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Self-intersection local time

Brownian local time is formally defined by

L(t, x) :=

∫ t

0
δ(x − Bs) ds.

Two related processes are the Intersection Local Time:∫ t

0

∫ t

0
δ(Bs − B̃r ) dr ds

and Self-intersection Local Time (SLT):∫ t

0

∫ s

0
δ(Bs − Br ) dr ds

SLT is used in physics to study polymers, the polaron, and QFT
[see X. Chen (2008, 2010)].
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The Derivative of Self-intersection Local Time (DSLT)
Our interested is a formal Derivative of SLT:

α′(t) := −1
2

∫ t

0

∫ s

0
δ′(Bs − Br ) dr ds

Introduced by Rogers/Walsh (90, 91a, 91b) for studying
stochastic area integrals w.r.t. local time.
Rosen (2005) and Markowsky (2008) showed a Tanaka
formula:

α′(t) =

∫ t

0
LBs

s dBs −
1
2

∫ t

0
sgn(Bt − Br ) dr .

Y. Hu and D. Nualart (2009,2010) used α′(t) to show CLTs
for the L2,3 moduli of continuity for Brownian local time.
α′(t) has finite nonzero 4/3-variation [Rogers/Walsh (91b)
and Hu/Nualart/Song (2012)].
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The DSLT of fBm
Recall that fBm with H ∈ (0, 1) is the centered Gaussian process
with covariance

1
2(s2H + t2H − |t − s|2H).

For H < 2/3, Yan, Yang, Lu (2008) introduce a version of α′(t)
connected with stochastic area integrals w.r.t. local times.
We modify their definition to

α′(t) := −H
∫ t

0

∫ s

0
δ′(BH

s − BH
r )(s − r)2H−1 dr ds.

Existence of α′(t)

For H < 2/3, α′(t) exists as a limit in L2(Ω) of

α′ε(t) := −H
∫ t

0

∫ s

0
f ′ε(BH

s − BH
r )(s − r)2H−1 dr ds.

4/15



The DSLT of fBm
Recall that fBm with H ∈ (0, 1) is the centered Gaussian process
with covariance

1
2(s2H + t2H − |t − s|2H).

For H < 2/3, Yan, Yang, Lu (2008) introduce a version of α′(t)
connected with stochastic area integrals w.r.t. local times.
We modify their definition to

α′(t) := −H
∫ t

0

∫ s

0
δ′(BH

s − BH
r )(s − r)2H−1 dr ds.

Existence of α′(t)

For H < 2/3, α′(t) exists as a limit in L2(Ω) of

α′ε(t) := −H
∫ t

0

∫ s

0
f ′ε(BH

s − BH
r )(s − r)2H−1 dr ds.

4/15



Existence using the Wiener chaos

Theorem
For H < 2/3, α′(t) exists in L2(Ω). Its Wiener chaos is

α′(t) =
∞∑

m=1
I2m−1(g(2m − 1, t))

where

g(2m − 1, t; v1, . . . , v2m−1)

=
(−1)m

(m − 1)!2m−1
√

2π

∫ t

0

∫ s

0

∏2m−1
j=1 MH1[r,s](vj) dr ds
(s − r)H(2m−1)+1

and

〈MH1[0,s],MH1[0,t]〉L2(R) =
1
2(t2H + s2H − |t − s|2H).
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Idea of proof

Apply Stroock’s formula to α′ε(t):

1
n!

∫ t

0

∫ s

0
(s − r)2H−1E[Dnf ′ε(BH

s − BH
r )] dr ds

and then use the following:

Lemma (Nualart and Vives (92))
Let Fε be a family of L2(Ω) random variables with chaos
expansions Fε =

∑∞
n=0 In(f εn ). If for all n, f εn converges in H⊗n to

fn, and if
∞∑

n=0
sup
ε

E[In(f εn )2] =
∞∑

n=0
sup
ε
{n!||f εn ||2H⊗n} <∞,

then Fε converges in L2(Ω) to F =
∑∞

n=0 In(fn).
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A Tanaka formula for the DSLT of fBm

Theorem
For H < 2/3, the following holds in L2(Ω) for all t:

H α′(t) =

∫ t

0
LBH

ss dBH
s −

1
2

∫ t

0
sgn(BH

t − BH
r ) dr .

Formally apply a fractional Itô formula [e.g., Bender (03)] to
BH

s − BH
r with s going from r to t:
1[(0,∞)(BH

t − BH
r )− 1[(0,∞)(0)

=

∫ t

r
δ(BH

s − BH
r )dBH

s + H
∫ t

r
δ′(BH

s − BH
r )(s − r)2H−1 ds

Then integrate dr from 0 to t and apply Fubini:∫ t

0

1
2 sgn(BH

t − BH
r ) dr

=

∫ t

0
LBH

ss dBH
s + H

∫ t

0

∫ s

0
δ′(BH

s − BH
r )(s − r)2H−1 dr ds.
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More rigorously, the first term on the LHS is the limit of∫ t

0

∫ t

r
fε(BH

s − BH
r ) dBH

s dr

To justify Fubini, use the chaos expansion:

fε(BH
s − BH

r ) =

∑
n≥0

In

(
1
n!

E[(
dn

dxn fε)(BH
s − BH

r )](MH 1[r,s])
⊗n
)
.

We refine this to a Hermite chaos expansion using (tensor
products of) Hermite functions as a basis of H⊗n:

cβ (s, r) =
1
n!

E[(
dn

dxn fε)(BH
s − BH

r − y)]〈ξ�β
, (MH 1[r,s])

⊗n〉H⊗n .

If
∑
β!cβ <∞ then we are in L2(Ω). For more stringent

summability, we get Hida test functions (and thus distributions).
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A Fubini theorem

An extension of Fubini theorems in Cheridito/Nualart (2005) and
Mishura (2008) to integrals of Hida distributions.

Lemma (Fubini-Tonelli theorem)

Let
Fs,r =

∑
β∈Λ

cβ(s, r)Hβ

be an (S)∗-valued process indexed by (s, r) ∈ R× [0, t]. If, for
each (β, k) pair, cβ(s, r)MHξk(s) is bounded above or below by an
L1([r , t]× [0, t]) function, then∫ t

0

∫ t

r
Fs,r (ω) dBH

s dr =

∫ t

0

(∫ s

0
Fs,r (ω) dr

)
dBH

s . (1)

The equality in (1) is in the sense that if one side is in (S)∗, then
the other is as well, and they are equal.

9/15



Back to existence of α′(t)

Set

Dt := {0 ≤ r ≤ s ≤ t}
λ := Var(BH

s − BH
r )

ρ := Var(BH
s′ − BH

r ′ )

µ := Cov(BH
s − BH

r ,BH
s′ − BH

r ′ )

Existence in L2(Ω) is implied by∫
D2

t

µ(s − r)2H−1(s ′ − r ′)2H−1

(λρ− µ2)3/2 dr dr ′ ds ds ′ <∞.

Comes from looking at E[(α′ε(t))2].
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Second moment bounds from Hu (2001)

λ = Var(BH
s − BH

r ), ρ = Var(BH
s′ − BH

r ′ ), µ = Cov(BH
s − BH

r ,BH
s′ − BH

r ′ )

Lemma 3.1 of Hu (2001) asserts
(i) For r < r ′ < s < s ′ and a = r ′ − r , b = s − r ′, c = s ′ − s,

λρ− µ2 ≥ C
(

(a + b)2Hc2H + a2H(b + c)2H
)
.

(ii) For r < r ′ < s ′ < s and a = r ′ − r , b = s ′ − r ′, c = s − s ′,

λρ− µ2 ≥ Cb2H(a + b + c)2H .

(iii) For r < s < r ′ < s ′ and a = s − r , b = r ′ − s, c = s ′ − r ′,

λρ− µ2 ≥ C(a2Hc2H).

11/15



A modification of (ii)

In every instance we have seen, the following suffices:

(ii’) For r < r ′ < s ′ < s and a = r ′ − r , b = s ′ − r ′, c = s − s ′,

λρ− µ2 ≥ Cb2H(a2H + c2H).
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A Conjecture

Conjecture
The critical parameter is Hc = 2/3. At Hc , 1

log(1/ε)γα
′
ε(t)

converges in distribution to a normal law for some γ > 0.
For H > Hc , ε−γ(H)α′ε(t) converges in distribution to a normal
law for some function γ(H) > 0 which goes to 0 at H = 2/3.

We have shown related results for

α̃′(t) := −H
∫ t

0

∫ s

0
δ′(BH

s − BH
r ) dr ds.

This would mirror the behavior of SLT shown in Y. Hu and D.
Nualart (2005). To our knowledge, no such CLT has been
proved even for SLT in two dimensions at Hc = 3/4.
This would validate Rosen’s statement that “The (DSLT of
Brownian motion) in R1, in a certain sense, is even more
singular than self-intersection local time in R2."
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A generalization to α′t(y)

The above generalizes to

α′t(y) := −H
∫ t

0

∫ s

0
δ′(BH

s − BH
r − y)(s − r)2H−1 dr ds.

Theorem
For H < 2/3, the following holds in L2(Ω) for all y and t:

H α′t(y)+
1
2 sgn(y)t =

∫ t

0
LBH

s −y
s dBH

s −
1
2

∫ t

0
sgn(BH

t −BH
r −y) dr .
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Greg Markowsky

Thanks for your attention!
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