HW due 1-10-14 should be submitted electronically by Monday if you were late arriving to E.L.

The assignment and associated links to readings are found in the 481 syllabus at

http://www.stt.msu.edu/Academics/ClassPages/Default.aspx

Future work must be submitted in class and on time.

Your assignment due 1-17-14 now consists of two parts:

a. The assignment for 1-17-14 found in the syllabus.

b. Consult the passage of Ioannidis' paper entitled *Modeling the framework for false positive findings* found on pp.1-2.

Submit your proof of a condition for PPV > 0.5 involving alpha, beta, and NO (see below), where PPV is the conditional probability

\[
PPV = P(\text{hypothesis is true} \mid \text{hypothesis is judged true by a test with alpha, beta specified})
\]

Do it for the case of a hypothesis selected with equal probability from a pool of 1 correct hypothesis and NO (i.e. Nzero) incorrect hypotheses. For this setup the prior probability of choosing to test the single correct hypothesis is \(P(\text{select correct hypothesis}) = \frac{1}{N0+1}\).

Then the probability \(P(\text{select correct hyp to test and it is judged correct by the test})\) is given by

\[
\frac{1}{(N0 + 1)} \times P(\text{test judges the correct hypothesis is correct})
\]

Likewise, the probability \(P(\text{select an incorrect hyp and test judges it correct})\) is given by

\[
\frac{NO}{(N0+1)} \times P(\text{test judges the incorrect hyp is correct})
\]

Note. The paper defines \(R = \frac{\# \text{correct hypotheses}}{\# \text{incorrect hypotheses}}\) and claims that

\[
P(\text{select correct hypothesis}) = R \times (R+1).
\]

Verify you need not further employ \(R\) although you may chose to.

Note. Comment on whether the prior probability seems reasonable to you and why you feel the way you do. Is there a way to deal with small prior probability of a correct hypothesis being chosen to test without assuming a uniform selection?