STT 871-872 Fall Preliminary Examination Wednesday, August 26, 2009 12:30 - 5:30 pm

1. Let $X_1, ..., X_n, n > 2$, be iid observations from the exponential distribution $E\left(0, e^{\theta}\right), \theta \in \mathbb{R}$. Show that the MLE of θ is $\hat{\theta} = \log \overline{X}$ and explicitly find the $\sigma_{\theta}^2 > 0$ such that $\sqrt{n}(\hat{\theta} - \theta) \to N(0, \sigma_{\theta}^2)$, as $n \to \infty$. (12)

2. Let Θ denote the set of integers $\{2,3,...\}$. Let $X_1,...,X_n$ be iid observations from

$$f_{\theta}(x) = \theta (1-x)^{\theta-1} I(0 \le x \le 1), \text{ for some } \theta \in \Theta.$$

- (a) Find the MLE $\hat{\theta}$ of the true parameter θ . (8)
- (b) Show that $\hat{\theta}$ is consistent for θ . (4)
- 3. Let $\Theta := \{(\theta_1, \theta_2, \mu); \theta_1 > 0, \theta_2 > 0, \mu \in \mathbb{R}\}$. Let

$$f_{\theta_{1},\theta_{2},\mu}(x) = \begin{cases} (\theta_{1} + \theta_{2})^{-1} e^{-(x-\mu)/\theta_{1}} & x \geq \mu \\ (\theta_{1} + \theta_{2})^{-1} e^{(x-\mu)/\theta_{2}} & x < \mu \end{cases}, \quad (\theta_{1},\theta_{2},\mu) \in \Theta.$$

- (a) Show that the family of Lebesgue probability densities $\{f_{\theta_1,\theta_2,\mu}(x):(\theta_1,\theta_2,\mu)\in\Theta\}$ is complete.
- (b) Show that UMVUE for μ based on a single observation X from this density does not exist in general. Find a subset of Θ by imposing condition on θ_1 , θ_2 such that UMVUE for μ based on X exists.
- 4. Let X be a single observation from $N(\mu, 1)$ where $\mu \in \mathbb{R}$ has the improper Lebesgue prior density $\pi(\mu) = e^{\mu}$. Under the squared error loss, show that the generalized Bayes estimator of μ is X + 1, and that it is neither minimax nor admissible. (12)