Systems of Stochastic Evolution Equations With Constant Coefficients

Sergey Lototsky
Department of Mathematics
University of Southern California

Joint work with Jie Zhong

What do you think:

- Equation $u_{tt} = u_{txx} + u_{xx}$ is

 (a) hyperbolic (b) parabolic (c) neither
- System $du=u_{xx}dt,\ dv=v_{xx}dt+\sigma u_xdw$ is parabolic for (a) all σ (b) no σ (c) $|\sigma|<\sqrt{2}$

Motivation 1

We know that equation $u_t = u_{xx}$ is parabolic and equation $u_{tt} = u_{xx}$ is hyperbolic.

Equation $u_{tt} = u_{txx} + u_{xx}$ is

- (a) hyperbolic
- (b) parabolic
- (c) neither

Motivation 2

We know that the equation $du = u_{xx}dt + \sigma u_x dw(t)$ is parabolic for $|\sigma| \leq \sqrt{2}$.

System

$$du = u_{xx}dt,$$

$$dv = v_{xx}dt + \sigma u_x dw$$

is parabolic for

- (a) all σ
- (b) no σ
- (c) $|\sigma| < \sqrt{2}$

What type is this?

$$u_{tt} = u_{txx} + u_{xx}$$
:

Hyperbolic?

$$||u_t(t)||^2 + ||u_x(t)||^2 \le ||u_t(0)||^2 + ||u_x(0)||^2.$$

Parabolic? With $v = u_t$ get $v_t = v_{xx} + u_{xx}$.

Neither!

When is this parabolic?

$$du = u_{xx}dt, \quad dv = v_{xx}dt + \sigma u_x dw.$$

(a) For all σ :

$$u_0, v_0 \in L_2 \Rightarrow u \in L_2((0,T); H^1) \Rightarrow \sigma u_x \in L_2((0,T) \times \mathbb{R})$$

 $\Rightarrow v \in L_2(\Omega \times (0,T); H^1)$

(b) For $|\sigma| < \sqrt{2}$:

$$\mathbb{E} \int_0^t \left(\|u_x\|_0^2 + \|v_x\|_0^2 \right) ds \le \|u_0\|_0^2 + \|v\|_0^2 + \frac{\sigma^2}{2} \mathbb{E} \int_0^t \|u_x\|_0^2 ds$$

Heat Equation

$$u_t = au_{xx} + \sigma u_x \dot{w}(t) : \quad 2a \ge \sigma^2$$

(a)
$$\mathbb{E}||u(t)||^2 = \mathbb{E}||u(0)||^2 - \left(a - \frac{\sigma^2}{2}\right) \int_0^t \mathbb{E}||u_x(s)||^2 ds$$
.

(b)
$$\widehat{u}_t = -ay^2\widehat{u} + iy\sigma\widehat{u}\dot{w}(t), \quad i = \sqrt{-1}.$$

$$\begin{split} \widehat{u}(t,y) &= \widehat{u}(0,y) \exp\left(-\left(a - \frac{\sigma^2}{2}\right) t y^2 + \mathfrak{i} y \sigma w(t)\right) \\ \mathbb{E}|\widehat{u}(t,y)|^2 &= \mathbb{E}|\widehat{u}(0,y)|^2 \exp\left(-\left(a - \frac{\sigma^2}{2}\right) t y^2\right) \end{split}$$

Generalization 1

$$V \hookrightarrow H \hookrightarrow V'$$
, A: $V \to V'$, B: $V \to H$. $\dot{u} = Au + Bu \dot{w}(t)$.

Energy method:

$$\mathbb{E}||u(t)||_{H}^{2} = \mathbb{E}||u(0)||_{H}^{2} + \int_{0}^{t} \mathbb{E}\left(2[\mathrm{A}u(s), u(s)] + ||\mathrm{B}u(s)||_{H}^{2}\right) ds.$$

Stochastic Parabolicity Condition:

$$2[\mathbf{A}u, u] + \|\mathbf{B}u\|_{H}^{2} \le -\delta \|u\|_{V}^{2} + c\|u\|_{H}^{2}, \ \delta > 0.$$

Well-posed: $c \in \mathbb{R}$

(Exponentially) Stable: c < 0.

A digression

Scalar PDO A with constant coefficients and order 2:

$$Af(x) = \sum_{i,j=1}^{d} a_{ij} \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i \frac{\partial f}{\partial x_i} + cf$$

$$\widehat{Af}(y) = \left(-\sum_{i,j=1}^{d} a_{ij} y_i y_j + i \sum_{i=1}^{d} b_i y_i + c \right) \widehat{f}(y) = A(y) \widehat{f}(y).$$

Matrix Ψ DO A with constant coefficients and order m:

$$\widehat{A}\widehat{\boldsymbol{f}}(y) = A(y)\widehat{\boldsymbol{f}}(y) \text{ (constant coefficients),} \\ |A(y)| \sim |y|^m, \ m>0, \ |y| \to +\infty \text{ (order } m\text{),} \\ A = A(y) \text{ is continuous (for technical reasons).} \\ \textbf{Sobolev spaces } H^{\gamma}(\mathbb{R}^{\mathrm{d}}) \text{:} \\ \|\boldsymbol{f}\|_{\gamma}^2 = \int_{\mathbb{R}^{\mathrm{d}}} (1+|y|^2)^{\gamma} |\widehat{\boldsymbol{f}}(y)|^2 dy < \infty.$$

Generalization 2

 $u_t = Au + Bu \dot{w}(t)$, A and B are PDO or Ψ DO.

Fourier transform:

$$\widehat{u}_t = A(y)\widehat{u} + B(y)\widehat{u}\,\dot{w}$$

$$\widehat{u}(t,y) = \widehat{u}_0(y) \exp\left(\left(A(y) - \frac{1}{2}B^2(y)\right)t + B(y)w(t)\right)$$

$$|\widehat{u}(t,y)| = |\widehat{u}_0(y)| \exp\left(\Re\left(A(y) - \frac{1}{2}B^2(y)\right)t + \Re\left(B(y)\right)w(t)\right)$$

$$\mathbb{E}|\widehat{u}(t,y)|^2 = \mathbb{E}|\widehat{u}_0(y)|^2 \exp\left(\left(\Re\left(2A(y) - B^2(y)\right) + 2\left(\Re B(y)\right)^2\right)t\right).$$

Well-posed: $2\Re(A(y)) + |B(y)|^2 \le c$.

Neutrally Stable: $2\Re(A(y)) + |B(y)|^2 \le 0$.

Exponentially Stable: $2\Re(A(y)) + |B(y)|^2 \le \delta < 0$.

The (A,B) system: definitions

$$\boldsymbol{u}(t) = \boldsymbol{u}_0 + \int_0^t \left(A \boldsymbol{u}(s) + \boldsymbol{f}(s) \right) ds + \int_0^T \left(B \boldsymbol{u}(s) + \boldsymbol{g}(s) \right) dw(s), \ 0 \le t \le T.$$

Well posed: $u_0, f, g \in H^r \Rightarrow u(t) \in L_2(\Omega; H^\gamma)$ and

$$\mathbb{E}\|\boldsymbol{u}(t)\|_{\gamma}^{2} \leq C(T) \left(\|u_{0}\|_{r}^{2} + \int_{0}^{t} \|f(s)\|_{r}^{2} ds + \int_{0}^{t} \|g(s)\|_{r}^{2} ds \right).$$

Stable: $C(T) \leq C_0$;

Neutrally Stable: $\mathbb{E}\|\boldsymbol{u}(t)\|_{\gamma}^2 \leq C_0\|u_0\|_r^2$ when $\boldsymbol{f} = \boldsymbol{g} = 0$.

The main result

Theorem

The (A,B) system is well posed if and only if

$$\Re \lambda \left(\overline{A(y)} \otimes I + I \otimes A(y) + \overline{B(y)} \otimes B(y) \right) \le C_0 \ln(2 + |y|).$$

The (A,B) system is stable if and only if

$$\Re \lambda \left(\overline{A(y)} \otimes I + I \otimes A(y) + \overline{B(y)} \otimes B(y) \right) \le -\delta < 0.$$

What is \otimes ?

If $A, B \in \mathbb{C}^{n \times n}$, then $A \otimes B$ is n^2 -by- n^2 block matrix with blocks $A_{ij}B$. For example,

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \otimes \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b & 2a & 2b \\ c & d & 2c & 2d \\ 3a & 3b & 4a & 4b \\ 3c & 3d & 4c & 4d \end{pmatrix}$$

What for? $BXA^{\top} = C \Leftrightarrow (A \otimes B)\text{vec}(X) = \text{vec}(C)$;

$$\operatorname{vec}(X) = \mathbf{X} = (X_{11}, \dots, X_{n1}, X_{12}, \dots, X_{n2}, \dots, X_{1n}, \dots, X_{nn})^{\top}.$$

That is,

$$\operatorname{vec}(BXA^{\top}) = (A \otimes B)\operatorname{vec}(X).$$

Consider

$$\dot{\boldsymbol{v}}(t,y) = A(y)\boldsymbol{v} + \widehat{\boldsymbol{f}}(t,y) + (B(y)\boldsymbol{v} + \widehat{\boldsymbol{g}}(t,y))\dot{\boldsymbol{w}}.$$

Hope: $v=\widehat{u}$.

Fact 1: If
$$\int_{\mathbb{R}^d} (1+|y|^2)^\gamma \; \mathbb{E} |m{v}(t,y)|^2 dy < \infty$$
, then $m{v}=\widehat{m{u}}$.

Fact 2: if $m{f} = m{g} = 0$ and $m{U} = \mathrm{vec} ig(\mathbb{E} m{v} m{v}^* ig)$ then

$$\dot{\boldsymbol{U}} = \left(\overline{A(y)} \otimes I + I \otimes A(y) + \overline{B(y)} \otimes B(y)\right)\boldsymbol{U}.$$

Without \otimes

$$\dot{\boldsymbol{v}} = A\boldsymbol{v} + B\boldsymbol{v}\dot{w} \quad (\boldsymbol{f} = \boldsymbol{g} = 0).$$

Try $\mathfrak{v}=\mathbb{E}|oldsymbol{v}|^2=\mathbb{E}oldsymbol{v}^*oldsymbol{v}$:

$$\dot{\mathbf{v}} = \mathbf{v}^* \big(A(y) + A^*(y) + B^*(y) B(y) \big) \mathbf{v}.$$

Not an equation for v, so will not get a necessary condition. Can get a sufficient one, though:

$$\lambda (A(y) + A^*(y) + B^*(y)B(y)) \le C.$$

More or less the same as you would get integrating by parts.

Bottom line

For the (A, B) system

$$\boldsymbol{u}(t) = \boldsymbol{u}_0 + \int_0^t \left(A \boldsymbol{u}(s) + \boldsymbol{f}(s) \right) ds + \int_0^T \left(B \boldsymbol{u}(s) + \boldsymbol{g}(s) \right) dw(s),$$

the obvious characteristic matrix is

$$A(y) + A^*(y) + B^*(y)B(y),$$

but the correct characteristic matrix is

$$\mathcal{M}_{A,B}(y) = \overline{A(y)} \otimes I + I \otimes A(y) + \overline{B(y)} \otimes B(y).$$

Stochastic Parabolic System

The (A,B) system is parabolic of order 2p if there exists a positive number p such that

$$0 < \lim_{|y| \to \infty} \frac{||A(y)|| + ||B^*(y)B(y)||}{|y|^{2p}} < \infty;$$

$$\lambda(\mathcal{M}_{A,B}(y)) \le -\varepsilon |y|^{2p} + L, \ \varepsilon > 0, \ L \in \mathbb{R}.$$

A modification of the original example

$$u_t=u_{xx},\ v_t=v_{xx}+\mathrm{B}u\,\dot{w},$$
 $B^2(y)=\sigma|y|^{2\beta},\ \sigma\in\mathbb{R},\ \beta\geq 0.$ Then

$$\mathcal{M}_{A,B}(y) = \begin{pmatrix} -2y^2 & 0 & 0 & 0\\ 0 & -3y^2 & 0 & 0\\ 0 & 0 & -3y^2 & 0\\ \sigma|y|^{2\beta} & 0 & 0 & -4y^2 \end{pmatrix}.$$

The system is

- \square Well posed for all eta and σ ;
- \square Parabolic of order 2 for $eta \leq 1$ and all $\sigma.$

Why no ⊗ in deterministic case?

There is:

$$\mathcal{M}_{A,0}(y) = \overline{A(y)} \otimes I + I \otimes A(y),$$

known as Kronecker sum, but

$$\lambda_{i,j}\Big(\overline{A(y)}\otimes I+I\otimes A(y)\Big)=\overline{\lambda_i(A)}+\lambda_j(A),$$

AND know from linear algebra that an upper bound on $\Re \lambda(A)$ is weaker than a similar bound on $\lambda(A+A^*)$.

Routh-Hurwitz criterion: real case

$$p(z) = c_0 z^n + c_1 z^{n-1} + \ldots + c_{n-1} z + c_n, c_k \in \mathbb{R}, c_0 > 0.$$

Objective: if p(z) = 0, then $\Re z < 0$.

Result: need positive principal minors of

that is, determinants of orders $1, 2, \ldots, n$.

Routh-Hurwitz criterion: complex case

Complex case: $p(z) = c_0 z^n + c_1 z^{n-1} + \ldots + c_{n-1} z + c_n$, $c_0 \neq 0$.

Step 1.
$$p(iz) = i(a_0z^n + a_1z^{n-1} + \ldots) + (b_0z^n + b_{n-1}z^{n-1} + \ldots).$$

Step 2. Need positive principal minors of even orders of

$$\begin{vmatrix} a_0 & a_1 & a_2 & \dots \\ b_0 & b_1 & b_2 & \dots \\ 0 & a_0 & a_1 & \dots \\ 0 & b_0 & b_1 & \dots \end{vmatrix}$$

that is, determinants of orders $2, 4, \ldots, 2n$.

Cannot decrease complexity: Anderson and Jury, 1977.

Second order: deterministic case

$$u_{tt} + Au_t + Mu = 0, \quad z^2 + A(y)z + M(y) = 0.$$

Recall: no need for \otimes .

Real case: need $A(y) \ge -c$, $M(y) \ge -c$, where

 $c \in \mathbb{R}$ to be well posed;

c < 0 to be stable.

Example of no stability (effect of the double root).

$$\begin{array}{l} u_{tt}-2u_{txx}+u_{xxxx}=0,\ z=-y^2,\\ u(0,x)=0,\ \widehat{u}_t(0,y)=e^{-y^2};\ u_t(0)\in H^{\gamma}\ \text{for all}\ \gamma\in\mathbb{R};\\ \widehat{u}(t,y)=te^{-y^2(1+t)},\ \|u(t)\|_{\gamma}^2\geq Ct^{3/2}\ \text{for all}\ \gamma\in\mathbb{R}. \end{array}$$

Complex case: Routh-Hurwitz of order 4.

Example: $u_{tt} - \gamma u_{txx} - c^2 u_{xx} + a u_{xxx} = 0$, $z^2 + \gamma y^2 z + c^2 y^2 - \mathfrak{i} a y^3 = 0$. Well-posed: $\gamma > 0$, Neutrally stable: $|a| < \gamma |c|$. NOT neutrally stable if $|a| = \gamma |c|$.

Second order: stochastic case

Complexity: order 3 for real symbols, order 8 for complex symbols.

Example: $u_{tt} = \gamma u_{txx} + c^2 u_{xx} + \sigma u_{xx} \dot{w}(t)$.

$$\mathcal{M}_{A,B}(y) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -c^2 y^2 & -\gamma y^2 & 0 & 1 \\ -c^2 y^2 & 0 & -\gamma y^2 & 1 \\ \sigma^2 y^4 & -c^2 y^2 & -c^2 y^2 & -2\gamma y^2 \end{pmatrix},$$

$$p(z) = (z + \gamma y^2) (z^3 + 3\gamma y^2 z^2 + (4c^2 y^2 + 2\gamma^2 y^4) z + 2(2\gamma c^2 - \sigma^2) y^4)$$

- \square Well-posed: $\gamma > 0$;
- \square Stable: $2\gamma c^2 > \sigma^2$ (cf. R. Z. Khasminiskii, Stochastic stability of differential equations, 2nd Ed, 2012, Sec. 6.10)
- \square Neutrally stable: $2\gamma c^2 = \sigma^2$.

Ultimate goal

Variable and adapted coefficients, adapted input:

$$\boldsymbol{u}(t) = \boldsymbol{u}_0 + \int_0^t \left(A \boldsymbol{u}(s) + \boldsymbol{f}(s) \right) ds + \sum_{k \ge 1} \int_0^T \left(B_k \boldsymbol{u}(s) + \boldsymbol{g}_k(s) \right) dw_k(s),$$

$$\sum_{k} ||B_k(\omega, t, x; y)||^2 \le C(1 + |y|)^b.$$

Characteristic matrix:

$$\mathcal{M}_{A,B}(\omega,t,x;y) = \overline{A} \otimes I + I \otimes A + \sum_{k} \overline{B}_{k} \otimes B_{k}.$$

Well posed: $\Re \lambda \mathcal{M}_{A,B} \leq C_0 \ln(2 + |y|)$;

Exponentially stable: $\Re \lambda(\mathcal{M}_{A,B}) \leq -\delta < 0$

Parabolic: $\Re \lambda(\mathcal{M}_{A,B}) \leq -\varepsilon |y|^{2p} + L$.

Some history

Leopold Kronecker: 1823–1891. Famous quote:

"God created the integers, all else is the work of man".

First appearance of \otimes :

Johann Georg Zehfuss Ueber eine gewisse Determinante, Zeitschrift fr Mathematik und Physik, 3, 1858.

⊗ also known as direct product or Zehfuss product.

Conclusion

Kronecker product rules!