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Probability Test Number 2/ /0711

1. (15 points) Two boys play basketball in the following way. They take turns shooting and stop
when the first basket is made. Player A goes first and has probability 0.2 of making a basket on
any throw. Piayer'B, who shoots second, has probability 0.1 of making a basket. The outcomes
of the successive trials are assumed to be independent. What is the probability that Player B is

- the first to make a basket?
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2. (15 points) Let X and Y be independent random variables with probability density functions f
and g, respectively, where f(x) = 2x for 0 <x < 1, and gx)=1for 0 <x <1. Let Z:= min{X,
Y}. Find the probability density function of Z.
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3. (15 points) Let X be a random variable with the density f(x) = 2x for 0 <x < 1. Conditionally
on X =x, let U be uniformly distributed on [0, x]. Calculate E(X|U).
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4. (15 points) Suppose there are two boxes. The first box has 1 red ball and 39 white balls and
the second box has 1 red ball and 49 white balls. The following experiment is performed. An
unbiased coin is tossed. If head appears, a ball is drawn randomly from the first box, and, if tail
appears, a ball is drawn randomly from the second box. This experiment is repeated 100 times
with replacement. Using an approximation, calculate the approximate probability that at least 3
red balls are drawn in these 100 repetitions.
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Statistics ' Test Number

5.(15 points) Let {X;, X5} be a random sample from a distribution Fg, -00 < 8 < oo, where Fy is
the continuous uniform distrbution Ug-1,6+1]. Someone proposes X + 25/4/2 asa

. confidence interval estimator for 9. This confidence interval estimator can be written X +

IX; — X5|. Determine Pg(X + |X, — X,| captures 6). (Hint: You may make the calculation
assuming 6= 0.) |
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6. Let X, Xs,..., X, be iid with probability density fo(x) = 6x971,0 < x < 1,8 > 0.
- (@) (9 points) Find the maximum likelihood estimator (mle) of 6.
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(b) (6 points) Find the asymptotic distribution of the maximum likelihood estimator
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7. Suppose that we are given a random sample X;, X3, ..., X, from the p.d.f. fp(x) =
8x%1,0 < x < 1,6-> 0, where § > 0 is an unknown parameter. The null hypothesis Hy: 6 =
1 is to be tested against the alternative H,: 8 > 1.

(a) (8 points) Determine the family of uniformly most powerful tests.
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(b) (6 points) Assuming that the sample size n is sufficiently large, use the central limit theorem
to find a uniformly most powerful test of approximate significance level a = 0.05. (Hint: negative
logarithm of a uniformly distributed random variable follows an exponential distribution.)
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(¢) (6 points) For sample size n = 1 find the uniformly most powerful test of exact significance
level a=0.05.
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8. A student wants to test if the probabilities of getting a head are the same for tossing a quarter
and tossing a dime. In each experiment, he tossed a quarter and a dime at the same time and
recorded the number of heads. The procedure was repeated 500 times. The results are shown in

the following table.
[Number of heads |0 1 2
Frequency 149 1242 109

(a) (5 points) Does the data suggest that the probability of getting a head while tossing a quarter
is different from tossing a dime? Carry-out a chi-square test at level .05.
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(b) (5 points) Does the data suggest that for both coins the probability of getting a head is .57
Carry-out a chi-square test at level .05.
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