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Large Deviation Principle.

Definition. Consider a sequence {X ε}ε>0 of E valued r.vs. E - Polish.

A function I from E to [0,∞] is called a rate function on E if for each
M <∞, {x ∈ E : I (x) ≤ M} is compact.

{X ǫ} is said to satisfy the large deviation principle on E (as ε→ 0)
with rate function I if:

For each closed subset F of E

lim supǫ→0 ǫ logP(X
ǫ ∈ F ) ≤ − infx∈F I (x).

For each open subset G of E

lim infǫ→0 ǫ logP(X
ǫ ∈ G) ≥ − infx∈G I (x).

Formally, for small ε:

P(X ǫ ∈ A) ≈ exp

{
− infx∈A I (x)

ε

}
, A ∈ B(E).
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Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

b, σ suitable coefficients... W a f.d. BM.
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Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

b, σ suitable coefficients... W a f.d. BM.
Let G ⊂ R

n be bounded open. Let x ∈ G and τ ε = inf{t : X ε(t) ∈ ∂G}.
Interested in limε→0 ε log Px(X

ε(τ ε) ∈ N), where N ⊂ ∂G .
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Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

b, σ suitable coefficients... W a f.d. BM.
Let G ⊂ R

n be bounded open. Let x ∈ G and τ ε = inf{t : X ε(t) ∈ ∂G}.
Interested in limε→0 ε log Px(X

ε(τ ε) ∈ N), where N ⊂ ∂G .
Formally, with Φ a nonnegative C 2 function, Φ(x) ≈ M1Nc (x), M a large
scaler,

lim
ε→0

ε logPx(X
ε(τ ε) ∈ N) ≈ lim

ε→0
ε logEx

{
e−Φ(X ε(τε))/ε

}
.
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Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

b, σ suitable coefficients... W a f.d. BM.
Let G ⊂ R

n be bounded open. Let x ∈ G and τ ε = inf{t : X ε(t) ∈ ∂G}.
Interested in limε→0 ε log Px(X

ε(τ ε) ∈ N), where N ⊂ ∂G .
Formally, with Φ a nonnegative C 2 function, Φ(x) ≈ M1Nc (x), M a large
scaler,

lim
ε→0

ε logPx(X
ε(τ ε) ∈ N) ≈ lim

ε→0
ε logEx

{
e−Φ(X ε(τε))/ε

}
.

Then gε(x) = Ex

{
e−Φ(X ε(τε))/ε

}
solves





Lεgε(x) = 0, x ∈ G

gε(x) = e−Φ(x)/ε, x ∈ ∂G

where Lεg = ε
2Tr(σD

2gσ′) + b · ∇g .
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Stochastic Control Connection (ctd.)

log transform: Let Jε = −ε log gε. Then Jε solves

ε

2
Tr(σD2Jεσ′) + H(x ,∇Jε) = 0

where
H(x , p) = min

v∈Rn
[L(x , v) + p · v ], x ∈ G , p ∈ R

n

and L(x , v) = 1
2(b(x) − v)′[σ(x)σ′(x)]−1(b(x)− v).
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Stochastic Control Connection (ctd.)

log transform: Let Jε = −ε log gε. Then Jε solves

ε

2
Tr(σD2Jεσ′) + H(x ,∇Jε) = 0

where
H(x , p) = min

v∈Rn
[L(x , v) + p · v ], x ∈ G , p ∈ R

n

and L(x , v) = 1
2(b(x) − v)′[σ(x)σ′(x)]−1(b(x)− v).

Jε can be characterized as the value function of the stochastic control
problem:

Jε(x) = inf
u∈A

Ex

{∫ τ̃ε

0
L(X̃ ε(t), u(t))dt +Φ(X̃ ε(τ̃ ε))

}

dX̃ ε(t) = u(t)dt +
√
εσ(X ε(t))dW (t), X̃ ε(0) = x
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Stochastic Control Connection (ctd.)

log transform: Let Jε = −ε log gε. Then Jε solves

ε

2
Tr(σD2Jεσ′) + H(x ,∇Jε) = 0

where
H(x , p) = min

v∈Rn
[L(x , v) + p · v ], x ∈ G , p ∈ R

n

and L(x , v) = 1
2(b(x) − v)′[σ(x)σ′(x)]−1(b(x)− v).

Jε can be characterized as the value function of the stochastic control
problem:

Jε(x) = inf
u∈A

Ex

{∫ τ̃ε

0
L(X̃ ε(t), u(t))dt +Φ(X̃ ε(τ̃ ε))

}

dX̃ ε(t) = u(t)dt +
√
εσ(X ε(t))dW (t), X̃ ε(0) = x

One can argue Jε → J, where J(x) is the value function of the deterministic
control problem:

J(x) = inf
φ,θ

∫ θ

0
L(φ(t), φ̇(t))dt +Φ(φ(θ)),

where inf is over all abs. cts. φ such that φ(0) = x , and
θ = inf{t : φ(t) ∈ ∂G}.
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Stochastic Control Connection (ctd.)

log transform: Let Jε = −ε log gε. Then Jε solves

ε

2
Tr(σD2Jεσ′) + H(x ,∇Jε) = 0

where
H(x , p) = min

v∈Rn
[L(x , v) + p · v ], x ∈ G , p ∈ R

n

and L(x , v) = 1
2(b(x) − v)′[σ(x)σ′(x)]−1(b(x)− v).

Jε can be characterized as the value function of the stochastic control
problem:

Jε(x) = inf
u∈A

Ex

{∫ τ̃ε

0
L(X̃ ε(t), u(t))dt +Φ(X̃ ε(τ̃ ε))

}

dX̃ ε(t) = u(t)dt +
√
εσ(X ε(t))dW (t), X̃ ε(0) = x

One can argue Jε → J, where J(x) is the value function of the deterministic
control problem:

J(x) = inf
φ,θ

∫ θ

0
L(φ(t), φ̇(t))dt +Φ(φ(θ)),

where inf is over all abs. cts. φ such that φ(0) = x , and
θ = inf{t : φ(t) ∈ ∂G}.
Later works: Sheu (1985), Dupuis and Ellis(1997), Feng and Kurtz (2005).
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Freidlin-Wentzell Asymptotics.

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

W a f.d. BM.
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Freidlin-Wentzell Asymptotics.

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

W a f.d. BM.
As ε→ 0, X ε converges in probability, in C ([0,T ] : Rd) to ξ that
solves the ODE:

ξ̇ = b(ξ), ξ(0) = x .
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Freidlin-Wentzell Asymptotics.

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

W a f.d. BM.
As ε→ 0, X ε converges in probability, in C ([0,T ] : Rd) to ξ that
solves the ODE:

ξ̇ = b(ξ), ξ(0) = x .

Probabilities of ‘deviations’ P(sup0≤t≤T |X ε(t)− ξ(t)| > c), studied
by Freidlin-Wentzell by establishing a LDP.
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Freidlin-Wentzell Asymptotics.

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

W a f.d. BM.
As ε→ 0, X ε converges in probability, in C ([0,T ] : Rd) to ξ that
solves the ODE:

ξ̇ = b(ξ), ξ(0) = x .

Probabilities of ‘deviations’ P(sup0≤t≤T |X ε(t)− ξ(t)| > c), studied
by Freidlin-Wentzell by establishing a LDP.
– a starting point for studying asymptotics of exit times from
domains, invariant measure asymptotics, metastability etc.
...also a basis for developing efficient importance sampling schemes.
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Freidlin-Wentzell Asymptotics.

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

W a f.d. BM.
As ε→ 0, X ε converges in probability, in C ([0,T ] : Rd) to ξ that
solves the ODE:

ξ̇ = b(ξ), ξ(0) = x .

Probabilities of ‘deviations’ P(sup0≤t≤T |X ε(t)− ξ(t)| > c), studied
by Freidlin-Wentzell by establishing a LDP.
– a starting point for studying asymptotics of exit times from
domains, invariant measure asymptotics, metastability etc.
...also a basis for developing efficient importance sampling schemes.
Here we revisit this problem – cover more general settings.
infinite dimensional noise, Poisson random measures, fractional
Brownian motions, moderate deviations problems.
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LDP and Laplace Principle.

LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):

A collection of E valued random variables {X ε} is said to satisfy
Laplace principle with rate function I , if for all h ∈ Cb(E)

lim
ǫ→0

−ǫ log E

{
exp

[
−1

ǫ
h(X ǫ)

]}
= inf

x∈E
{h(x) + I (x)}.
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LDP and Laplace Principle.

LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):

A collection of E valued random variables {X ε} is said to satisfy
Laplace principle with rate function I , if for all h ∈ Cb(E)

lim
ǫ→0

−ǫ log E

{
exp

[
−1

ǫ
h(X ǫ)

]}
= inf

x∈E
{h(x) + I (x)}.

From Donsker-Varadhan:

−ǫ log E{exp[− 1
ǫ
h(X ǫ)]}=infQ∈P(E)[

∫
h(x)dQ(x)+R(Q‖Pε)].
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LDP and Laplace Principle.

LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):

A collection of E valued random variables {X ε} is said to satisfy
Laplace principle with rate function I , if for all h ∈ Cb(E)

lim
ǫ→0

−ǫ log E

{
exp

[
−1

ǫ
h(X ǫ)

]}
= inf

x∈E
{h(x) + I (x)}.

From Donsker-Varadhan:

−ǫ log E{exp[− 1
ǫ
h(X ǫ)]}=infQ∈P(E)[

∫
h(x)dQ(x)+R(Q‖Pε)].

Goal is to show the convergence of variational expressions:

infQ∈P(E )[
∫
h(x)dQ(x)+R(Q‖Pε)] ε→0−→ infx∈E{h(x)+I (x)}.
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LDP and Laplace Principle.

LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):

A collection of E valued random variables {X ε} is said to satisfy
Laplace principle with rate function I , if for all h ∈ Cb(E)

lim
ǫ→0

−ǫ log E

{
exp

[
−1

ǫ
h(X ǫ)

]}
= inf

x∈E
{h(x) + I (x)}.

From Donsker-Varadhan:

−ǫ log E{exp[− 1
ǫ
h(X ǫ)]}=infQ∈P(E)[

∫
h(x)dQ(x)+R(Q‖Pε)].

Goal is to show the convergence of variational expressions:

infQ∈P(E )[
∫
h(x)dQ(x)+R(Q‖Pε)] ε→0−→ infx∈E{h(x)+I (x)}.

Instead of PDE characterizations – argue that for a family of ‘nice
controls’ the (state, control, cost) sequence converges to the right
limits.
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Variational Representations for Exponential Functionals of

BM.

Suppose X ε = Gε(β), Gε is a measurable map, β an infinite
dimensional BM.

First Step: Find convenient variational formulas for

−ǫ log E{exp[− 1
ǫ
h(X ǫ)]}.
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Variational Representations for Exponential Functionals of

BM.

Suppose X ε = Gε(β), Gε is a measurable map, β an infinite
dimensional BM.

First Step: Find convenient variational formulas for

−ǫ log E{exp[− 1
ǫ
h(X ǫ)]}.

Thus we seek variational representations for

− logE(exp{−f (β)}),

f is bounded measurable.
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Brownian Sheet.

Let O be a bounded open set in R
d and {B(t, x), (t, x) ∈ [0,T ]×O}

be a Brownian sheet.
I.e. it is a mean zero, continuous, Gaussian random field such that

Cov(B(t, x),B(s, y)) = Leb(At,x ∩ As,y ), where

At,x
.
= {(s, y) : s ∈ [0, t], y ∈ O ∩ [0, x ]}.
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Brownian Sheet.

Let O be a bounded open set in R
d and {B(t, x), (t, x) ∈ [0,T ]×O}

be a Brownian sheet.
I.e. it is a mean zero, continuous, Gaussian random field such that

Cov(B(t, x),B(s, y)) = Leb(At,x ∩ As,y ), where

At,x
.
= {(s, y) : s ∈ [0, t], y ∈ O ∩ [0, x ]}.

B is a (C,B(C)) valued r.v., where C = C ([0,T ] ×O : R) and B(C)
the Borel sigma-field.

Denote by µ the induced Wiener measure.

Henceforth B is the canonical process on (C,B(C), µ).
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Representation for functionals of Brownian Sheet.

Let H ≡ L2([0,T ] ×O) and let

P2
.
= {u : u is P ⊗ B(O) measurable and u(ω) ∈ H, µ − a.s.} .
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Representation for functionals of Brownian Sheet.

Let H ≡ L2([0,T ] ×O) and let

P2
.
= {u : u is P ⊗ B(O) measurable and u(ω) ∈ H, µ − a.s.} .

For φ ∈ H, define Int(φ) ∈ C by

Int(φ)(t, x)
.
=

∫
At,x

φ(s, y)dsdy .
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Representation for functionals of Brownian Sheet.

Let H ≡ L2([0,T ] ×O) and let

P2
.
= {u : u is P ⊗ B(O) measurable and u(ω) ∈ H, µ − a.s.} .

For φ ∈ H, define Int(φ) ∈ C by

Int(φ)(t, x)
.
=

∫
At,x

φ(s, y)dsdy .

Theorem. [B., Dupuis (2000); B., Dupuis, Maroulas (2008).] Let
f : C → R be a bounded measurable map. Let B be a Brownian
sheet. Then

− logE(exp{−f (B)}) = infu∈P2

{
E
(
1
2 ||u||2H + f (B + Int(u))

)}
.
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Remarks.

− logE(exp{−f (B)}) = infu∈P2

{
E
µ
(
1
2 ||u||2H + f (B + Int(u))

)}
.

From the Donsker-Varadhan formula:

− logE(exp{−f (B)}) = infQ∈P(C) E
Q [f (B) + R(Q ‖ µ)] .

From this one can deduce:

− logE(exp{−f (B)}) ≤ inf{ nice u∈P2}
{
E
Qu

(
1
2 ||u||2H + f (Bu + Int(u))

)}
.
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Remarks.

− logE(exp{−f (B)}) = infu∈P2

{
E
µ
(
1
2 ||u||2H + f (B + Int(u))

)}
.

From the Donsker-Varadhan formula:

− logE(exp{−f (B)}) = infQ∈P(C) E
Q [f (B) + R(Q ‖ µ)] .

From this one can deduce:

− logE(exp{−f (B)}) ≤ inf{ nice u∈P2}
{
E
Qu

(
1
2 ||u||2H + f (Bu + Int(u))

)}
.

Boué-Dupuis (1998): B is a n dimensional BM.
Zhang (2009): Setting of an abstract Wiener space.
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Remarks.

− logE(exp{−f (B)}) = infu∈P2

{
E
µ
(
1
2 ||u||2H + f (B + Int(u))

)}
.

From the Donsker-Varadhan formula:

− logE(exp{−f (B)}) = infQ∈P(C) E
Q [f (B) + R(Q ‖ µ)] .

From this one can deduce:

− logE(exp{−f (B)}) ≤ inf{ nice u∈P2}
{
E
Qu

(
1
2 ||u||2H + f (Bu + Int(u))

)}
.

Boué-Dupuis (1998): B is a n dimensional BM.
Zhang (2009): Setting of an abstract Wiener space.
Üstünel(2009): Connections with Monge-Kantorovitch problem.
Obtaining optimal controls:

Üstünel(2009) – in terms of Clark-Ocone formula.
Chen-Xiong (2010) – through solutions of BSDEs.
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A LDP for functionals of BS.

Interested in LDP (as ε→ 0) for

X ε .= Gε(
√
ǫB).
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A LDP for functionals of BS.

Interested in LDP (as ε→ 0) for

X ε .= Gε(
√
ǫB).

Typical example of X ε: Solution of a small noise SPDE.
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A LDP for functionals of BS.

Interested in LDP (as ε→ 0) for

X ε .= Gε(
√
ǫB).

Typical example of X ε: Solution of a small noise SPDE.

Then
−ǫ log E{exp[− 1

ǫ
h(X ǫ)]}=−ǫ log E{exp[− 1

ǫ
h(Gε(

√
ǫB))]}.
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LDP for X ε .
= Gε(√ǫB).

Let
SM .

=
{
φ ∈ H : ||φ||2H ≤ M

}
.

SM is compact with the weak topology.
Define

PM
2

.
=

{
u : u ∈ P2 : u(ω) ∈ SM , µ − a.s.

}
.
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LDP for X ε .
= Gε(√ǫB).

Let
SM .

=
{
φ ∈ H : ||φ||2H ≤ M

}
.

SM is compact with the weak topology.
Define

PM
2

.
=

{
u : u ∈ P2 : u(ω) ∈ SM , µ − a.s.

}
.

Assumption. There exists a measurable map G0 : C → E such that:
For every M <∞:

Whenever {un} ⊂ PM
2 is such that un ⇒ u (as SM–valued random

elements), and εn ∈ [0, 1) is such that εn → 0, we have

Gǫn

(√
ǫnB + Int(un)

)
⇒ G0

(
Int(u)

)
.

Theorem.[B., Dupuis, Maroulas (2008).] Suppose Assumption holds.
Then, the family {X ǫ} satisfies LDP on E , with rate function

I (f )
.
= inf{u∈H:f=G0(Int(u))}

{
1
2 ||u||2H

}
.
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Sketch of Proof.

Suffices to show that Laplace principle holds: For all h ∈ Cb(E)

limǫ→0−ǫ log E
{
exp

[
−1
ǫh(X

ǫ)
]}

= infx∈E{h(x) + I (x)}.
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Sketch of Proof.

Suffices to show that Laplace principle holds: For all h ∈ Cb(E)

limǫ→0−ǫ log E
{
exp

[
−1
ǫh(X

ǫ)
]}

= infx∈E{h(x) + I (x)}.

Recall X ε .= Gε(√ǫB). Applying repn. with f = 1
ǫhoGε(

√
ε·) we have

−ǫ logE
{
exp

[
−1
ǫh(X

ǫ)
]}

= infu E
(
1
2 ||u||2H + h(X ǫ,u)

)
,

where X ǫ,u = Gε(√ǫB + Int(u)).
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of Upper Bound. Recall: X ǫ,u = Gε(√ǫB + Int(u))
Fix δ ∈ (0, 1) and choose for each ε, uǫ such that

LHS ≥ E
(
1
2 ||uε||2H + h(X ǫ,uε)

)
− δ.
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2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of Upper Bound. Recall: X ǫ,u = Gε(√ǫB + Int(u))
Fix δ ∈ (0, 1) and choose for each ε, uǫ such that

LHS ≥ E
(
1
2 ||uε||2H + h(X ǫ,uε)

)
− δ.

• WLOG, for some N <∞, supǫ>0 ||uε||2H ≤ N, i.e. uε ∈ SN a.s.
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of Upper Bound. Recall: X ǫ,u = Gε(√ǫB + Int(u))
Fix δ ∈ (0, 1) and choose for each ε, uǫ such that

LHS ≥ E
(
1
2 ||uε||2H + h(X ǫ,uε)

)
− δ.

• WLOG, for some N <∞, supǫ>0 ||uε||2H ≤ N, i.e. uε ∈ SN a.s.

Pick a subsequence along which uǫ converges in distribution to some u.
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of Upper Bound. Recall: X ǫ,u = Gε(√ǫB + Int(u))
Fix δ ∈ (0, 1) and choose for each ε, uǫ such that

LHS ≥ E
(
1
2 ||uε||2H + h(X ǫ,uε)

)
− δ.

• WLOG, for some N <∞, supǫ>0 ||uε||2H ≤ N, i.e. uε ∈ SN a.s.

Pick a subsequence along which uǫ converges in distribution to some u.
From Assumption:

lim infǫ→0 E
[
1
2 ||uε||2H + h ◦ Gǫ (√ǫB + Int(uǫ))

]

≥ E
[
1
2 ||u||2H + h ◦ G0 (Int(u))

]
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of Upper Bound. Recall: X ǫ,u = Gε(√ǫB + Int(u))
Fix δ ∈ (0, 1) and choose for each ε, uǫ such that

LHS ≥ E
(
1
2 ||uε||2H + h(X ǫ,uε)

)
− δ.

• WLOG, for some N <∞, supǫ>0 ||uε||2H ≤ N, i.e. uε ∈ SN a.s.

Pick a subsequence along which uǫ converges in distribution to some u.
From Assumption:

lim infǫ→0 E
[
1
2 ||uε||2H + h ◦ Gǫ (√ǫB + Int(uǫ))

]

≥ E
[
1
2 ||u||2H + h ◦ G0 (Int(u))

]

≥ inf{(x ,u)∈E×H:x=G0(Int(u))}
{
1
2 ||u||2H + h(x)

}
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of Upper Bound. Recall: X ǫ,u = Gε(√ǫB + Int(u))
Fix δ ∈ (0, 1) and choose for each ε, uǫ such that

LHS ≥ E
(
1
2 ||uε||2H + h(X ǫ,uε)

)
− δ.

• WLOG, for some N <∞, supǫ>0 ||uε||2H ≤ N, i.e. uε ∈ SN a.s.

Pick a subsequence along which uǫ converges in distribution to some u.
From Assumption:

lim infǫ→0 E
[
1
2 ||uε||2H + h ◦ Gǫ (√ǫB + Int(uǫ))

]

≥ E
[
1
2 ||u||2H + h ◦ G0 (Int(u))

]

≥ inf{(x ,u)∈E×H:x=G0(Int(u))}
{
1
2 ||u||2H + h(x)

}

= infx∈E{I (x) + h(x)}.
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of the lower bound. Fix δ > 0 and let x0 ∈ E be such that
I (x0) + h(x0) ≤ infx∈E{I (x) + h(x)}+ δ

2 .
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of the lower bound. Fix δ > 0 and let x0 ∈ E be such that
I (x0) + h(x0) ≤ infx∈E{I (x) + h(x)}+ δ

2 .

Since I (x0) = infu{1
2 ||u||2H}, can choose ũ ∈ H such that:

1
2 ||ũ||2H ≤ I (x0) +

δ
2 and x0 = G0 (Int(ũ)) .
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of the lower bound. Fix δ > 0 and let x0 ∈ E be such that
I (x0) + h(x0) ≤ infx∈E{I (x) + h(x)}+ δ

2 .

Since I (x0) = infu{1
2 ||u||2H}, can choose ũ ∈ H such that:

1
2 ||ũ||2H ≤ I (x0) +

δ
2 and x0 = G0 (Int(ũ)) .

Then

lim sup
ε→0

LHS = lim supǫ→0 infu E
[
1
2 ||u||2H + h ◦ Gǫ (√ǫB + Int(u))

]

Amarjit Budhiraja Department of Statistics & Operations Research University of North Carolina at Chapel Hill based on joint worksLarge Deviations for Small Noise Stochastic Dynamical Systems
NSF-CBMS Conference Analysis of Stochastic

/ 32



Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of the lower bound. Fix δ > 0 and let x0 ∈ E be such that
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Since I (x0) = infu{1
2 ||u||2H}, can choose ũ ∈ H such that:

1
2 ||ũ||2H ≤ I (x0) +

δ
2 and x0 = G0 (Int(ũ)) .

Then

lim sup
ε→0

LHS = lim supǫ→0 infu E
[
1
2 ||u||2H + h ◦ Gǫ (√ǫB + Int(u))

]

≤ lim supǫ→0 E
[
1
2 ||ũ||2H + h ◦ Gǫ (√ǫB + Int(ũ))

]
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of the lower bound. Fix δ > 0 and let x0 ∈ E be such that
I (x0) + h(x0) ≤ infx∈E{I (x) + h(x)}+ δ

2 .

Since I (x0) = infu{1
2 ||u||2H}, can choose ũ ∈ H such that:

1
2 ||ũ||2H ≤ I (x0) +

δ
2 and x0 = G0 (Int(ũ)) .

Then

lim sup
ε→0

LHS = lim supǫ→0 infu E
[
1
2 ||u||2H + h ◦ Gǫ (√ǫB + Int(u))

]

≤ lim supǫ→0 E
[
1
2 ||ũ||2H + h ◦ Gǫ (√ǫB + Int(ũ))

]

= 1
2 ||ũ||2H + E

[
h ◦ G0 (Int(ũ))

]
= 1

2 ||ũ||2H + h(x0)
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of the lower bound. Fix δ > 0 and let x0 ∈ E be such that
I (x0) + h(x0) ≤ infx∈E{I (x) + h(x)}+ δ

2 .

Since I (x0) = infu{1
2 ||u||2H}, can choose ũ ∈ H such that:

1
2 ||ũ||2H ≤ I (x0) +

δ
2 and x0 = G0 (Int(ũ)) .

Then

lim sup
ε→0

LHS = lim supǫ→0 infu E
[
1
2 ||u||2H + h ◦ Gǫ (√ǫB + Int(u))

]

≤ lim supǫ→0 E
[
1
2 ||ũ||2H + h ◦ Gǫ (√ǫB + Int(ũ))

]

= 1
2 ||ũ||2H + E

[
h ◦ G0 (Int(ũ))

]
= 1

2 ||ũ||2H + h(x0)

≤ I (x0) + h(x0) +
δ
2
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Proof: infu E( 1
2 ||u||2H+h(X ǫ,u))→infx∈E{h(x)+I (x)}.

Proof of the lower bound. Fix δ > 0 and let x0 ∈ E be such that
I (x0) + h(x0) ≤ infx∈E{I (x) + h(x)}+ δ

2 .

Since I (x0) = infu{1
2 ||u||2H}, can choose ũ ∈ H such that:

1
2 ||ũ||2H ≤ I (x0) +

δ
2 and x0 = G0 (Int(ũ)) .

Then

lim sup
ε→0

LHS = lim supǫ→0 infu E
[
1
2 ||u||2H + h ◦ Gǫ (√ǫB + Int(u))

]

≤ lim supǫ→0 E
[
1
2 ||ũ||2H + h ◦ Gǫ (√ǫB + Int(ũ))

]

= 1
2 ||ũ||2H + E

[
h ◦ G0 (Int(ũ))

]
= 1

2 ||ũ||2H + h(x0)

≤ I (x0) + h(x0) +
δ
2

≤ inf
x∈E

{I (x) + h(x)}+ δ.
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Applications.

Hilbert Space Valued Diffusions. Unique solvability studied in Leha
and Ritter (1984). Small noise LDP in B.-Dupuis(2000).
Stochastic reaction diffusion equations. Prior works on LDP:
Freidlin(1988), Zabczyk(1988), Sowers(1992), Kallianpur and
Xiong(1995). These papers assume diffusion coefficient is bounded,
“cone condition” on domain... conditions needed for tail probability
estimates on certain stochastic convolutions in Holder norms –
Garsia’s Theorem.
Conditions relaxed in B.-Dupuis-Maroulas(2008).
Stochastic flows of diffeomorphisms. B.-Dupuis-Maroulas(2009).
Prior works include Millet, Nualart and Sanz-Sole(1992), Ben Arous
and Castell(1995)–these concern finite dimensional flows.

– asymptotic relation, in terms of the rate function, between (small
noise) Bayesian solution of an image matching problem with the
solution of a deterministic variational problem.
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Advantages of the Approach.

No approximations or discretizations.

Exponential prob. estimates are completely bypassed.

Uniqueness results for HJ equations not needed.

Proofs of LDP reduce to demonstrating basic qualitative properties of
certain perturbations of the original system (eg. existence,
uniqueness, stability under L2-bounded perturbations).
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Other Applications.

Fluid dynamics models.

2D Navier-Stokes equation with multiplicative noise (Sritharan and Sundar
(2006)), stochastic tamed 3D Navier-Stokes equations (Rockner, Zhang, Zhang
(2010)), Boussinesq equations under random influences (Duan and Millet
(2009)), inviscid shell models (Bessaih and Millet (2009)), 2D Navier Stokes
equations with a free boundary condition (Bessaih and Millet (2010)), stochastic
shell model of turbulence (Manna, Sritharan and Sundar (2010)), stochastic 2D
hydrodynamical type systems (Chueshov and Millet (2010)), stochastic
derivative Ginzburg-Landau equation with multiplicative noise (Yang and Hou
(2008)).

Less Regular Coefficients.

Homeomorphism flows of non-Lipschitz multi-dimensional SDEs (Ren and Zhang
(2005)), degenerate SDEs with Sobolev coefficients (Zhang (2010)), multivalued
stochastic differential equations (Ren, Xu and Zhang (2010)), stochastic
variational inequalities (Bo and Jiang (2011)).

Other examples.

Stochastic partial differential equations under fast dynamical boundary
conditions (Wang and Duan (2009)), SPDEs with reflection (Xu and Zhang
(2009)), 3D stochastic wave equation (Ortiz-Lopez and Sanz-Sole (2010)),
stochastic Volterra equations in Banach spaces (Zhang (2010)).
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Variational Representation for PRM.

Let X be a complete separable, locally compact metric space.

M be the space of all locally finite measures on XT = [0,T ] × X.

The space is endowed with the weakest topology such that
M ∋ λ 7→

∫
fdλ is continuous for all f ∈ Cc (XT ).
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Variational Representation for PRM.

Let X be a complete separable, locally compact metric space.

M be the space of all locally finite measures on XT = [0,T ] × X.

The space is endowed with the weakest topology such that
M ∋ λ 7→

∫
fdλ is continuous for all f ∈ Cc (XT ).

Fix a locally finite measure ν on X and for θ > 0, let Nθ be a PRM
on XT with intensity θdt × ν(dx).
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Variational Representation for PRM.

Let X be a complete separable, locally compact metric space.

M be the space of all locally finite measures on XT = [0,T ] × X.

The space is endowed with the weakest topology such that
M ∋ λ 7→

∫
fdλ is continuous for all f ∈ Cc (XT ).

Fix a locally finite measure ν on X and for θ > 0, let Nθ be a PRM
on XT with intensity θdt × ν(dx).

Nθ can be represented as

Nθ((0, t]× U)) =
∫
(0,t]×U×(0,∞) 1[0,θ](r)N̄(dsdxdr),

where N̄ is a PRM on XT × R+ with intensity dt × ν(dx)× dr .
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Variational Representation for PRM.

Let X be a complete separable, locally compact metric space.

M be the space of all locally finite measures on XT = [0,T ] × X.

The space is endowed with the weakest topology such that
M ∋ λ 7→

∫
fdλ is continuous for all f ∈ Cc (XT ).

Fix a locally finite measure ν on X and for θ > 0, let Nθ be a PRM
on XT with intensity θdt × ν(dx).

Nθ can be represented as

Nθ((0, t]× U)) =
∫
(0,t]×U×(0,∞) 1[0,θ](r)N̄(dsdxdr),

where N̄ is a PRM on XT × R+ with intensity dt × ν(dx)× dr .

Let Ā = {ϕ : [0,T ]×X×Ω → [0,∞), predictable, measurable}. For
ϕ ∈ Ā, Nϕ defined similarly:

Nϕ((0, t] × U)) =
∫
(0,t]×U×(0,∞) 1[0,ϕ(s,x ,ω)](r)N̄(dsdxdr),
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Variational Representation for PRM (ctd.).

Let ℓ : [0,∞) → (0,∞)

ℓ(r) = r log r − r + 1, r ∈ [0,∞).

For ϕ ∈ Ā, define

LT (ϕ)(ω) =

∫

XT

ℓ(ϕ(t, x , ω)) νT (dt dx), ω ∈ M̄.
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Variational Representation for PRM (ctd.).

Let ℓ : [0,∞) → (0,∞)

ℓ(r) = r log r − r + 1, r ∈ [0,∞).

For ϕ ∈ Ā, define

LT (ϕ)(ω) =

∫

XT

ℓ(ϕ(t, x , ω)) νT (dt dx), ω ∈ M̄.

Theorem [B., Dupuis and Maroulas(2010).] Let f be a bounded
measurable map from M → R. Then, for θ > 0

− logE(e−f (Nθ)) = infϕ∈Ā E
[
θLT (ϕ) + f (Nθϕ)

]
.

A different repn obtained in Zhang(2009) - not suitable for large
deviation applications.
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Application to Large Deviations.

β ≡ (βi )
∞
i=1 is an i.i.d. family of standard Brownian motions.

Nε−1
is a PRM with intensity measure ε−1νT .

Let V = C ([0,∞) : R∞)×M. Let Gε : V → U, where U is a Polish
space, be a sequence of measurable maps.
Interested in large deviation principle for

Z ε = Gε(
√
εβ, εNε−1

).

For M ∈ N, let

S̃M =

{
φ ∈ L2([0,T ] : ℓ2) : L̃T (f ) ≡

∫ T

0
||φ||22 ≤ M

}
.

S̄M = {ψ : [0,T ] × X → (0,∞) : LT (ψ) ≤ M} .

Identify a function ψ ∈ S̄M with the measure νψT ∈ M, through

νψT (A) =

∫

A

ψ(s, x) νT (dsdx).

With ‘weak’ topology SM = S̄M × S̃M is a compact metric space. Let
UM be the space of SM valued controls that are ‘non-anticipative’.
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Application to Large Deviations.

Z ε = Gε(
√
εβ, εNε−1

).

Main Condition. There exists a measurable map G0 : V → U such that:
For every M <∞:

Whenever {un = (ψn, ϕn)} ⊂ UM is such that un ⇒ u (as SM–valued
random elements), and εn ∈ [0, 1) is such that εn → 0, we have

Gǫn

(√
ǫnβ +

∫ ·

0
ψn(s)ds, ǫnN

ǫ−1
n ϕn

)
⇒ G0

(∫ ·

0
ψ(s)ds, νϕT

)
.

Let S = ∪M∈NSM . For φ ∈ U, define

Sφ =

{
(f , g) ∈ S : φ = G0(

∫ ·

0
f (s)ds, g)

}
.

Let I be the rate function defined as

I (φ) = inf
q=(f ,g)∈Sφ

{
1

2
||f ||2H + LT (g)

}
.

Theorem [B., Dupuis and Maroulas(2010)] Under the condition above
{Z ǫ}ǫ>0 satisfies a LDP with rate function I .
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Applications.

Advection-Diffusion Equation with Poissonian Sources (B., Chen,
Dupuis(2013))

Large Deviations for Stochastic Averaging Problems for
jump-diffusions (B., Chen Dupuis(201?)).
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Fractional Brownian Motion.

Let {BH
t , t ∈ [0, 1]} be a d -dimensional fBM with Hurst parameter H ∈ (0, 1)

on (Ω,F ,P).
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Fractional Brownian Motion.

Let {BH
t , t ∈ [0, 1]} be a d -dimensional fBM with Hurst parameter H ∈ (0, 1)

on (Ω,F ,P).
BH has a representation:

BH
t =

∫ 1

0
KH(t, s)dBs ,

where KH : [0, 1] × [0, 1] → R and B is a standard d -dimensional BM.
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Fractional Brownian Motion.

Let {BH
t , t ∈ [0, 1]} be a d -dimensional fBM with Hurst parameter H ∈ (0, 1)

on (Ω,F ,P).
BH has a representation:

BH
t =

∫ 1

0
KH(t, s)dBs ,

where KH : [0, 1] × [0, 1] → R and B is a standard d -dimensional BM.
This kernel describes a Hilbert space H as the collection of all h : [0, 1] → R

d

such that

h(t) = (KH ḣ)(t) =

∫ 1

0
KH(t, s)ḣ(s)ds, t ∈ [0, 1],

for some ḣ ∈ L2([0, 1] : Rd ). Inner product on H:

〈h, g〉H = 〈KH ḣ,KH ġ〉H = 〈ḣ, ġ〉L2 .
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Fractional Brownian Motion.

Let {BH
t , t ∈ [0, 1]} be a d -dimensional fBM with Hurst parameter H ∈ (0, 1)

on (Ω,F ,P).
BH has a representation:

BH
t =

∫ 1

0
KH(t, s)dBs ,

where KH : [0, 1] × [0, 1] → R and B is a standard d -dimensional BM.
This kernel describes a Hilbert space H as the collection of all h : [0, 1] → R

d

such that

h(t) = (KH ḣ)(t) =

∫ 1

0
KH(t, s)ḣ(s)ds, t ∈ [0, 1],

for some ḣ ∈ L2([0, 1] : Rd ). Inner product on H:

〈h, g〉H = 〈KH ḣ,KH ġ〉H = 〈ḣ, ġ〉L2 .

Let FH
t = σ{BH

s : s ≤ t} and let A be the family of all FH
t adapted H valued

random variables.
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Representation for fBM:

Let f be a real bounded measurable function on C ([0, 1] : Rd). Then

− log E
(
e−f (BH )

)
= inf

v∈A
E

(
f (BH + v) +

1

2
||v ||2H

)
.
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SDE driven by fBM (H > 1/2).

Consider the SDE

X ε
t = x0 +

∫ t

0
b(s,X ε

s )ds +
√
ε

∫ t

0
σ(s,X ε

s )dB
H
s , t ∈ [0, 1].

For some L > 0

|b(t, x)− b(t, y)| ≤ L|x − y |, |b(t, x)| ≤ L(1 + |x |)∀x , y ∈ R
d , ∀t ∈ [0, 1].

σ(t, x) : [0, 1]× Rm → Rm×d is differentiable in x , and for some M > 0,
1− H < λ ≤ 1, 1

H
− 1 < γ ≤ 1 and ∀ N > 0 there exists MN > 0 s.t.

|σ(t, x)− σ(t, y)| ≤ M |x − y |, ∀x ∈ R
m, ∀t ∈ [0, 1],

|∂xiσ(t, x)− ∂yiσ(t, y)| ≤ MN |x − y |γ , ∀|x |, |y | ≤ N , ∀t ∈ [0, 1],

|σ(t, x)−σ(s, x)|+ |∂xi σ(t, x)−∂xi σ(s, x)| ≤ M |t− s|λ, ∀x ∈ R
m, ∀t, s ∈ [0, 1],

for each i = 1, . . . ,m.
There exist 0 ≤ ρ ≤ 2− 1

H
and K > 0 such that

|σ(t, x)| ≤ K (1 + |x |ρ), ∀x ∈ R
m, ∀t ∈ [0, 1].

Existence and uniqueness of solutions shown in Nualart and Rascanu(2002).
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SDE driven by fBM (ctd.)

Theorem (B., Pipiras and Song(201?).) Under the above conditions, {X ε}ε>0

satisfies a LDP in Cα([0, 1];Rm) for any α ∈ (1− H,min{1
2 , λ,

γ
1+γ }), with

the rate function

I (f ) = inf
v

{
1

2
‖v‖2H

}

where the infimum is taken over
{v ∈ H : ft = x0 +

∫ t

0 b(s, fs)ds +
∫ t

0 σ(s, fs)dvs}.
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Moderate Deviations.

Concerned with probabilities of deviations of a smaller order than in large
deviations theory.
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Moderate Deviations.

Concerned with probabilities of deviations of a smaller order than in large
deviations theory.
Example. Let {Yi} be i.i.d. mean 0 d -dimensional r.v. with distribution
ρ. Let Sn =

∑n
i=1Yi . Then
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Moderate Deviations.

Concerned with probabilities of deviations of a smaller order than in large
deviations theory.
Example. Let {Yi} be i.i.d. mean 0 d -dimensional r.v. with distribution
ρ. Let Sn =

∑n
i=1Yi . Then

LDP: P(|Sn| > nc) ≈ exp

{
−n inf

|y |≥c
I (y)

}
,

where

I (y) = sup
α∈Rd

{
〈α, y〉 − log

∫

Rd

exp{〈α, y〉}ρ(dy)
}
.
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Moderate Deviations.

Concerned with probabilities of deviations of a smaller order than in large
deviations theory.
Example. Let {Yi} be i.i.d. mean 0 d -dimensional r.v. with distribution
ρ. Let Sn =

∑n
i=1Yi . Then

LDP: P(|Sn| > nc) ≈ exp

{
−n inf

|y |≥c
I (y)

}
,

where

I (y) = sup
α∈Rd

{
〈α, y〉 − log

∫

Rd

exp{〈α, y〉}ρ(dy)
}
.

Let {an} be a sequence such that an ↑ ∞ and n−1/2an → 0. Then

MDP: P(|Sn| > n1/2anc) ≈ exp

{
−a2n inf

|y |≥c
I 0(y)

}
,

where I 0(y) = 1
2y

′Σ−1y and Σ = cov(Y ).
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Moderate Deviations.

Concerned with probabilities of deviations of a smaller order than in large
deviations theory.
Example. Let {Yi} be i.i.d. mean 0 d -dimensional r.v. with distribution
ρ. Let Sn =

∑n
i=1Yi . Then

LDP: P(|Sn| > nc) ≈ exp

{
−n inf

|y |≥c
I (y)

}
,

where

I (y) = sup
α∈Rd

{
〈α, y〉 − log

∫

Rd

exp{〈α, y〉}ρ(dy)
}
.

Let {an} be a sequence such that an ↑ ∞ and n−1/2an → 0. Then

MDP: P(|Sn| > n1/2anc) ≈ exp

{
−a2n inf

|y |≥c
I 0(y)

}
,

where I 0(y) = 1
2y

′Σ−1y and Σ = cov(Y ).
Definition. A collection of random variables {X ε} of E valued random
variables satisfies a LDP on E with speed b(ε)−1 and rate function I of
for all h ∈ Cb(E).

lim
ε→0

b(ε) log E exp

{−h(X ε)

b(ε)

}
= − inf

x∈E
{h(x) + I (x)}.
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Moderate Deviations.

Concerned with probabilities of deviations of a smaller order than in large
deviations theory.
Example. Let {Yi} be i.i.d. mean 0 d -dimensional r.v. with distribution
ρ. Let Sn =

∑n
i=1Yi . Then

LDP: P(|Sn| > nc) ≈ exp

{
−n inf

|y |≥c
I (y)

}
,

where

I (y) = sup
α∈Rd

{
〈α, y〉 − log

∫

Rd

exp{〈α, y〉}ρ(dy)
}
.

Let {an} be a sequence such that an ↑ ∞ and n−1/2an → 0. Then

MDP: P(|Sn| > n1/2anc) ≈ exp

{
−a2n inf

|y |≥c
I 0(y)

}
,

where I 0(y) = 1
2y

′Σ−1y and Σ = cov(Y ).
Definition. A collection of random variables {X ε} of E valued random
variables satisfies a LDP on E with speed b(ε)−1 and rate function I of
for all h ∈ Cb(E).

lim
ε→0

b(ε) log E exp

{−h(X ε)

b(ε)

}
= − inf

x∈E
{h(x) + I (x)}.

The example says
Sn

n
satisfies a LDP with speed n and rate function I .

Sn

n1/2an
satisfies a LDP with speed a2n and rate function I 0.
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Moderate Deviations for SDEs.

Consider the SDE:

X ε(t) = x0+

∫ t

0
b(X ε(s))ds+

√
ε

∫ t

0
σ(X ε(s))dW (s)+ε

∫

X×[0,t]
G (X ε(s−), y)Nε−1

(dsdy).
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Moderate Deviations for SDEs.

Consider the SDE:

X ε(t) = x0+

∫ t

0
b(X ε(s))ds+

√
ε

∫ t

0
σ(X ε(s))dW (s)+ε

∫

X×[0,t]
G (X ε(s−), y)Nε−1

(dsdy).

Nε−1
is a PRM with intensity measure ε−1ν(dy)dt.
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Moderate Deviations for SDEs.

Consider the SDE:

X ε(t) = x0+

∫ t

0
b(X ε(s))ds+

√
ε

∫ t

0
σ(X ε(s))dW (s)+ε

∫

X×[0,t]
G (X ε(s−), y)Nε−1

(dsdy).

Nε−1
is a PRM with intensity measure ε−1ν(dy)dt.

For some L1 ∈ (0,∞) LG ∈ L1(ν) ∩ L2(ν), MG ∈ L2(ν)

|b(x)− b(x ′)|+ |σ(x) − σ(x ′)| ≤ L|x − x ′|, x , x ′ ∈ R
d ,

|G (x , y)− G (x ′, y)| ≤ LG (y)|x − x ′|, x , x ′ ∈ R, y ∈ X,

|G (x , y)| ≤ MG (y)(1 + |x |), x , x ′ ∈ R, y ∈ X.
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Moderate Deviations for SDEs.

Consider the SDE:

X ε(t) = x0+

∫ t

0
b(X ε(s))ds+

√
ε

∫ t

0
σ(X ε(s))dW (s)+ε

∫

X×[0,t]
G (X ε(s−), y)Nε−1

(dsdy).

Nε−1
is a PRM with intensity measure ε−1ν(dy)dt.

For some L1 ∈ (0,∞) LG ∈ L1(ν) ∩ L2(ν), MG ∈ L2(ν)

|b(x)− b(x ′)|+ |σ(x) − σ(x ′)| ≤ L|x − x ′|, x , x ′ ∈ R
d ,

|G (x , y)− G (x ′, y)| ≤ LG (y)|x − x ′|, x , x ′ ∈ R, y ∈ X,

|G (x , y)| ≤ MG (y)(1 + |x |), x , x ′ ∈ R, y ∈ X.

Then X ε has a unique solution and converges in probability in D([0,T ] : Rd ) to X 0

that solves the equation:

X 0(t) = x0 +
∫ t

0 b(X 0(s)) ds +
∫
X×[0,t) G (X 0(s), y) ν(dy)ds, t ∈ [0,T ].
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Moderate Deviations for SDEs.

Consider the SDE:

X ε(t) = x0+

∫ t

0
b(X ε(s))ds+

√
ε

∫ t

0
σ(X ε(s))dW (s)+ε

∫

X×[0,t]
G (X ε(s−), y)Nε−1

(dsdy).

Nε−1
is a PRM with intensity measure ε−1ν(dy)dt.

For some L1 ∈ (0,∞) LG ∈ L1(ν) ∩ L2(ν), MG ∈ L2(ν)

|b(x)− b(x ′)|+ |σ(x) − σ(x ′)| ≤ L|x − x ′|, x , x ′ ∈ R
d ,

|G (x , y)− G (x ′, y)| ≤ LG (y)|x − x ′|, x , x ′ ∈ R, y ∈ X,

|G (x , y)| ≤ MG (y)(1 + |x |), x , x ′ ∈ R, y ∈ X.

Then X ε has a unique solution and converges in probability in D([0,T ] : Rd ) to X 0

that solves the equation:

X 0(t) = x0 +
∫ t

0 b(X 0(s)) ds +
∫
X×[0,t) G (X 0(s), y) ν(dy)ds, t ∈ [0,T ].

Also, under additional conditions on LG ,MG , X
ε satisfies a LDP.
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Moderate Deviations for SDEs.

Consider the SDE:

X ε(t) = x0+

∫ t

0
b(X ε(s))ds+

√
ε

∫ t

0
σ(X ε(s))dW (s)+ε

∫

X×[0,t]
G (X ε(s−), y)Nε−1

(dsdy).

Nε−1
is a PRM with intensity measure ε−1ν(dy)dt.

For some L1 ∈ (0,∞) LG ∈ L1(ν) ∩ L2(ν), MG ∈ L2(ν)

|b(x)− b(x ′)|+ |σ(x) − σ(x ′)| ≤ L|x − x ′|, x , x ′ ∈ R
d ,

|G (x , y)− G (x ′, y)| ≤ LG (y)|x − x ′|, x , x ′ ∈ R, y ∈ X,

|G (x , y)| ≤ MG (y)(1 + |x |), x , x ′ ∈ R, y ∈ X.

Then X ε has a unique solution and converges in probability in D([0,T ] : Rd ) to X 0

that solves the equation:

X 0(t) = x0 +
∫ t

0 b(X 0(s)) ds +
∫
X×[0,t) G (X 0(s), y) ν(dy)ds, t ∈ [0,T ].

Also, under additional conditions on LG ,MG , X
ε satisfies a LDP.

Let a(ε) → 0 and b(ε) = ε/a2(ε) → 0, Consider Y ε = 1
a(ε)(X

ε − X 0).
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Moderate Deviations for SDEs.

Theorem. (B., Dupuis and Ganguly (201?).) In addition to the above conditions on
b, σ and G , suppose that

LG and MG are in

{
h : X → R : ∃ δ1 > 0, s.t. ∀Γ with ν(Γ) <∞

∫

Γ

exp(δ1h
2(y))ν(dy) <∞

}
.

The maps x 7→ b(x) and, for every y ∈ X, x 7→ G(x , y) are differentiable. For some
LDb ∈ (0,∞) and LDG ∈ L2(ν)

|Db(x)− Db(x ′)| ≤ LDb|x − x ′|, x , x ′ ∈ R
d ,

|DxG(x , y) − DxG(x ′, y)| ≤ LDG (y)|x − x ′|, x , x ′ ∈ R
d , y ∈ X.

For every ρ > 0,

sup
|x|≤ρ

∫

X

|DxG(x , y)|ν(dy) <∞.
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Moderate Deviations for SDEs.

Theorem. (B., Dupuis and Ganguly (201?).) In addition to the above conditions on
b, σ and G , suppose that

LG and MG are in

{
h : X → R : ∃ δ1 > 0, s.t. ∀Γ with ν(Γ) <∞

∫

Γ

exp(δ1h
2(y))ν(dy) <∞

}
.

The maps x 7→ b(x) and, for every y ∈ X, x 7→ G(x , y) are differentiable. For some
LDb ∈ (0,∞) and LDG ∈ L2(ν)

|Db(x)− Db(x ′)| ≤ LDb|x − x ′|, x , x ′ ∈ R
d ,

|DxG(x , y) − DxG(x ′, y)| ≤ LDG (y)|x − x ′|, x , x ′ ∈ R
d , y ∈ X.

For every ρ > 0,

sup
|x|≤ρ

∫

X

|DxG(x , y)|ν(dy) <∞.

Then {Y ε} satisfies a LDP in D([0,T ] : Rd) with speed b−1(ε) and the rate
function given by

I (η) = inf
ψ,u

{1
2
||ψ||22 +

1

2
|u|2}

where the infimum is taken over all ψ ∈ L2(νT ), u ∈ L2(Rd ) such that

η(t) =

∫ t

0
[Db(X 0(s))](η(s)) ds +

∫

X×[0,t]
[DxG (X 0(s), y)](η(s)) ν(dy)ds

+

∫

X×[0,t]
ψ(y , s)G (X 0(s), y)ν(dy)ds +

∫

[0,t]
σ(X 0(s))u(s)ds.
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Moderate Deviations for SDEs.

In other words the rate function is the same as that for LDP (with speed ε) for a
Gaussian process Uε that solves

Uε(t) =

∫ t

0
A(s)Uε(s)ds +

√
ε

∫ t

0
B1(s)dW1(s) +

√
ε

∫ t

0
B2(s)dW2(s)

W1, W2 are independent d -dimensional Brownian motions.

A(s) = DB(X 0(s)) +
∫
X
DxG (x , y)ν(dy).

B1(s) = ||G (X 0(s), ·)||2Id×d .

B2(s) = σ(X 0(s)).
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