \text{if } y < u, \\ 1, & \text{if } y \geq u. \end{cases}$

PDF:

$f_Y(y) = \begin{cases} f_X(y), & y < u, \\ 1 - F_X(u), & y = u. \end{cases}$

Policy limits

In a **policy limit** coverage with limit \(u \), the insurance pays the full amount if the loss is below \(u \), but for losses above \(u \) the insurance only pays \(u \). Thus in policy limit the payment (per-loss) is:

\[
Y = X \wedge u = \min\{X, u\}.
\]

CDF

\[
F_Y(y) = \begin{cases}
F_X(y), & \text{if } y < u, \\
1, & \text{if } y \geq u.
\end{cases}
\]

PDF

\[
f_Y(y) = \begin{cases}
f_X(y), & y < u, \\
1 - F_X(u), & y = u.
\end{cases}
\]

\[
\mathbb{E}[(X \wedge u)^k] = \int_0^u x^k f(x)dx + u^k[1 - F_X(u)].
\]
Policy limits

In a **policy limit** coverage with limit \(u \), the insurance pays the full amount if the loss is below \(u \), but for losses above \(u \) the insurance only pays \(u \). Thus in policy limit the payment (per-loss) is:

\[
Y = X \land u = \min\{X, u\}.
\]

cdf:

\[
F_Y(y) = \begin{cases}
F_X(y), & \text{if } y < u, \\
1, & \text{if } y \geq u.
\end{cases}
\]

pdf:

\[
f_Y(y) = \begin{cases}
f_X(y), & y < u, \\
1 - F_X(u), & y = u.
\end{cases}
\]

\[
\mathbb{E}[(X \land u)^k] = \int_0^u x^k f(x)dx + u^k[1 - F_X(u)].
\]

After uniform inflation of \(1 + r \), the expected cost is

\[
(1 + r)\mathbb{E}(X \land u^*) = \frac{u}{1 + r}.
\]
Frequency and severity with coverage modifications

Ordinary deductible

Franchise deductible

Policy Limits

Coinsurance
- Coinsurance with deductibles and limits
- Expected costs

Deductibles and Claim Frequency
In **coinsurance**, the insurance company will pay only a fraction α of the total loss, and the policyholder pays the rest. If coinsurance is the only modification to the coverage, then the payment per-loss variable is αX.
In **coinsurance**, the insurance company will pay only a fraction α of the total loss, and the policyholder pays the rest. If coinsurance is the only modification to the coverage, then the payment per-loss variable is αX.

However we consider here a coinsurance with deductible and limit, and the coinsurance is affected by a uniform inflation.

In this case the the quantities are applied in a particular order: the maximum amount will be paid is u (**maximum covered loss**),
In **coinsurance**, the insurance company will pay only a fraction \(\alpha \) of the total loss, and the policyholder pays the rest. If coinsurance is the only modification to the coverage, then the payment per-loss variable is \(\alpha X \).

However we consider here a coinsurance with deductible and limit, and the coinsurance is affected by a uniform inflation.

In this case the the quantities are applied in a particular order: the maximum amount will be paid is \(u \) (*maximum covered loss*), but that is also subject to deductible \(d \), \(d < u \);
In **coinsurance**, the insurance company will pay only a fraction α of the total loss, and the policyholder pays the rest. If coinsurance is the only modification to the coverage, then the payment per-loss variable is αX.

However we consider here a coinsurance with deductible and limit, and the coinsurance is affected by a uniform inflation.

In this case the the quantities are applied in a particular order: the maximum amount will be paid is u (*maximum covered loss*), but that is also subject to deductible d, $d < u$; however both d and u are adjusted by the uniform inflation of $1 + r$;
In coinsurance, the insurance company will pay only a fraction α of the total loss, and the policyholder pays the rest. If coinsurance is the only modification to the coverage, then the payment per-loss variable is αX.

However we consider here a coinsurance with deductible and limit, and the coinsurance is affected by a uniform inflation.

In this case the the quantities are applied in a particular order: the maximum amount will be paid is u (maximum covered loss), but that is also subject to deductible d, $d < u$; however both d and u are adjusted by the uniform inflation of $1 + r$; the coinsurance is applied last. Then payment per-loss variable is:

$$Y^L = \begin{cases}
0, & \text{if } X < d^*, \\
\alpha[(1 + r)X - d], & \text{if } d^* \leq X < u^*, \\
\alpha(u - d), & \text{if } X \geq u^*,
\end{cases}$$

where $d^* = d/(1 + r)$, and $u^* = u/(1 + r)$.
Expected costs

In this case,

\[E(Y^L) = \alpha (1 + r) [E(X \land u^*) - E(X \land d^*)]. \]
Expected costs

In this case,

\[\mathbb{E}(Y^L) = \alpha(1 + r)[\mathbb{E}(X \wedge u^*) - \mathbb{E}(X \wedge d^*)]. \]

\[\mathbb{E}[(Y^L)^2] = \alpha^2(1+r)^2\{\mathbb{E}[(X \wedge u^*)^2] - \mathbb{E}[(X \wedge d^*)^2] - 2d^* [\mathbb{E}(X \wedge u^*) - \mathbb{E}(X \wedge d^*)]\}. \]
Expected costs

In this case,

\[
\mathbb{E}(Y^L) = \alpha (1 + r) [\mathbb{E}(X \wedge u^*) - \mathbb{E}(X \wedge d^*)].
\]

\[
\mathbb{E}[(Y^L)^2] = \alpha^2 (1+r)^2 \{ \mathbb{E}[(X \wedge u^*)^2] - \mathbb{E}[(X \wedge d^*)^2] - 2d^* [\mathbb{E}(X \wedge u^*) - \mathbb{E}(X \wedge d^*)] \}.
\]

The payment per-payment variable is undefined if \(X < d^* \).

For \(X \geq d^* \), we define \(Y^P = Y^L | Y^L > 0 \).
Expected costs

In this case,

\[\mathbb{E}(Y^L) = \alpha(1 + r)[\mathbb{E}(X \wedge u^*) - \mathbb{E}(X \wedge d^*)]. \]

\[\mathbb{E}[(Y^L)^2] = \alpha^2(1+r)^2\{\mathbb{E}[(X\wedge u^*)^2] - \mathbb{E}[(X\wedge d^*)^2] - 2d^*[\mathbb{E}(X\wedge u^*) - \mathbb{E}(X\wedge d^*)]\}. \]

The payment per-payment variable is undefined if \(X < d^* \).

For \(X \geq d^* \), we define \(Y^P = Y^L | Y^L > 0 \).

If \(F_X(d^*) < 1 \), then

\[\mathbb{E}(Y^P) = \frac{\mathbb{E}(Y^L)}{S_X(d^*)}, \quad \text{and} \quad \mathbb{E}[(Y^P)^2] = \frac{\mathbb{E}[(Y^L)^2]}{S_X(d^*)}. \]
<table>
<thead>
<tr>
<th>Frequency and severity with coverage modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary deductible</td>
</tr>
<tr>
<td>Franchise deductible</td>
</tr>
<tr>
<td>Policy Limits</td>
</tr>
<tr>
<td>Coinurance</td>
</tr>
</tbody>
</table>

Deductibles and Claim Frequency

- Impact of deductibles on claim frequency
Impact of deductibles on claim frequency

Impact of deductibles on claim frequency

To be written later.