
Preliminary Exam: Probability
9:00am – 2:00pm, Friday, January 6, 2012

The exam lasts from 9:00am until 2:00pm, with a walking break every hour.

Your goal on this exam should be to demonstrate mastery of probability theory and

maturity of thought. Your arguments should be clear, careful and complete.

The exam consists of six main problems, each with several steps designed to help you

in the overall solution. If you cannot justify a certain step, you still may use it in a later

step. On you work, label the steps this way: (i), (ii),...

On each page you turn in, write your assigned code number instead of your name.

Separate and staple each main part and return each in its designated folder.
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Question 1. Let X1, X2, . . . be i.i.d. random variables with P
{
X1 > x

}
= e−x (x > 0)

and let Mn = max
1≤j≤n

Xj .

(i). (6 points) Show that lim sup
n→∞

Xn
lnn = 1 a.s.

(ii). (6 points) Show that lim
n→∞

Mn
lnn = 1 a.s.

Question 2. Let {Xn, n ≥ 1} be a sequence of i.i.d. symmetric random variables such

that

P
{
|X1| > x

}
=

1

xp lnx
for all x ≥ e

and

P
{
X1 = 0

}
= 1− e−p,

where p ∈ (1, 2) is a constant. Prove the following statements.

(i). (3 points) E
(
|X1|p

)
=∞.

(ii). (3 points) Let Yk = Xk1l{|Xk|≤(k ln k)1/p}. Prove that P
(
Xk 6= Yk i.o.

)
= 0.

(iii). (5 points) Verify that E(Yk) = 0 and

∞∑
k=3

Var

(
Yk(

k ln k
)1/p) <∞.

[Hint: You may use the following inequality: For all n ≥ 3 and[
(n− 1) ln(n− 1)

]1/p ≤ y ≤ [n lnn
]1/p

,

we have
∞∑
m=n

1(
m lnm

)2/p ≤ C yp−2

ln y
,

where 0 < C <∞ is a constant.]

(iv). (3 points) Let Sn = X1 + · · ·+Xn for n ≥ 1. Prove that

lim
n→∞

Sn(
n lnn

)1/p = 0, a.s.
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Question 3. Let {ξn, ηn, n ≥ 1} be a sequence of i.i.d. N(0, 1) random variables defined

on a probability space (Ω,F ,P).

(i) (5 points) Prove that for every t ∈ R = (−∞,∞), the random series

∞∑
n=1

(
ξn

sin(nt)

n
+ ηn

cos(nt)

n

)
(2.1)

converges almost surely.

(ii) (5 points) Denote the limit in (2.1) by X(t). Show that X(t) is a normal random

variable. [Hint: You can either use characteristic functions or show that the series (2.1)

also converges in L2(Ω,F ,P).]

(iii). (3 points) In fact {X(t), t ∈ R} is a Gaussian process [you do not need to prove

this fact]. Verify that for every s, t ∈ [0, 1],

E
[
(X(t)−X(s))2

]
=
∞∑
n=1

2

n2

(
1− cos(n(t− s))

)
. (2.2)

(iv). (4 points) For any s, t ∈ [0, 1] such that |t− s| ≤ 1, let k ≥ 1 be the integer such

that
1

k + 1
< |t− s| ≤ 1

k
.

By breaking the series in (2.2) into two sums
∑k

n=1(· · · ) +
∑∞

n=k+1(· · · ), show that

E
[
(X(t)−X(s))2

]
≤ C|s− t| for all s, t ∈ [0, 1], (2.3)

where 0 < C < ∞ is a constant. [Hint: You may use the inequalities that 1− cosx ≤ x2

and 1− cosx ≤ 2 for all x ∈ R, as well as the fact that
∑∞

n=m
1
n2 ∼ 1

m as m→∞.]

(v). (3 points) Apply (ii) and (2.3) to show that for every integer m ≥ 1, there is a

constant Cm such that

E
(
|X(t)−X(s)|2m

)
≤ Cm|t− s|m for all s, t ∈ [0, 1].

Further, show that, for any γ ∈ (0, 1/2), for almost every ω ∈ Ω there is a constant C(ω)

such that ∣∣X(q)−X(r)
∣∣ ≤ C(ω)|q − r|γ for all q, r ∈ Q2 ∩ [0, 1],

where Q2 = {k2−n : k, n ≥ 0} denotes the set of dyadic rationals. [This implies that X(t)

has a modification which is uniformly Hölder continuous on [0, 1] of any order γ < 1/2.

But you do not need to prove this last statement.]
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Question 4. Let {Xn, n ≥ 0} be a sequence of i.i.d. N(µ, σ2) random variables with

µ < 0. Let S0 = 0, Sn = X1 + · · ·+Xn, Fn = σ(X1, . . . , Xn) and

W = sup
n≥0

Sn.

(i). (4 points) Prove that P
{
W <∞

}
= 1.

(ii). (5 points) Compute E
(
eλSn+1 |Fn

)
, where λ ∈ R.

(iii). (5 points) Show that there exists a unique λ0 > 0 such that {eλ0Sn , n ≥ 0} is a

positive martingale.

(iv). (5 points) Show that for every a > 1,

P
(
eλ0W > a

)
≤ 1

a

and thus, for every t > 0, P
(
W > t

)
≤ e−λ0t.

(v). (4 points) Show that for every 0 < λ < λ0, E(eλW ) <∞.

Question 5. Let {Xn, n ≥ 1} be a martingale sequence w.r.t. the filtration {Fn}.

(i). (5 points) Let nk ↑ ∞ and assume that {Xnk
, k ≥ 1} is uniformly integrable.

Prove that {Xn, n ≥ 1} is also uniformly integrable.

(ii). (5 points) Let N be a stopping time relative to the filtration {Fn} and define

Yk = XN∧k = XN1l{N≤k} +Xk1l{N>k}.

Prove that if E(|XN |) < ∞ and lim
k→∞

E
(
|Xk|1l{N>k}

)
= 0, then {Yk, k ≥ 1} is uniformly

integrable.

(iii). (3 points) Use Part (i) to show that the 2nd condition in Part (ii) can be weakened

to lim inf
k→∞

E
(
|Xk|1l{N>k}

)
= 0. You may use the fact that {Yk, k ≥ 1} is a martingale w.r.t.

{Fk} without proof.
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Question 6. Let {B(t), t ≥ 0} be a real-valued standard Brownian motion with respect

to the canonical filtration {Ft, t ≥ 0}.

(i). (5 points) For each t > 0 we define the process {B̃(s) : 0 ≤ s ≤ t} by B̃(s) =

B(t− s)−B(t). Prove that {B̃(s) : 0 ≤ s ≤ t} = {B(s) : 0 ≤ s ≤ t} in distribution. [That

is, the two processes have the same finite-dimensional distributions.]

(ii). (4 points) For t > 0, denote MB
t = max

0≤s≤t
B(s) and M B̃

t = max
0≤s≤t

B̃(s). Prove that

M B̃
t = MB

t −B(t) almost surely.

(iii). (4 points) Show how to conclude that MB
t − B(t) = MB

t in distribution. Is it

true that MB
t −B(t) = |B(t)| in distribution?

(iv). (5 points) Let 0 < t < T be fixed. Define

τ = inf{u ≥ t : B(u) = MB
t } and ρ = inf{u ≥ t : B(u) = 0}.

Prove P(τ ≤ T ) = P(ρ ≤ T ) by using (iii) and the reflection principle.
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