1. Let X_1, \ldots, X_n be iid from a Geometric distribution with a parameter $p \in (0, 1)$, i.e.

$$P(X_i = x) = p(1-p)^x, \ x = 0, 1, 2, \ldots$$

(a) Find a complete and sufficient statistics for p based on X_1, \ldots, X_n.

(b) Find the moment generating function of X_1 and the first two moments of X_1.

(c) Let $g(p) = p^2$. Formulate the two methods of finding UMVUE and use each to find it for $g(p)$ when $n = 2$.

(d) Show that $\frac{n}{\sum_{i=1}^{n} X_i}$ is the MLE of p. Compute its asymptotical variance, $n > 1$.

(e) Find the MLE of $1/p$. Using delta-method find its asymptotical variance, $n > 1$.

(f) Let $g(p) = 1/p$ and let the loss function be $\mathbb{E}(p\delta(X_1, \ldots, X_n) - 1)^2$. Using a $\beta(a, b)$ prior find a Bayes estimator of $g(p)$, $n > 1$.

(g) Calculate the loss of the Bayes estimator in (f). Find conditions on a, b that would make the estimator in (f) minimax. Are they satisfied? $n > 1$.

(h) Calculate the asymptotical efficiency of the MLE of $1/p$ and the Bayes estimator of $1/p$ with the prior $\beta(\sqrt{n}, n - \sqrt{n})$, $n > 1$.

(i) Under the loss $\mathbb{E}(p\delta(X_1, \ldots, X_n) - 1)^2$, show that the MLE of $1/p$ is inadmissible when n is large enough.

(j) Derive a UMP unbiased test of size $\alpha \in (0, 1)$ for testing $H : 1/3 \leq p \leq 2/3$ vs $K : p < 1/3$ or $p > 2/3$ in the fullest possible detail, $n > 1$.

2. Let X_1, \ldots, X_n be iid from the density $\lambda x^{-2}I(x > \lambda), \lambda > 0$.

(a) Construct the MRE estimator of λ under the loss $\mathbb{E}(\delta(X_1, \ldots, X_n)/\lambda - 1)^2$, $n > 2$.

(b) Is the estimator in (a) consistent in probability for λ?

(c) Derive a UMP test of size $\alpha \in (0, 1)$ for testing $H : \lambda = 1$ vs $K : \lambda > 1$ in the fullest possible detail.

3. An experiment is designed to compare moisture content in three types of pigment pastes. For each type of pigment paste, 12 observations are obtained. Let Y_{ij} be the moisture level of the j-th observation in the i-th type of pigment paste. The main interest is to compare the average moisture level among three types of pigment pastes. A fixed-effect model may be used to fit the data as follows:

$$Y_{ij} = \mu + \theta_i + e_{ij}, e_{ij} \sim iid N(0, \sigma^2)$$

for $i = 1, 2, 3$ and $j = 1, \cdots, 12$. To avoid identifiability issues, we set $\sum_{i=1}^{3} \theta_i = 0$ and remove θ_3 from the above formulation, that is, the parameters in our model are μ, θ_1, and θ_2.

(a) Let $\beta = (\mu, \theta_1, \theta_2)^T$. Specify the design matrix X in the linear model of matrix form $Y = X\beta + e$ and compute the correlation between the least squares estimates (LSE) for θ_1 and θ_2.

(b) Construct $(1 - \alpha)100\%$ confidence intervals for $\theta_1 - \theta_2$ based on the LSEs $\hat{\theta}_1, \hat{\theta}_2$ and $\hat{\sigma}^2$ for θ_1, θ_2 and σ^2 respectively, and t distribution.

(c) Show that a $(1 - \alpha)$ joint confidence region for θ_1 and θ_2 can be specified by

$$(\theta - \hat{\theta})^T \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} (\theta - \hat{\theta}) \leq \frac{2\hat{\sigma}^2}{12} F_{2,33,\alpha},$$
where \(\mathbf{\theta} = (\theta_1, \theta_2)^T \), \(\hat{\mathbf{\theta}} \) is the LSE and \(F_{2,33;\alpha} \) is upper \(\alpha \) quantile of \(F_{2,33} \).

4. In the previous problem, the samples were considered to be independent and identically distributed. In fact, the data set was actually obtained through the following nested study design:

(a) sample 3 barrels of pigment paste;
(b) take 2 samples from the content of each barrel;
(c) each sample is mixed evenly and divided into 2 parts. Then the measurement of the moisture content is obtained through each part. Let \(Y_{ijkl} \) be the moisture content for the \(l \)-th part of the \(k \)-th sample from the \(j \)-th barrel of the \(i \)-th type.

Consider the following mixed effects model

\[
Y_{ijkl} = \mu + \theta_i + \beta_{ij} + \delta_{ijk} + e_{ijkl} \quad (1)
\]

for \(i, j = 1, \cdots, 3 \), \(k = 1, 2 \) and \(l = 1, 2 \), where \(\mu \) is the fixed effect part, \(\theta_i \) is the fixed type effect, \(\beta_{ij} \) is the random barrel effect and \(\delta_{ijk} \) is the random sample effect and \(e_{ijkl} \) is the measurement error. Assume that \(\beta_{ij} \) are iid \(N(0, \sigma^2_{\beta}) \), \(\delta_{ijk} \) are iid \(N(0, \sigma^2_{\delta}) \) and \(e_{ijkl} \) are iid \(N(0, \sigma^2) \). In addition, \(\beta_{ij}, \delta_{ijk} \) and \(e_{ijkl} \) are independent.

(a) Complete the ANOVA table for the above nested random effects model. Provide the formula for sum of squares in terms of \(Y_{ijkl} \).

<table>
<thead>
<tr>
<th>source</th>
<th>df</th>
<th>sum of squares</th>
<th>mean squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td>MST</td>
<td></td>
</tr>
<tr>
<td>Barrel</td>
<td></td>
<td>MSA</td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td></td>
<td>MSB</td>
<td></td>
</tr>
<tr>
<td>error</td>
<td></td>
<td>MSE</td>
<td></td>
</tr>
</tbody>
</table>

Given the model (1), obtain the expectation of the mean squares.

\[
E(MSE) = , E(MSB) = , E(MSA) = .
\]

(b) Assume that \(MSE, MSA, MAB \) are known. Using the ANOVA table in part (a), obtain the unbiased moment estimates for \(\sigma^2, \sigma^2_{\beta} \) and \(\sigma^2_{\delta} \).

(c) Suppose we would like to obtain a new observation from the type 1 pigment paste through the same procedure described in the problem. Please give the best linear unbiased prediction for the moisture content of the new sample \(Y_1^* = \mu + \theta_1 + \beta_{11} + \delta_{111} \).

5. Let \(g \) be a function with \(\int g(x)dx = 1 \), and let \(f \) be a density with support \(S \). Define \(g^* = gI_S / \int_S g(x)dx \). Prove that \(\int |g^*(x) - f(x)|dx \leq \int |g(x) - f(x)|dx \).