Preliminary Exam: Probability 9:00am - 2:00pm, August 26, 2005

Question 1. (10 points) Let c > 0 and $f(x) = (x + c^{-1})^2$. In what follows X is a random variable with $\mathbb{E}(X) = 0$ and $\mathbb{E}(X^2) = 1$.

- (i) Find $\min_{x \geq c} f(x)$ and $\mathbb{E}(f(X))$.
- (ii) Show that

$$\mathbb{P}\big\{X>c\big\} \leq \frac{1}{1+c^2}.$$

Question 2. (15 points) Let $X_1, X_2, ...$ be a sequence of independent Cauchy random variables with parameter a > 0. That is, X_1 has density function

$$f(x) = \frac{a}{\pi(a^2 + x^2)}, \qquad x \in \mathbb{R}.$$

Denote by $F_n(x)$ the distribution function of $\frac{1}{n}(\sup_{1\leq i\leq n} X_i)$.

- (i) Find $F_n(x)$.
- (ii) For every $x \in \mathbb{R}$, find $\lim_{n\to\infty} F_n(x)$.
- (ii) Prove that for some exponential random variable T, we have

$$\frac{1}{n} \left(\sup_{1 \le i \le n} X_i \right) \Rightarrow \frac{1}{T}$$
 as $n \to \infty$.

Identify the parameter of T.

Question 3. (10 points) Let $\{X, X_n, n \ge 1\}$ be i.i.d. random variables with $\mathbb{E}(|X|^p) < \infty$ for all $p \in (0, 1)$. For a constant $\alpha > 1$, we consider the weighted partial sums

$$S_n = \sum_{k=1}^n k^{-\alpha} X_k, \quad n \ge 1.$$

(i) Prove that the series

$$\sum_{k=1}^{n} k^{-\alpha} \mathbb{E} \big(X_k \, \mathbb{1}_{\{|X_k| \le k^{\alpha}\}} \big)$$

is convergent.

(ii) Prove that, as $n \to \infty$, S_n converges almost surely.

Question 4. (10 points) Let X and Y be real random variables such that (a) X - Y and X are independent and (b) X - Y and Y are independent. This problem is about showing that X - Y is almost surely a constant.

(i) Let $\varphi(\xi)$ and $H(\xi)$ be the characterization functions of X and X-Y, respectively. Prove the following identity:

$$\varphi(\xi)(1-|H(\xi)|^2)=0, \quad \forall \xi \in \mathbb{R}.$$

Prove that there exists an $\epsilon > 0$ such that $|H(\xi)| = 1$ for all $\xi \in \mathbb{R}$ with $|\xi| \leq \epsilon$.

(ii) Show that X - Y is almost surely a constant.

Question 5. (20 points) Let c > 0, $\frac{c^2}{1+c^2} \le p < 1$ and define

$$f(p,c) = \sup_{X \in A(p,c)} \mathbb{E}(X;X > -c),$$

where A(p,c) is the class of random variables satisfying $\mathbb{E}(X) = 0$, $\mathbb{E}(X^2) = 1$ and $\mathbb{P}(X > -c) = p$. The goal is to find f(p,c) by using the following steps.

- (i) Find a lower bound for f(p,c) by finding a random variable in A(p,c) that takes exactly 2 values.
- (ii) Let $h(x) = x \mathbb{1}_{\{x > -c\}} px \sqrt{p(1-p)/4} x^2$. Find x where $\max_{x > -c} h(x)$ is achieved. Do the same for $\max_{x \le -c} h(x)$.
- (iii) Prove that if $X, Y \in A(p, c)$ then

$$\mathbb{E}(h(X)) - \mathbb{E}(h(Y)) = \mathbb{E}(X; X > -c) - \mathbb{E}(Y; Y > -c).$$

(iv) Find an upper bound for f(p,c) by using the identity in (iii), together with parts (i) and (ii).

Question 6. (10 points) Let U be a uniform random variable on [0,1] and let ε be a Bernoulli r.v., i.e., $\mathbb{P}(\varepsilon=1)=\mathbb{P}(\varepsilon=-1)=1/2$, that is independent of U. Define the r.v. $X=\varepsilon/\sqrt{U}$.

- (i) Compute the distribution of X.
- (ii) Let X_1, \ldots, X_n, \ldots be a sequence of independent random variables which are distributed as X. Let $S_n = \sum_{k=1}^n X_k$. Prove that

$$\frac{S_n}{\sqrt{n\log n}} \Rightarrow N \quad \text{as } n \to \infty,$$

where N is a standard normal random variable.

Question 7. (10 points) Let $W = \{W(t), t \ge 0\}$ be a standard Brownian motion in \mathbb{R} . For any t > 0 and integer $n \ge 1$, let

$$Q_n(t) = \sum_{k=1}^{2^n} \left[W(kt \, 2^{-n}) - W((k-1)t \, 2^{-n}) \right]^2.$$

- (i) Compute $\mathbb{E}(Q_n(t))$ and $\operatorname{Var}(Q_n(t))$.
- (ii) Show that for every t > 0, $Q_n(t) \to t$ almost surely as $n \to \infty$.

Question 8. (15 points) Let X_1, \ldots, X_n, \ldots be i.i.d. r.v.'s with

$$\mathbb{P}(X_1 = 1) = p$$
, $\mathbb{P}(X_1 = -1) = q$ and $\mathbb{P}(X_1 = 0) = r$,

where $p, q, r \in (0,1)$ and p+q+r=1. Consider the random walk $\{S_n, n \geq 0\}$ on \mathbb{Z} defined by $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$ for $n \geq 1$. Given integers a < 0 < b, let $T = \inf\{n > 0 : S_n \notin (a,b)\}$. Prove the following statements:

- (i) $\mathbb{E}(T) < \infty$.
- (ii) For $\lambda \in \mathbb{R}$ and $\phi(\lambda) = pe^{\lambda} + qe^{-\lambda} + r$, define $Y_n = e^{\lambda S_n} \phi(\lambda)^{-n}$. Prove that $\{Y_n, n \geq 0\}$ is a martingale. Moreover, if λ satisfies $\phi(\lambda) \geq 1$, then $\mathbb{E}(e^{\lambda S_T} \phi(\lambda)^{-T}) = 1$.
- (iii) Assume now r=0 and p>1/2. Compute the probabilities $\mathbb{P}(S_T=a)$ and $\mathbb{P}(S_T=b)$.

Question 9. (Optional) Let $W_i = \{W_i(t), t \geq 0\}$ (i = 1, 2, ..., d) be d independent standard Brownian motions in \mathbb{R} . For $t \geq 0$, let $W(t) = (W_1(t), ..., W_d(t))$. Then $W = \{W(t), t \geq 0\}$ is called a Brownian motion in \mathbb{R}^d . Denote the Lebesgue measure in \mathbb{R} by λ_1 and define the occupation measure μ_W of W by

$$\mu_W(A) = \lambda_1 \{ t \in [0,1] : W(t) \in A \}, \quad \forall A \in \mathcal{B}(\mathbb{R}^d).$$

- (i) Show that $\mathbb{E}(\|W(1)\|^{-\gamma}) < \infty$ if and only if $\gamma < d$.
- (ii) Prove that for every $\gamma < \min\{d, 2\}$,

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{d\mu_{\scriptscriptstyle W}(x) d\mu_{\scriptscriptstyle W}(y)}{\|x-y\|^{\gamma}} < \infty \quad a.s.$$

[Hint: Use the change of variables formula.]