Homework 2 Solutions

1. [§5-26] Suppose that a basketball player can score on a particular shot with probability .3. Use the central limit theorem to find the approximate distribution of S, the number of successes out of 25 independent shots. Find the approximate probabilities that S is less than or equal to 5, 7, 9, and 11 and compare these to the exact probabilities. \textit{(Hint: Let X_1, X_2, \ldots, X_{25} be the indicator random variables of the 25 shots, that is, $X_i = 1$ if the player scores on the ith shot and $X_i = 0$ otherwise.)}

Let X_1, X_2, \ldots, X_{25} be the indicator random variables of the 25 shots, that is, $X_i = 1$ if the player scores on the ith shot and $X_i = 0$ otherwise. Then X_i’s are i.i.d. Bernoulli random variables with parameter $p = 0.3$. It follows that the common mean and variance is

$$
\mu = \mathbb{E}[X_1] = p = 0.3 \quad \text{and} \quad \sigma^2 = \text{Var}[X_1] = p(1 - p) = 0.21.
$$

Since $S = X_1 + X_2 + \cdots + X_{25}$, the central limit theorem tells us that S is approximately normal with mean $n\mu = 25(0.3) = 7.5$ and variance $n\sigma^2 = 25(0.21) = 5.25$, that is

$$
S \sim N(7.5, 5.25), \quad \text{approximately.}
$$

Let $Z \sim N(0, 1)$. Then, we have

$$
P(S \leq 5) = \mathbb{P}\left(\frac{S - n\mu}{\sigma \sqrt{n}} \leq \frac{5 - n\mu}{\sigma \sqrt{n}} \right) = \mathbb{P}\left(\frac{S - 7.5}{\sqrt{5.25}} \leq \frac{5 - 7.5}{\sqrt{5.25}} \right) \\
\approx \mathbb{P}(Z \leq -1.09) = 0.1379;
$$

$$
P(S \leq 7) = \mathbb{P}\left(\frac{S - n\mu}{\sigma \sqrt{n}} \leq \frac{7 - n\mu}{\sigma \sqrt{n}} \right) = \mathbb{P}\left(\frac{S - 7.5}{\sqrt{5.25}} \leq \frac{7 - 7.5}{\sqrt{5.25}} \right) \\
\approx \mathbb{P}(Z \leq -0.22) = 0.4129;
$$

$$
P(S \leq 9) = \mathbb{P}\left(\frac{S - n\mu}{\sigma \sqrt{n}} \leq \frac{9 - n\mu}{\sigma \sqrt{n}} \right) = \mathbb{P}\left(\frac{S - 7.5}{\sqrt{5.25}} \leq \frac{9 - 7.5}{\sqrt{5.25}} \right) \\
\approx \mathbb{P}(Z \leq 0.65) = 0.7422; \quad \text{and}
$$

$$
P(S \leq 11) = \mathbb{P}\left(\frac{S - n\mu}{\sigma \sqrt{n}} \leq \frac{11 - n\mu}{\sigma \sqrt{n}} \right) = \mathbb{P}\left(\frac{S - 7.5}{\sqrt{5.25}} \leq \frac{11 - 7.5}{\sqrt{5.25}} \right) \\
\approx \mathbb{P}(Z \leq 1.53) = 0.9370.
$$

On the other hand, we have $S \sim Bin(25, 0.3)$, that is, S is a binomial random variable with parameters $n = 25$ and $p = 0.3$. According the binomial cdf table, we have

$$
P(S \leq 5) = 0.193, \quad P(S \leq 7) = 0.512, \quad P(S \leq 9) = 0.811, \quad \text{and} \quad P(S \leq 11) = 0.956.
$$
Some remark: note that we have an under estimation here when using normal to approximate binomial. Recall that it is suggested to use the "continuity adjustment" when approximating binomial by normal if n is not large enough:

$$P(S \leq x) \approx P \left(Z \leq \frac{x - n\mu + 0.5}{\sigma\sqrt{n}} \right).$$

For example,

$$P(S \leq 5) \approx P \left(Z \leq \frac{5 - 7.5 + 0.5}{\sqrt{5.25}} \right) = 0.1914.$$

2. Assume $X \sim N(0, 1)$.

(a) Find $P(X > 1.5)$;
(b) Find the value c such that $P(X < c) = 0.05$; and
(c) Find the value d such that $P(|X| < d) = 0.9$.

(a) $P(X > 1.5) = 1 - P(X \leq 1.5) = 1 - 0.9332 = 0.0668$.

R function:

```
1 - pnorm(1.5)
```

Remark: the syntax for the R function of the cdf of normal distributions is as follows:

```
pnorm(x, mu, sigma),
```

and this gives $P(X \leq x)$ for $X \sim N(\mu, \sigma^2)$. Here mu= μ and sigma= σ. When these two parameters are omitted, R assumes $\mu = 0$ and $\sigma = 1$.

(b) $c = -1.645$.

R function:

```
qnorm(0.05)
```

Remark: the syntax for the R function of the quantile (inverse cdf) of normal distributions is as follows:

```
qnorm(p, mu, sigma),
```
and this gives the value \(c \) such that \(P(X \leq c) = p \) for \(X \sim N(\mu, \sigma^2) \).

(c) By symmetry we have

\[
0.9 = P(|X| < d) = P(-d < X < d) = P(X < d) - P(X < -d) \\
= P(X < d) - (1 - P(X < d)) \\
= 2P(X < d) - 1.
\]

Thus \(P(X < d) = 0.95 \) and \(d = 1.645 \).

3. If \(T \sim t_{20} \),

(a) find \(P(T < -1.725) \);
(b) find \(\tau_1 \) such that \(P(T > \tau_1) = .05 \); and
(c) find \(\tau_2 \) such that \(P(|T| < \tau_2) = .9 \).

(a) \(P(T < -1.725) = 0.05 \).

R function:

\[
\text{pt}(-1.725, 20)
\]

Remark: the syntax for the R function of the cdf of \(t \)-distribution with degrees of freedom \(n \) is as follows:

\[
\text{pt}(x, df)
\]

and this gives \(P(X \leq x) \) for \(X \sim t_n \).

(b) Since \(P(T > \tau_1) = .05 \), we have \(P(T < \tau_1) = 0.95 \). Thus \(\tau_1 = 1.725 \).

R function:

\[
\text{qt}(0.95, 20)
\]

Remark: the syntax for the R function of the quantile (inverse cdf) of \(t \)-distribution with degrees of freedom \(n \) is as follows:

\[
\text{qt}(p, df)
\]

and this gives the value \(c \) such that \(P(X \leq c) = p \) for \(X \sim t_n \).
(c) the t distribution is symmetric about 0, we have

$$0.9 = \Pr(|T| < \tau_2) = \Pr(T < \tau_2) - \Pr(T < -\tau_2) = 2\Pr(T < \tau_2) - 1.$$

Thus $\Pr(T < \tau_2) = 0.95$ and $\tau_2 = 1.725$.

4. If $U \sim \chi^2_6$,

(a) find $\Pr(U \leq 12.59)$; and

(b) the value c such that $\Pr(U > c) = 0.025$.

(a) $\Pr(U \leq 12.59) = 0.95.$

R function:

```
pchisq(12.59,6)
```

Remark: the syntax for the R function of the cdf of χ^2-distribution with degrees of freedom n is as follows:

```
pchisq(x,df)
```

and this gives $\Pr(X \leq x)$ for $X \sim \chi^2_n$.

(b) Since $\Pr(U > c) = .025$, we have $\Pr(U \leq c) = 0.975$. Thus $c = 14.45$.

R function:

```
qchisq(0.975,6)
```

Remark: the syntax for the R function of the quantile (inverse cdf) of χ^2-distribution with degrees of freedom n is as follows:

```
qt(p,df)
```

and this gives the value c such that $\Pr(X \leq c) = p$ for $X \sim \chi^2_n$.

5. If $W \sim F_{2,3}$,

(a) find $\Pr(W \geq 9.55)$; and

(b) the value c such that $\Pr(W > c) = 0.025$.

4
(a) \(\mathbb{P}(W \geq 9.55) = 1 - \mathbb{P}(W < 9.55) = 1 - 0.95 = 0.05. \)

R function:
\[
\text{pf}(9.55, 2, 3)
\]

Remark: the syntax for the R function of the cdf of \(\mathcal{F} \)-distribution with degrees of freedom \(n \) (numerator) and \(m \) (denominator) is as follows:
\[
\text{pf}(x, n, m)
\]
and this gives \(\mathbb{P}(X \leq x) \) for \(X \sim \mathcal{F}_{n,m} \).

(b) Since \(\mathbb{P}(W > c) = .025 \), we have \(\mathbb{P}(W \leq c) = 0.975 \). Thus \(c = 16.04 \).

R function:
\[
\text{qf}(0.975, 2, 3)
\]

Remark: the syntax for the R function of the quantile (inverse cdf) of \(\mathcal{F} \)-distribution with degrees of freedom \(n \) (numerator) and \(m \) (denominator) is as follows:
\[
\text{qf}(p, n, m)
\]
and this gives the value \(c \) such that \(\mathbb{P}(X \leq c) = p \) for \(X \sim \mathcal{F}_{n,m} \).

6. [6-3] Let \(\overline{X} \) be the average of a sample of 16 independent normal random variables with mean 0 and variance 1. Determine \(c \) such that
\[
\mathbb{P}(|\overline{X}| < c) = .5.
\]

(Review: if the pdf of a random variable \(Y \) is symmetric (about its mean \(\mu \)), then \(\mathbb{P}(Y - \mu < a) = \mathbb{P}(Y - \mu > -a) \)).
First, we have $X \sim N(0, 1/16)$. Thus

$$0.5 = \Pr(|X| < c) = \Pr(X < c) - \Pr(X < -c)$$

$$= \Pr(X < c) - (1 - \Pr(X < c)) = 2\Pr(X < c) - 1.$$

This means that we need to find c such that $\Pr(X < c) = 0.75$. Now

$$0.75 = \Pr(X < c) = \Pr\left(\frac{X - 0}{\sqrt{1/16}} < \frac{c - 0}{\sqrt{1/16}}\right) = \Pr(Z < 4c)$$

implies that $4c = 0.675$, or equivalently, $c = 0.169$.

7. [§6-5] Show that if $X \sim F_{n,m}$, then $X^{-1} \sim F_{m,n}$.

Since $X \sim F_{n,m}$, we have

$$X \overset{d}{=} \frac{U/n}{V/m},$$

where U and V are independent random variables with $U \sim \chi^2_n$ and $V \sim \chi^2_m$, and $\overset{d}{=} \text{ means equal in distribution.}$ It follows immediately that

$$X^{-1} \overset{d}{=} \frac{V/m}{U/n}.$$

Since $\frac{V/m}{U/n} \sim F_{m,n}$ by definition, we have $X^{-1} \sim F_{m,n}$.
8. Let X_1, X_2, \ldots, X_{11} be i.i.d. random variables with $X_i \sim N(\mu, \sigma)$ for $1 \leq i \leq 11$, and S^2 be the sample variance. Use the chi-square distribution to calculate $P(0.394 < S^2/\sigma^2 < 1.831)$.

Since $\frac{(n - 1)S^2}{\sigma^2} \sim \chi_{n-1}^2$, we have

$$P(0.394 < S^2/\sigma^2 < 1.831) = P \left(0.394 \cdot (11 - 1) < \frac{(11 - 1)S^2}{\sigma^2} < 1.831 \cdot (11 - 1) \right)$$

$$= P(3.94 < X < 18.31)$$

$$= P(X < 18.31) - P(X \leq 3.94)$$

$$= 0.95 - 0.05$$

$$= 0.9,$$

where $X \sim \chi_{10}^2$.
