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Large Deviation Principle.

Definition. Consider a sequence {X®}.~o of £ valued r.vs. £ - Polish.

@ A function / from £ to [0, o0] is called a rate function on & if for each
M < 00, {x € £:1(x) < M} is compact.

e {X¢} is said to satisfy the large deviation principle on £ (as € — 0)
with rate function / if:

o For each closed subset F of £

limsup,_,g€elogP(Xc € F) < —infyer I(x).
o For each open subset G of £

liminf._oelogP(X® € G) > —infyeqg I(x).

Formally, for small e:

P(X € A) =~ exp {—M} , Ae B(€).
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]
Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:

dXE(t) = b(XE(t))dt + VE(XE(£))dW(t), X*(0) = x.

@ b, o suitable coefficients... W a f.d. BM.
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]
Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:

dXE(t) = b(XE(t))dt + VE(XE(£))dW(t), X*(0) = x.

@ b, o suitable coefficients... W a f.d. BM.
@ Let G C R” be bounded open. Let x € G and 7° = inf{t : X°(t) € 9G}.
@ Interested in lim._,oclog Py (X*(7%) € N), where N C 9G.
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]
Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:

dXE(t) = b(XE(t))dt + VE(XE(£))dW(t), X*(0) = x.

@ b, o suitable coefficients... W a f.d. BM.

@ Let G C R” be bounded open. Let x € G and 7° = inf{t : X°(t) € 9G}.

@ Interested in lim._,oclog Py (X*(7%) € N), where N C 9G.

o Formally, with ® a nonnegative C? function, ®(x) =~ M1yc(x), M a large
scaler,

lim &log P, (X*(7°) € N) = lim & log E, {e—¢(Xf(rf))/e} ‘
e—0 e—0
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]
Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:

dXE(t) = b(XE(t))dt + VE(XE(£))dW(t), X*(0) = x.

b, o suitable coefficients... W a f.d. BM.

Let G C R" be bounded open. Let x € G and 7¢ = inf{t : X*(t) € G}.
Interested in lim._,olog P, (X*(7) € N), where N C 9G.

Formally, with & a nonnegative C? function, ®(x) ~ M1yc(x), M a large
scaler,

® © ¢ ¢

lim &log P, (X*(7°) € N) = lim & log E, {e—¢(xs(rf))/e} ‘
e—0 e—0

<

Then g°(x) = E, {e~®X*(7)/=} solves
LEgf(x) =0, x€G
g(x)=e®M/e xe a6

where Leg = £Tr(cD?go’) + b+ Vg.
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Stochastic Control Connection (ctd.)

@ log transform: Let J° = —clog g®. Then J° solves
gTr(aDZJfa') T H(x, V) =0

where
H(x,p) = m%{1[L(x,v)+p- v, xe G, peR"
veR"

and L(x,v) = %(b(x) —v)[o(x)a’ (x)]L(b(x) — V).
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Stochastic Control Connection (ctd.)

@ log transform: Let J° = —clog g®. Then J° solves
%Tr(aozﬁa’) T H(x,VF)=0

where
H(x,p) = m]iRn[L()<,v)+p-v]7 xeG, peR”
veR"

and L(x,v) = 3(b(x) — v)/[o(x)o’ (x)]2(b(x) — v).

@ J° can be characterized as the value function of the stochastic control

problem:
£ = inf e [ LG+ o5 (7))
dX5(t) = u(t)dt + eo(XE(t))dW(t), X5(0) = x
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]
Stochastic Control Connection (ctd.)

@ log transform: Let J° = —clog g®. Then J° solves
%Tr(aozﬁa’) T H(x,VF)=0

where
H(x,p) = m]iRn[L()<,v)+p-v]7 xeG, peR”
veR"

and L(x, v) = 3(b(x) — v} [o(x)o" (x)] 1 (b(x) — v).
@ J° can be characterized as the value function of the stochastic control
problem:

S(x) = inf ]E{/O LXE(e), u(t))dt+¢()~<5(;€))}

ueA

dX5(t) = u(t)dt + eo(XE(t))dW(t), X5(0) = x

@ One can argue J* — J, where J(x) is the value function of the deterministic
control problem:

0 .
s) = inf [ Leo(e). ) + 0(610))

where inf is over all abs. cts. ¢ such that ¢(0) = x, and
0 = inf{t: ¢(t) € 0G}.
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]
Stochastic Control Connection (ctd.)

@ log transform: Let J° = —clog g®. Then J° solves
%Tr(aozﬁa’) T H(x,VF)=0

where
H(x,p) = m]iRn[L()<,v)+p-v]7 xeG, peR”
veR"

and L(x, v) = 3(b(x) — v} [o(x)o" (x)] 1 (b(x) — v).
@ J° can be characterized as the value function of the stochastic control
problem:

S(x) = inf ]E{/O LXE(e), u(t))dt+¢()~<5(;€))}

ue A
dXe(t) = u(t)dt + ea(XE(t))dW(t), X5(0) = x

@ One can argue J* — J, where J(x) is the value function of the deterministic
control problem:

0 .
s) = inf [ Leo(e). ) + 0(610))

where inf is over all abs. cts. ¢ such that ¢(0) = x, and
0 = inf{t: ¢(t) € 0G}.
@ Later works: Sheu (1985), Dupuis and Ellis(1997), Feng and Kurtz (2005).
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Freidlin-Wentzell Asymptotics.

@ Consider a small noise n-dimensional SDE:
dX®(t) = b(X*(t))dt + Vea(X(t))dW(t), X*(0) = x.
o W afd. BM.
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|
Freidlin-Wentzell Asymptotics.

@ Consider a small noise n-dimensional SDE:
dX®(t) = b(X*(t))dt + Vea(X(t))dW(t), X*(0) = x.
o W afd. BM.
@ As e — 0, X® converges in probability, in C([0, T] : R9) to ¢ that
solves the ODE: _
€= b(6), €(0) =
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|
Freidlin-Wentzell Asymptotics.

@ Consider a small noise n-dimensional SDE:
dX®(t) = b(X*(t))dt + Vea(X(t))dW(t), X*(0) = x.

e Wafd BM.
@ As e — 0, X® converges in probability, in C([0, T] : R9) to ¢ that
solves the ODE:

€= b(¢), £(0) = x.

@ Probabilities of ‘deviations’ P(supg,7 [X*(t) — £(t)| > c), studied
by Freidlin-Wentzell by establishing a LDP.
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|
Freidlin-Wentzell Asymptotics.

@ Consider a small noise n-dimensional SDE:
dX®(t) = b(X*(t))dt + Vea(X(t))dW(t), X*(0) = x.
o W afd. BM.
@ As e — 0, X® converges in probability, in C([0, T] : RY) to ¢ that
solves the ODE: _
€= b(6), €(0) =

@ Probabilities of ‘deviations’ P(supg,7 |X*(t) — &(t)| > ¢), studied
by Freidlin-Wentzell by establishing a LDP.

@ — a starting point for studying asymptotics of exit times from
domains, invariant measure asymptotics, metastability etc.

@ ...also a basis for developing efficient importance sampling schemes.
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Freidlin-Wentzell Asymptotics.

@ Consider a small noise n-dimensional SDE:
dX®(t) = b(X*(t))dt + Vea(X(t))dW(t), X*(0) = x.
W af.d. BM.

@ As e — 0, X® converges in probability, in C([0, T] : RY) to ¢ that
solves the ODE:

€= b(€), £(0) = x.

@ Probabilities of ‘deviations’ P(supg,7 |X*(t) — &(t)| > ¢), studied
by Freidlin-Wentzell by establishing a LDP.

@ — a starting point for studying asymptotics of exit times from
domains, invariant measure asymptotics, metastability etc.

@ ...also a basis for developing efficient importance sampling schemes.

@ Here we revisit this problem — cover more general settings.

@ infinite dimensional noise, Poisson random measures, fractional

Brownian motions, moderate deviations problems.
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LDP and Laplace Principle.

o LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):
@ A collection of £ valued random variables {X¢} is said to satisfy
Laplace principle with rate function /, if for all h € Cp(E)

lim —clog E {exp [—%h(Xe)]} = inf {h(x) + 103}
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I——.
LDP and Laplace Principle.

o LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):
@ A collection of £ valued random variables {X¢} is said to satisfy
Laplace principle with rate function /, if for all h € Cp(E)

. 1 . .
ell_% —clog E {exp [_Eh(X )]} = ;gfg{h(x) + 1(x)}.
@ From Donsker-Varadhan:

—elog E{exp[—Lh(X)] }=infoep(e)[ [ h(x)dR(x)+R(Q|IP?)].
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I——.
LDP and Laplace Principle.

@ LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):
@ A collection of £ valued random variables {X¢} is said to satisfy
Laplace principle with rate function /, if for all h € Cp(E)

. 1 . .
elm —clog E {exp [—Eh(X )]} = X|2fg{h(x) + 1(x)}.
@ From Donsker-Varadhan:

—elog E{exp[—Lh(X)] }=infoep(e)[ [ h(x)dR(x)+R(Q|IP?)].

@ Goal is to show the convergence of variational expressions:

e—0

infoep(g) [/ h(x)dQ(x)+R(QIIPF)] == infyee{h(x)+1(x)}.
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I——.
LDP and Laplace Principle.

@ LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):
@ A collection of £ valued random variables {X¢} is said to satisfy
Laplace principle with rate function /, if for all h € Cp(E)

. 1 . .
Elm —clog E {exp [—Eh(X )]} = X|21;{h(x) + 1(x)}.
@ From Donsker-Varadhan:

—elog E{exp[—Lh(X)] }=infoep(e)[ [ h(x)dR(x)+R(Q|IP?)].

@ Goal is to show the convergence of variational expressions:

e—0

infoep(g) [/ h(x)dQ(x)+R(QIIPF)] == infyee{h(x)+1(x)}.

@ Instead of PDE characterizations — argue that for a family of ‘nice
controls’ the (state, control, cost) sequence converges to the right
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n
Amarjit Budhiraja Department of Statistics Large Deviations for Small Noise Stochastic




Variational Representations for Exponential Functionals of
BM.

@ Suppose X = G°(f3), G° is a measurable map, /3 an infinite
dimensional BM.

@ First Step: Find convenient variational formulas for

—elog ]E{exp[—%h(Xe)]}.
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Variational Representations for Exponential Functionals of
BM.

@ Suppose X = G°(f3), G° is a measurable map, /3 an infinite
dimensional BM.

@ First Step: Find convenient variational formulas for

—elog ]E{exp[—%h(Xf)]}.

@ Thus we seek variational representations for

— log E(exp{—f(05)}),

f is bounded measurable.
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Brownian Sheet.

@ Let O be a bounded open set in RY and {B(t, x), (t,x) € [0, T] x O}
be a Brownian sheet.
|.e. it is a mean zero, continuous, Gaussian random field such that

o Cov(B(t,x),B(s,y)) = Leb(A¢x N As,y), where

Atx ={(s,y):s€[0,t], y e ON[0,x]}.
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N —
Brownian Sheet.

@ Let O be a bounded open set in R? and {B(t, x), (t,x) € [0, T] x O}
be a Brownian sheet.
|.e. it is a mean zero, continuous, Gaussian random field such that

o Cov(B(t,x),B(s,y)) = Leb(A¢x N As,y), where
Acx ={(s,y) :s€[0,1], y € ON[0,x]}.

@ Bisa (C,B(C)) valued r.v., where C = C(]0, T] x O : R) and B(C)
the Borel sigma-field.
@ Denote by p the induced Wiener measure.

@ Henceforth B is the canonical process on (C, B(C), u).
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I——.
Representation for functionals of Brownian Sheet.

o Let H=L2([0, T] x O) and let

Pr={u: uis P® B(O) measurable and u(w) € H,u — a.s.}.
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I——.
Representation for functionals of Brownian Sheet.

o Let H=L?([0, T] x O) and let

Pr={u: uis P® B(O) measurable and u(w) € H,u — a.s.}.

@ For ¢ € H, define Int(¢) € C by

Int(¢)(t,x) = [, (s, y)dsdy.
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I——.
Representation for functionals of Brownian Sheet.
o Let H=L2([0, T] x O) and let

Pr={u: uis P® B(O) measurable and u(w) € H,u — a.s.}.

@ For ¢ € H, define Int(¢) € C by

Int(9)(t, x) = fAf,x é(s,y)dsdy.

@ Theorem. [B., Dupuis (2000); B., Dupuis, Maroulas (2008).] Let
f: C — R be a bounded measurable map. Let B be a Brownian
sheet. Then

— logE(exp{—f(B)}) = inf,ep, {E (%||u||f_, +f(B+ Int(u)))} .
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Remarks.

~ log E(exp{~f(B)}) = infuep, {E* (3lullfy + F(B +Int(u))) } .

@ From the Donsker-Varadhan formula:

—log E(exp{—f(B)}) = infqep(c) EC [f(B) + R(Q || )]

From this one can deduce:

—log E(exp{—f(B)}) < inf{ nice yep, {E9 (3]|ul?, + £(BY + Int(u))) } -
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N
Remarks.

~ log E(exp{~f(B)}) = infuep, {E* (3lullfy + F(B +Int(u))) } .

@ From the Donsker-Varadhan formula:
—log E(exp{—f(B)}) = infgep(c) E [f(B) + R(Q || n)].

From this one can deduce:

—log E(exp{—f(B)}) < inf{ nice yep, {E9 (3]|ul?, + £(BY + Int(u))) } -

@ Boué-Dupuis (1998): B is a n dimensional BM.
@ Zhang (2009): Setting of an abstract Wiener space.
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N
Remarks.

~ log E(exp{~f(B)}) = infuep, {E* (3lullfy + F(B +Int(u))) } .

From the Donsker-Varadhan formula:

(4

—log E(exp{—f(B)}) = infgep(c) E [f(B) + R(Q || n)].
From this one can deduce:

—log E(exp{—f(B)}) < inf{ nice yep, {E9 (3]|ul?, + £(BY + Int(u))) } -

Boué-Dupuis (1998): B is a n dimensional BM.
Zhang (2009): Setting of an abstract Wiener space.
Ustijnel(2009): Connections with Monge-Kantorovitch problem.
Obtaining optimal controls:

o Ustiinel(2009) — in terms of Clark-Ocone formula.

o Chen-Xiong (2010) — through solutions of BSDEs.

¢ & ¢ ¢

NSF-CBMS Conference Analysis of St/ogl;as

Amarjit Budhiraja Department of Statistics Large Deviations for Small Noise Stochastic



I
A LDP for functionals of BS.

@ Interested in LDP (as ¢ — 0) for

X = G5(y/eB).
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I
A LDP for functionals of BS.

@ Interested in LDP (as ¢ — 0) for

X = G5(y/eB).

@ Typical example of X¢: Solution of a small noise SPDE.
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N
A LDP for functionals of BS.

@ Interested in LDP (as ¢ — 0) for

X = G5(\/eB).

@ Typical example of X¢: Solution of a small noise SPDE.
@ Then
—elog ]E{exp[—%h(Xe)]}:—Elog ]E{exp[—%h(ge(\/EB))]}.
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LDP for X = G°(\/€eB).
o Let
SM={peH:|lglf} <M}.
e SM is compact with the weak topology.

@ Define
P ={u:ueP,:uw)eSMpu—as}.
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LDP for X= = G*(\/B).

o Let
SM={peH:|lglf} <M}.
e SM is compact with the weak topology.

@ Define
P ={u:ueP,:uw)eSMpu—as}.

@ Assumption. There exists a measurable map G%: C — & such that:
For every M < oo:
o Whenever {u,} C PM is such that u, = u (as SM-valued random
elements), and €, € [0,1) is such that £, — 0, we have

G (/enB + Int(un) ) = G°(Int()).

@ Theorem.[B., Dupuis, Maroulas (2008).] Suppose Assumption holds.
Then, the family {X¢} satisfies LDP on &, with rate function

I(F) = inf {yeprr—go(Intqu)y {211UllE) -
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Sketch of Proof.

@ Suffices to show that Laplace principle holds: For all h € Cp(E)

lime_,0 —elog E {exp [—1h(X)]} = infrce{h(x) + I(x)}.
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N
Sketch of Proof.

@ Suffices to show that Laplace principle holds: For all h € Cp(E)
lime_,0 —elog E {exp [—1h(X)]} = infrce{h(x) + I(x)}.
@ Recall X¢ = G%(y/eB). Applying repn. with f = %thE(\/E-) we have

~clog & {exp [~ h(X)]} = infy E (3l + (X)),
where X" = G%(1/eB + Int(u)).
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I 00
Proof: inf, B(3[ul?+h(X"))—infree {h(x)+1(x)}.
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|
Proof: inf, B(1[ul?+h(X"))—infee {h(x)+1(x)}.

Proof of Upper Bound. Recall: X" = G°(\/eB + Int(u))
Fix 0 € (0,1) and choose for each ¢, u such that

LHS > E (3]|u¥[|2, 4+ h(X¥7)) — 0.
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Proof: inf, B(1[ul?+h(X"))—infee {h(x)+1(x)}.

Proof of Upper Bound. Recall: X" = G°(\/eB + Int(u))
Fix 0 € (0,1) and choose for each ¢, u such that

LHS > E (3]|u¥[|2, 4+ h(X¥7)) — 0.

e WLOG, for some N < 00, sup, ||uf||3, < N, i.e. vt € SN as.
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I——.
Proof: inf, E(3[|ul2+h(X"))—infees {h(x)+/(x)}.

Proof of Upper Bound. Recall: X" = G*(\/eB + Int(u))
Fix 0 € (0,1) and choose for each ¢, u® such that

LHS > E (3]|u¥[|2, 4+ h(X¥7)) — 0.

e WLOG, for some N < 00, sup, ||uf||3, < N, i.e. vt € SN as.

Pick a subsequence along which u¢ converges in distribution to some wu.
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I——.
Proof: inf, E(3[|ul2+h(X"))—infees {h(x)+/(x)}.

Proof of Upper Bound. Recall: X" = G*(\/eB + Int(u))
Fix 0 € (0,1) and choose for each ¢, u® such that

LHS > E (3]|u¥[|2, 4+ h(X¥7)) — 0.
e WLOG, for some N < 00, sup, ||uf||3, < N, i.e. vt € SN as.

Pick a subsequence along which u¢ converges in distribution to some wu.
From Assumption:

liminfe_oE [3]|uf||3 + ho G (VeB + Int(u))]
> E[]|ull}y + ho G (Int(u))]
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I——.
Proof: inf, E(3[|ul2+h(X"))—infees {h(x)+/(x)}.

Proof of Upper Bound. Recall: X" = G*(\/eB + Int(u))
Fix 0 € (0,1) and choose for each ¢, u® such that

LHS > E (3]|u¥[|2, 4+ h(X¥7)) — 0.
e WLOG, for some N < 00, sup, ||uf||3, < N, i.e. vt € SN as.

Pick a subsequence along which u¢ converges in distribution to some wu.
From Assumption:

liminfe_oE [3]|uf||3 + ho G (VeB + Int(u))]
> E[]|ull}y + ho G (Int(u))]

> inf{(x,u)egxH:x:go(lnt(u))} {%HUH%—/ + h(X)}
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I——.
Proof: inf, E(3[|ul2+h(X"))—infees {h(x)+/(x)}.

Proof of Upper Bound. Recall: X" = G*(\/eB + Int(u))
Fix 0 € (0,1) and choose for each ¢, u® such that

LHS > E (3]|u¥[|2, 4+ h(X¥7)) — 0.

e WLOG, for some N < 00, sup.o||uf]|Z, < N, i.e. uf € SN as.

Pick a subsequence along which u¢ converges in distribution to some wu.
From Assumption:

liminfe_oE [3]|uf||3 + ho G (VeB + Int(u))]

> E[3]lullf + hoG°(Int(u))]
inf{(x,u)éé’xH:x:g0(|nt(u))} {%H“Hﬁ + h(X)}
= infyee{l/(x) + h(x)}.
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Proof: inf, B(3[ul?+h(X"))—infree {h(x)+1(x)}.

Proof of the lower bound. Fix § > 0 and let xy € £ be such that
1(x0) + h(x0) < infxee{l(x) + h(x)} + 3.
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Proof: inf, B(1[ul?+h(X"))—infee {h(x)+1(x)}.

Proof of the lower bound. Fix § > 0 and let xy € £ be such that
1(x0) + h(x0) < infxee{l(x) + h(x)} + 3.

Since I(xo) = inf,{3|u||?,}, can choose U € H such that:

a2, < 1(x0) + 2 and xo = GO (Int()).
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I——.
Proof: inf, E(3[|ul2+h(X"))—infees {h(x)+/(x)}.

Proof of the lower bound. Fix § > 0 and let xy € £ be such that
1(x0) + h(x0) < infxee{l(x) + h(x)} + 3.

Since I(xo) = inf,{3|u||?,}, can choose U € H such that:

a2, < 1(x0) + 2 and xo = GO (Int()).
Then

limsupLHS = limsup._,qinf,E [3|[u[|?, + ho G (/B + Int(u))]
e—0
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I——.
Proof: inf, E(3[|ul2+h(X"))—infees {h(x)+/(x)}.

Proof of the lower bound. Fix § > 0 and let xy € £ be such that
1(x0) + h(x0) < infxee{l(x) + h(x)} + 3.

Since I(xo) = inf,{3|u||?,}, can choose U € H such that:

a2, < 1(x0) + 2 and xo = GO (Int()).
Then

limsupLHS = limsup._,qinf,E [3|[u[|?, + ho G (/B + Int(u))]
e—0

< limsup,_oE [3][il[} + ho G (VB + Int(a))]
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Proof: inf, E(3[|ul2+h(X"))—infees {h(x)+/(x)}.
Proof of the lower bound. Fix § > 0 and let xy € £ be such that
1(x0) + h(x0) < infxee{l(x) + h(x)} + 3.
Since I(xo) = inf,{3|u||?,}, can choose U € H such that:

a2, < 1(x0) + 2 and xo = GO (Int()).
Then

limsupLHS = limsup._,qinf,E [3|[u[|?, + ho G (/B + Int(u))]

e—0
< limsup_oE [2[d[2 + ho Gt (VB + Int())]
sl +E[ho G (Int(@)] = 311l + h(x)
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I——.
Proof: inf, E(3[|ul2+h(X"))—infees {h(x)+/(x)}.

Proof of the lower bound. Fix § > 0 and let xy € £ be such that
1(x0) + h(x0) < infxee{l(x) + h(x)} + 3.

Since I(x0) = inf,{%||ul|%}, can choose T € H such that:
2 H
a2 < I(x0) + 5 and xo = G° (Int(@)).
Then

limsupLHS = limsup._,qinf,E [3|[u[|?, + ho G (/B + Int(u))]

e—0

im sup,o B [21[31[, + ho G° (VB + Int(@))]
sl +E[ho G (Int(@)] = 311l + h(x)
/(Xo) + h(Xo) + g

IN
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I——.
Proof: inf, E(3[|ul2+h(X"))—infees {h(x)+/(x)}.

Proof of the lower bound. Fix § > 0 and let xy € £ be such that
1(x0) + h(x0) < infxee{l(x) + h(x)} + 3.

Since I(x0) = inf,{%||ul|%}, can choose T € H such that:
2 H
a2 < I(x0) + 5 and xo = G° (Int(@)).
Then

limsupLHS = limsup._,qinf,E [3|[u[|?, + ho G (/B + Int(u))]

e—0

imsup o E 313, + ho G (VEB + Int(@)]
3l1TllE +E [ho GO (Int(@))] = 31[al1F + h(x)
I(x0) + h(x0) + g

)l(r;fg{l(x) + h(x)} + 6.

IN A
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I——.
Applications.

@ Hilbert Space Valued Diffusions. Unique solvability studied in Leha
and Ritter (1984). Small noise LDP in B.-Dupuis(2000).

@ Stochastic reaction diffusion equations. Prior works on LDP:
Freidlin(1988), Zabczyk(1988), Sowers(1992), Kallianpur and
Xiong(1995). These papers assume diffusion coefficient is bounded,
“cone condition” on domain... conditions needed for tail probability
estimates on certain stochastic convolutions in Holder norms —
Garsia's Theorem.

Conditions relaxed in B.-Dupuis-Maroulas(2008).

@ Stochastic flows of diffeomorphisms. B.-Dupuis-Maroulas(2009).
Prior works include Millet, Nualart and Sanz-Sole(1992), Ben Arous
and Castell(1995)—these concern finite dimensional flows.

— asymptotic relation, in terms of the rate function, between (small
noise) Bayesian solution of an image matching problem with the

solution of a deterministic variational problem. -
NSF-CBMS Conference Analysis of St/oglias
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I——.
Advantages of the Approach.

No approximations or discretizations.
Exponential prob. estimates are completely bypassed.

Uniqueness results for HJ equations not needed.

e © ¢ ¢

Proofs of LDP reduce to demonstrating basic qualitative properties of
certain perturbations of the original system (eg. existence,
uniqueness, stability under L2-bounded perturbations).
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I——.
Other Applications.

@ Fluid dynamics models.

@ 2D Navier-Stokes equation with multiplicative noise (Sritharan and Sundar
(2006)), stochastic tamed 3D Navier-Stokes equations (Rockner, Zhang, Zhang
(2010)), Boussinesq equations under random influences (Duan and Millet
(2009)), inviscid shell models (Bessaih and Millet (2009)), 2D Navier Stokes
equations with a free boundary condition (Bessaih and Millet (2010)), stochastic
shell model of turbulence (Manna, Sritharan and Sundar (2010)), stochastic 2D
hydrodynamical type systems (Chueshov and Millet (2010)), stochastic
derivative Ginzburg-Landau equation with multiplicative noise (Yang and Hou
(2008)).

@ Less Regular Coefficients.

o Homeomorphism flows of non-Lipschitz multi-dimensional SDEs (Ren and Zhang
(2005)), degenerate SDEs with Sobolev coefficients (Zhang (2010)), multivalued
stochastic differential equations (Ren, Xu and Zhang (2010)), stochastic
variational inequalities (Bo and Jiang (2011)).

@ Other examples.

@ Stochastic partial differential equations under fast dynamical boundary
conditions (Wang and Duan (2009)), SPDEs with reflection (Xu and Zhang
(2009)), 3D stochastic wave equation (Ortiz-Lopez and Sanz-Sole (2010)),
stochastic Volterra equations in Banach spaces (Zhang (2010)).
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Variational Representation for PRM.
@ Let X be a complete separable, locally compact metric space.

@ M be the space of all locally finite measures on X1 = [0, T] x X.

@ The space is endowed with the weakest topology such that
M > A+ [ fdX is continuous for all f € C.(X7).
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I——.
Variational Representation for PRM.

@ Let X be a complete separable, locally compact metric space.
@ M be the space of all locally finite measures on X1 = [0, T] x X.

@ The space is endowed with the weakest topology such that
M > A+ [ fdX is continuous for all f € C.(X7).

@ Fix a locally finite measure v on X and for 6 > 0, let N? be a PRM
on X7 with intensity 0dt x v(dx).
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I——.
Variational Representation for PRM.

Let X be a complete separable, locally compact metric space.
M be the space of all locally finite measures on X1 = [0, T] x X.

e ©

The space is endowed with the weakest topology such that

M > A+ [ fdX is continuous for all f € C.(X7).

Fix a locally finite measure v on X and for ¢ > 0, let N? be a PRM
on X7 with intensity 0dt x v(dx).

@ N can be represented as

N°((0, 8] X U)) = [fi0.49x ux(0.00) Lo.01(r)N(dsaxdr),

where N is a PRM on X7 x R, with intensity dt x v(dx) x dr.
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I——.
Variational Representation for PRM.

@ Let X be a complete separable, locally compact metric space.
@ M be the space of all locally finite measures on X1 = [0, T] x X.

@ The space is endowed with the weakest topology such that
M > A+ [ fdX is continuous for all f € C.(X7).

@ Fix a locally finite measure v on X and for ¢ > 0, let N? be a PRM
on X7 with intensity 0dt x v(dx).

@ N can be represented as
N°((0, 8] X U)) = [fi0.49x ux(0.00) Lo.01(r)N(dsaxdr),

where N is a PRM on X7 x R, with intensity dt x v(dx) x dr.
o Let fl_: {¢:]0, T] x X xQ — [0,00), predictable, measurable}. For
v € A, N¥ defined similarly:
N?((0,t] x U)) = fo (0,6]% U(0,00) Lio,( sxw)](r)N(dsdxdr)
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Variational Representation for PRM (ctd.).
@ Let £:[0,00) — (0,00)

Ur)y=rlogr—r+1, rel0,00).
For ¢ € A, define

Lr(0)(w) = /X o (t, %, ) vr(dt dx), w € T
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Variational Representation for PRM (ctd.).
@ Let £:[0,00) — (0,00)
Ur)y=rlogr—r+1, rel0,00).

For ¢ € A, define

Lr(0)(w) = /X o (t, %, ) vr(dt dx), w € T

@ Theorem [B., Dupuis and Maroulas(2010).] Let f be a bounded
measurable map from Ml — R. Then, for § > 0

—log E(e~" (V) = inf 1 E [0L1(p) + F(N*?)] .

@ A different repn obtained in Zhang(2009) - not suitable for large
deviation applications.
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I——.
Application to Large Deviations.

e 3= (B)2, is an i.i.d. family of standard Brownian motions.
Ne""is a PRM with intensity measure e~ tuy.

Let V= C([0,00) : R*®) x M. Let G°:V — U, where U is a Polish
space, be a sequence of measurable maps.

@ Interested in large deviation principle for

¢ ©

75 = G5 (VeB, e ).

@ For M € N, let
. . T
M= {qS € L3([0, T]: £2) : L+ (f) E/o 6|13 < M}.

SM— (40, T] x X = (0,00) : LT(¢) < M}.

o Identify a function ¥ € S™ with the measure 1/3,11 € M, through
V(A) = / (s, x) 7 (dsdx).
A
& With ‘weak’ topology S = 5™ x §M is a compact metric space. Let

UM be the space of SM valued controls that are ‘non-anticipative’.
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I——.
Application to Large Deviations.

1

Z° = G5(VEB,eN).

@ Main Condition. There exists a measurable map GO : V = U such that:
For every M < oo:

o Whenever {u, = (¥n, ¢n)} C UM is such that u, = u (as SM-valued
random elements), and ¢, € [0,1) is such that &, — 0, we have

G (Ve + Jy vn(s)ds, ealNs"#0) = G° (J; w(s)ds, v5)

@ Let S = UpenSM. For ¢ € U, define

Se = {(f,g) €S:¢p= go(/ f(s)ds,g)} .
0
Let / be the rate function defined as

ot {3k L)

i
q=(f,g)€Sy

I(¢) =

@ Theorem [B., Dupuis and Maroulas(2010)] Under the condition above

{Z}es0 satisfies a LDP with rate function /.
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I——.
Applications.

@ Advection-Diffusion Equation with Poissonian Sources (B., Chen,
Dupuis(2013))

@ Large Deviations for Stochastic Averaging Problems for
jump-diffusions (B., Chen Dupuis(2017)).
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[
Fractional Brownian Motion.

o Let {Bf’,t €[0,1]} be a d-dimensional fBM with Hurst parameter H € (0,1)
on (Q,F,P).
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-
Fractional Brownian Motion.
o Let {Bf’,t €[0,1]} be a d-dimensional fBM with Hurst parameter H € (0,1)

on (Q,F,P).
e B has a representation:

1
B:’:/ Kn(t,s)dBs,
0

where Ky : [0,1] x [0,1] — R and B is a standard d-dimensional BM.
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N —
Fractional Brownian Motion.

o Let {Bf’,t €[0,1]} be a d-dimensional fBM with Hurst parameter H € (0,1)
on (Q,F,P).
e B has a representation:

1
BH :/ Kn(t,s)dBs,
0
where Ky 1 [0,1] x [0,1] — R and B is a standard d-dimensional BM.

@ This kernel describes a Hilbert space H as the collection of all h: [0,1] — R
such that

1
h(t):(KHh)(t):/ Ki(t, s)h(s)ds, t € [0,1],
0
for some h € L2([0,1] : RY). Inner product on H:

(h,&)n = (Kuh, Kug)u = (h,&) 2.
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N —
Fractional Brownian Motion.

o Let {Bf’,t €[0,1]} be a d-dimensional fBM with Hurst parameter H € (0,1)
on (Q,F,P).
e B has a representation:

1
BtH:/ Kn(t,s)dBs,
0

where Ky 1 [0,1] x [0,1] — R and B is a standard d-dimensional BM.
@ This kernel describes a Hilbert space H as the collection of all h: [0,1] — R
such that

1
h(t):(KHh)(t):/ Ku(t, s)h(s)ds, t € [0,1],
0
for some h € L2([0,1] : RY). Inner product on H:
(h,8)n = (Kb, Kug)n = (h,&).2.

o Let FI' = o{BH : s < t} and let A be the family of all F/' adapted H valued

random variables.
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I——.
Representation for fBM:

@ Let f be a real bounded measurable function on C([0,1] : RY). Then

1
—log E (e*f(B”)) — inf E (f(BH +v)+ 5|v||%,[> .
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I——.
SDE driven by fBM (H > 1/2).

@ Consider the SDE

t t
X :x0+/ b(s,Xj)ds+\/E/ o(s, X5)dB. t € [0,1].
0 0

o Forsome L >0
|b(t,x) = b(t,y)| < Lix = yl, [b(t,x)] < L(L+ |x|) Vx, y € RY, Vt € [0,1].

s o(t,x): [0,1] x R™ — R™* is differentiable in x, and for some M > 0,
1-H< X<, %—1<7§landVN>0thereexists My > 0 s.t.

lo(t,x) —o(t,y)] < M|x —yl|, Vx € R™, Vt € [0,1],

‘axr'o-(t7x) - a}ﬁa(tﬂy)| < MN|X _ypv V|X‘7 |y| <N,Vte [07 1]7
lo(t, x) — o (s, x)| 4+ |9 o (t, x) — D0 (s, x)| < M|t—s|*, ¥x € R™, V¢, s € [0,1],

foreachi=1,...,m.
@ Thereexist 0 < p<2— % and K > 0 such that
lo(t,x)] < K(1+ |x]?), Vx € R™, Vt € [0,1].

o Existence and uniqueness of solutions shown in Nualart and Rascanu(2002).
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N
SDE driven by fBM (ctd.)

@ Theorem (B., Pipiras and Song(2017).) Under the above conditions, {X®}:50
satisfies a LDP in C%([0,1];R™) for any o € (1 — H, min{3, A, £-}), with

7m
the rate function )
1) = inf {S113.}

where the infimum is taken over
{veMH: fi=xo+ [y b(s,f)ds+ [y o(s, f:)dvs}.
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[
Moderate Deviations.

@ Concerned with probabilities of deviations of a smaller order than in large
deviations theory.
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[
Moderate Deviations.

@ Concerned with probabilities of deviations of a smaller order than in large
deviations theory.

o Example. Let {Y;} bei.i.d. mean 0 d-dimensional r.v. with distribution
p. Let S, =37, Yi. Then
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[
Moderate Deviations.

@ Concerned with probabilities of deviations of a smaller order than in large
deviations theory.

o Example. Let {Y;} bei.i.d. mean 0 d-dimensional r.v. with distribution
p. Let S, =37, Yi. Then

LDP: P(|Sa| > nc) =~ exp{—n inf /(y)} ,
lylze

where

Iy) = s {(a,w — log /Rd exv{(a,y>}p(dy)} .
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N —
Moderate Deviations.

@ Concerned with probabilities of deviations of a smaller order than in large
deviations theory.

o Example. Let {Y;} bei.i.d. mean 0 d-dimensional r.v. with distribution
p. Let S, =37, Yi. Then

LDP: P(|Sa| > nc) = exp {—n inf /(y)} ,
lylze
where
1) = s {ta) ~ oz [ il totan)}.
a€cRd Rd
Let {a,} be a sequence such that a, 1 co and n~/2a, — 0. Then

MDP: P(|S,| > nl/za,,c)zexp{—ai inf /U(y)},
[y|=c

where /%(y) = 3y'Y "1y and T = cov(Y).
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Moderate Deviations.

@ Concerned with probabilities of deviations of a smaller order than in large
deviations theory.

o Example. Let {Y;} bei.i.d. mean 0 d-dimensional r.v. with distribution
p. Let S, =37, Yi. Then

LDP: P(|Sa| > nc) = exp {—n inf /(y)} ,
lylze

where

1) = s {ta) ~ oz [ il totan)}.

a€cRd

Let {a,} be a sequence such that a, 1 co and n~/2a, — 0. Then
MDP: P(|S,| > n*/?a,c) ~ exp{—ai inf /U(y)},
lylze

where /%(y) = 3y'Y "1y and T = cov(Y).

@ Definition. A collection of random variables {X¢} of £ valued random
variables satisfies a LDP on & with speed b(e)~! and rate function / of
for all h € Cp(E).

—h(X?)
b(e)

Elim) b(e) log Eexp{ } =- )i(rgg{h(x) +1(x)}.
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Moderate Deviations.

@ Concerned with probabilities of deviations of a smaller order than in large
deviations theory.

o Example. Let {Y;} bei.i.d. mean 0 d-dimensional r.v. with distribution
p. Let S, =37, Yi. Then

LDP: P(|S,| > nc)zexp{—n inf /(y)},
lylze

where

1) = s {ta) ~ oz [ il totan)}.

a€cRd

Let {a,} be a sequence such that a, 1 co and n~/2a, — 0. Then
MDP: P(|S,| > n*/?a,c) ~ exp{—ai inf /U(y)},
lylze

where /%(y) = 3y'Y "1y and T = cov(Y).

@ Definition. A collection of random variables {X¢} of £ valued random
variables satisfies a LDP on & with speed b(e)~! and rate function / of
for all h € Cp(E).

—h(X?)
b(e)

Elim) b(e) log Eexp{ } =- )i(r;fg{h(x) +1(x)}.

@ The example says
° % satisfies a LDP with speed n and rate function /.

52— satisfies a LDP with speed a2 and rate function /°.

® W7,
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I
Moderate Deviations for SDEs.

@ Consider the SDE:

XE(E) = xo+ /0 Cb(XE(s))dsvE /0 o (XE(5)) AW () +2 /X G(X(s=), y)N" (dsdy).

x[0,t]
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I
Moderate Deviations for SDEs.

@ Consider the SDE:

XE(E) = xo+ /0 Cb(XE(s))dsvE /0 o (XE(5)) AW () +2 /X G(X(s=), y)N" (dsdy).

x[0,t]

o N is a PRM with intensity measure e~1u/(dy)dt.
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N
Moderate Deviations for SDEs.

@ Consider the SDE:

XE(E) = xo+ /0 Cb(XE(s))dsvE /0 o (XE(5)) AW () +2 /X G(X(s=), y)N" (dsdy).

x[0,t]

o N is a PRM with intensity measure e~ 11/(dy)dt.
@ For some L € (0,00) Lg € L1(v) N Ly(v), Mg € La(v)

Ib(x) = b(x')| +|o(x) = o(x')| < Llx = x|, x,x € RY,
G(x.y) = GX' ) < L(y)lx =X, x. X €R, y € X,
IG(y)l < Me(y)1 +|x]), x,x" €R, y € X.
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N
Moderate Deviations for SDEs.

@ Consider the SDE:

XE(E) = xo+ /0 Cb(XE(s))dsvE /0 o (XE(5)) AW () +2 /X G(X(s=), y)N" (dsdy).

x[0,t]

o N is a PRM with intensity measure e~ 11/(dy)dt.
@ For some L € (0,00) Lg € L1(v) N Ly(v), Mg € La(v)

Ib(x) = b(x')| +|o(x) = o(x')| < Llx = x|, x,x € RY,
G(x.y) = GX' ) < L(y)lx =X, x. X €R, y € X,
G y)l < Ma(y)(1+Ix]), x,x' €R, y € X.

@ Then X¢ has a unique solution and converges in probability in D([0, T] : RY) to X°
that solves the equation:

XO(t) = xo + f§ b(XO(s)) ds + Jxxpor) G(X°(s),y) v(dy)ds, t € [0, T].
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N
Moderate Deviations for SDEs.

@ Consider the SDE:

XE(E) = xo+ /0 Cb(XE(s))dsvE /0 o (XE(5)) AW () +2 /X G(X(s=), y)N" (dsdy).

x[0,t]

o N is a PRM with intensity measure e~ 11/(dy)dt.
@ For some L € (0,00) Lg € L1(v) N Ly(v), Mg € La(v)

Ib(x) = b(x')| +|o(x) = o(x')| < Llx = x|, x,x € RY,
G(x.y) = GX' ) < L(y)lx =X, x. X €R, y € X,

G y)l < Ma(y)(1+Ix]), x,x' €R, y € X.

@ Then X¢ has a unique solution and converges in probability in D([0, T] : RY) to X°
that solves the equation:

XO(t) = xo + f§ b(XO(s)) ds + Jxxpor) G(X°(s),y) v(dy)ds, t € [0, T].

@ Also, under additional conditions on Lg, Mg, X¢ satisfies a LDP.
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N
Moderate Deviations for SDEs.

@ Consider the SDE:

XE(E) = xo+ /0 Cb(XE(s))dsvE /0 o (XE(5)) AW () +2 /X G(X(s=), y)N" (dsdy).

x[0,t]

N is a PRM with intensity measure e~ 1u/(dy)dt.
For some L; € (0,00) Lg € L1(v) N La(v), Mg € Ly(v)

¢ ©

Ib(x) = b(x')| +|o(x) = o(x')| < Llx = x|, x,x € RY,
G(x.y) = GX' ) < L(y)lx =X, x. X €R, y € X,
G y)l < Ma(y)(1+Ix]), x,x' €R, y € X.

@ Then X¢ has a unique solution and converges in probability in D([0, T] : RY) to X°
that solves the equation:

XO(t) = xo + f§ b(XO(s)) ds + Jxxpor) G(X°(s),y) v(dy)ds, t € [0, T].

[

Also, under additional conditions on Lg, Mg, X¢ satisfies a LDP.
Let a(¢) — 0 and b(e) = ¢/a%(¢) — 0, Consider Y = %g)(XE - X9).
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N
Moderate Deviations for SDEs.

@ Theorem. (B., Dupuis and Ganguly (2017).) In addition to the above conditions on
b,o and G, suppose that
@ Lg and Mg are in

{/7 X = R:36; >0, s.t. VI with »(IN) < oo/ exp(01h%(y))v(dy) < oo}.
r

@ The maps x — b(x) and, for every y € X, x — G(x, y) are differentiable. For some
Lpp € (0,00) and Lpg € Lao(v)
|Db(x) — Db(x)| < Lpp|x — x|, x,x" € RY,
|DLG(x,y) — DyG(X,y)| < Lpc(y)|x — x|, x,x' € RY, y € X.
o For every p >0,
sup / |DxG(x,y)|v(dy) < co.
X

IxI<p
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N
Moderate Deviations for SDEs.

@ Theorem. (B., Dupuis and Ganguly (2017).) In addition to the above conditions on
b,o and G, suppose that

@ Lg and Mg are in
{/7 X = R:36; >0, s.t. VI with »(IN) < oc/ exp(01h%(y))v(dy) < oc}.
r

@ The maps x — b(x) and, for every y € X, x — G(x, y) are differentiable. For some
Lpp € (0,00) and Lpg € Lao(v)
|Db(x) — Db(x)| < Lpp|x — x|, x,x" € RY,
|DLG(x,y) — DyG(X,y)| < Lpc(y)|x — x|, x,x' € RY, y € X.
o For every p >0,
sup / |DxG(x,y)|v(dy) < co.
X

IxI<p
& Then {Y¢} satisfies a LDP in D([0, T] : RY) with speed b~1(¢) and the rate
function given by
— it L2 = Lup
1) = i 1101 + )

where the infimum is taken over all ¢ € L2(v7), u € L?(RY) such that

(o) = [ 10BN a5+ |

Xx[o.

t][DxG(X"(s),y)l(n(s)) v(dy)ds

+/ #}(y,s)G(Xo(s),y)V(dy)ds+/ a(XO(s))u(s)ds.
JXx[0,t] t]

Jio,
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Moderate Deviations for SDEs.

In other words the rate function is the same as that for LDP (with speed ¢) for a
Gaussian process U that solves

Us(t) = /OtA(s)UE(s)ds + ﬁ/ot Bi(s)dWi(s) + ﬁ/ot By (s)dWa(s)

o Wi, W, are independent d-dimensional Brownian motions.
s A(s) = DB(X(s)) + f, D<G(x,y)v(dy).
@ Bi(s) = [|G(X°(s), )ll2laxa-

o By(s) = a(X(s)).
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