1. Let \(X_1, \ldots, X_n, n > 2 \), be iid observations from the exponential distribution \(E(0, e^\theta), \theta \in \mathbb{R} \). Show that the MLE of \(\theta \) is \(\hat{\theta} = \log \bar{X} \) and explicitly find the \(\sigma^2_\theta > 0 \) such that \(\sqrt{n}(\hat{\theta} - \theta) \to N(0, \sigma^2_\theta) \), as \(n \to \infty \).

2. Let \(\Theta \) denote the set of integers \(\{2, 3, \ldots\} \). Let \(X_1, \ldots, X_n \) be iid observations from
\[
 f_\theta(x) = \theta (1 - x)^{\theta-1} I(0 \leq x \leq 1), \quad \text{for some } \theta \in \Theta.
\]

(a) Find the MLE \(\hat{\theta} \) of the true parameter \(\theta \).
(b) Show that \(\hat{\theta} \) is consistent for \(\theta \).

3. Let \(\Theta := \{ (\theta_1, \theta_2, \mu); \theta_1 > 0, \theta_2 > 0, \mu \in \mathbb{R} \} \). Let
\[
 f_{\theta_1, \theta_2, \mu}(x) = \begin{cases}
 (\theta_1 + \theta_2)^{-1} e^{-(x-\mu)/\theta_1} & x \geq \mu \\
 (\theta_1 + \theta_2)^{-1} e^{(x-\mu)/\theta_2} & x < \mu
\end{cases}, \quad (\theta_1, \theta_2, \mu) \in \Theta.
\]

(a) Show that the family of Lebesgue probability densities \(\{ f_{\theta_1, \theta_2, \mu}(x); (\theta_1, \theta_2, \mu) \in \Theta \} \) is complete.
(b) Show that UMVUE for \(\mu \) based on a single observation \(X \) from this density does not exist in general. Find a subset of \(\Theta \) by imposing condition on \(\theta_1, \theta_2 \) such that UMVUE for \(\mu \) based on \(X \) exists.

4. Let \(X \) be a single observation from \(N(\mu, 1) \) where \(\mu \in \mathbb{R} \) has the improper Lebesgue prior density \(\pi(\mu) = e^\mu \). Under the squared error loss, show that the generalized Bayes estimator of \(\mu \) is \(X + 1 \), and that it is neither minimax nor admissible.