Homework 2 Due 1/28/15

1. [§5-26] Suppose that a basketball player can score on a particular shot with probability .3. Use the central limit theorem to find the approximate distribution of S, the number of successes out of 25 independent shots. Find the approximate probabilities that S is less than or equal to 5, 7, 9, and 11 and compare these to the exact probabilities. (*Hint: Let X_1, X_2, \ldots, X_{25} be the indicator random variables of the 25 shots, that is, $X_i = 1$ if the player scores on the ith shot and $X_i = 0$ otherwise.*)

2. Assume $X \sim N(0, 1)$.
 (a) find $\mathbb{P}(X > 1.5)$;
 (b) find the value c such that $\mathbb{P}(X < c) = 0.05$; and
 (c) find the value d such that $\mathbb{P}(|X| < d) = 0.9$.

3. If $T \sim t_{20}$,
 (a) find $\mathbb{P}(T < -1.725)$;
 (b) find τ_1 such that $\mathbb{P}(T > \tau_1) = .05$; and
 (c) find τ_2 such that $\mathbb{P}(|T| < \tau_2) = .9$.

4. If $U \sim \chi^2_{6}$,
 (a) find $\mathbb{P}(U \leq 12.59)$; and
 (b) the value c such that $\mathbb{P}(U > c) = 0.025$.

5. If $W \sim F_{2,3}$,
 (a) find $\mathbb{P}(W \geq 9.55)$; and
 (b) the value c such that $\mathbb{P}(W > c) = 0.025$.

6. [§6-3] Let \bar{X} be the average of a sample of 16 independent normal random variables with mean 0 and variance 1. Determine c such that
 $\mathbb{P}(|\bar{X}| < c) = .5$.
 (*Review: if the pdf of a random variable Y is symmetric (about its mean μ), then $\mathbb{P}(Y - \mu < a) = \mathbb{P}(Y - \mu > -a)$.*
7. [§6-5] Show that if $X \sim F_{n,m}$, then $X^{-1} \sim F_{m,n}$.

8. [§6-10] Let X_1, X_2, \ldots, X_{11} be i.i.d. random variables with $X_i \sim N(\mu, \sigma)$ for $1 \leq i \leq 11$, and S^2 be the sample variance. Use the chi-square distribution to calculate $\mathbb{P}(0.394 < S^2/\sigma^2 < 1.831)$.