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Abstract

Bayesian statistical inference for an inverse correlation matrix is chal-
lenging due to non-linear constraints placed on the matrix elements. The aim
of this paper is to present a new parametrization for the inverse correlation
matrix, in terms of the Cholesky decomposition, that is able to model these
constraints explicitly. As a result, the associated computational schemes for
inference based on Markov Chain Monte Carlo sampling are greatly sim-
plified and expedited. The Cholesky decomposition is also utilized in the
development of a class of hierarchical correlation selection priors that allow
for varying levels of network sparsity. An explicit expression is obtained
for the volume of the elicited priors. The Bayesian model selection method-
ology is developed using a Reversible Jump algorithm and is applied to a
dataset consisting of gene expressions to infer network associations.
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1 Introduction and Motivation
A majority of the work related to Bayesian inference on graphical models have
assumed the multivariate Gaussian as the preferred joint distribution on nodes.
This assumption, though mathematically tractable, severely limits the applicabil-
ity of such models since the marginal distribution at each node is forced to be
normal. Recent work thus has focused on joint distributions elicited in terms of
the Gaussian copula (see, for example, Pitt et al. (2006)) which uses the inverse of
a correlation matrix to model network associations. While gaining modeling flex-
ibility, several constraints are placed on the inference methodology due to the use
of a correlation, instead of a covariance, matrix. The entries of a inverse correla-
tion matrix are constrained in a manner so that the diagonal elements of its inverse
(a correlation matrix necessarily) are equal to unity. Further, the correlation ma-
trix (and its inverse) are also required to be positive definite. Previous work has
accounted for these restrictions by updating entries of the correlation matrix one
by one, each time calculating an interval of admissible values so that the resulting
correlation matrix is positive definite (see, for example, Pitt et al. (2006), Wong
et al. (2003) and Barnard et al. (2000)).

Our objective was to perform unconstrained model selection on the space of
sparse graphical networks models. A typical scenario we encountered is inferring
network associations for a dataset of gene expressions consisting of n samples of
each of p genes, with p >> n. Typically, again, in these cases, most network
associations are negligible with only a few significant ones, thus giving rise to
sparsity in the entries of the inverse correlation matrix. The Bayesian analysis of
graphical models entails sampling from the class of all inverse correlation matri-
ces, and in high dimensional problems, this estimation procedure should exploit
the sparsity of the network associations. The term by term updating scheme of
Pitt et al. (2006), Wong et al. (2003) and Barnard et al. (2000), for example, can
be slow to converge.

This paper provides an alternative parametrization of the inverse correlation
matrix which is able to free up the constrains placed on its elements. We are able
to do this by exploiting several useful properties of the Cholesky decomposition of
the inverse correlation matrix, W . Our approach explores network characteristics
via L, the lower triangular matrix of the Cholesky decomposition. Although W
and L have a one-to-one correspondence, zero entries of W do not in general
correspond to zero entries of L. Thus, the nature of network sparsity and the
space of all models we consider are the ones characterized by the zero and non-
zero elements of L. Nevertheless, this is a fairly general representation of sparsity;
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for example, when the inverse correlation matrix W is banded, it follows that L is
banded as well. Generally speaking, L may contain a larger number of non-zero
terms compared to the corresponding W but not significantly larger.

The Cholesky decomposition additionally allows us to develop a class of prior
distributions on the space of all inverse correlation matrices that models sparsity
and gives an explicit formula for the volume; note that Wong et al. (2003) had to
assume a block diagonal structure on the inverse correlation matrices to obtain an
explicit volume formula. The Bayesian inferential procedure utilizes a Reversible
Jump Markov Chain Monte Carlo (RJMCMC) algorithm to jump between model
spaces of varying dimensions. Due to freeing up of constraints, the RJMCMC
scheme has significantly lower computation time and encourages faster mixing.

The rest of the paper is organized as follows. Section 2 discusses the multivari-
ate Gaussian distribution with the inverse correlation matrix as the parameter of
interest. The new parametrization of the inverse correlation matrix in terms of its
Cholesky decomposition is presented here. Section 3 develops a class of prior dis-
tributions on the space of all inverse correlation matrices with an explicit formula
for the volume derived. Section 4 develops the RJMCMC algorithm for Bayesian
inference. Experiments with simulated and real data are presented in Section 5
together with results on the sensitivity of the analysis on model specifications.

2 The Distributional Model
Let X = (X1, X2, · · · , Xp)

T denote a p-variate random vector taking values in
Rp distributed as multivariate Gaussian with E(Xi) = 0 and V (Xi) = 1 for all
i = 1, 2, · · · , p. The joint density of X is

φp(x1, x2, · · · , xp |R) =
1

(2π)p/2(det(R))1/2
exp

{
−1

2
xT R−1 x

}
(1)

where x = (x1, x2, · · · , xp)T ∈ Rp; in (1),R denotes a symmetric positive definite
matrix and det(R) denotes the determinant of R. The matrix R is the correlation
matrix; the (i, j)-th entry of R, rij , represents the correlation between Xi and Xj

for i 6= j. We denote by Cp to be the space of all p× p correlation matrices.
Entries of the inverse correlation matrix, W ≡ R−1 ≡ ((wij)) reflects the

extent of conditional dependence between a pair of component of X, that is,

wij = 0⇔ Xi and Xj are conditionally independent given the rest of the Xk’s, k 6= {i, j}.
(2)
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Although W has altogether p(p + 1)/2 distinct elements, not all of these entries
are free to vary. The p diagonal elements wii, i = 1, 2, · · · , p, and the p(p − 1)/2
off-diagonal elements wij, i > j satisfy p non-linear constraints: If W = ((wij))
is inverted to get W−1, then, the diagonal entries of this inverse should be unity.
Until now, inference on W has been difficult due to the presence of these non-
linear constraints; see, for example, Pitt et al. (2006) and Wong et al. (2003) which
report the difficulties involved and possible solutions when dealing with these
constraints. The goal of this paper is to provide a new solution to the problem of
inference on inverse correlation matrices. Our first step is to model the relation
between the diagonal and off diagonal elements of W in an explicit manner. Let
W = LLT be the Cholesky decomposition of W where L is a lower triangular
matrix. The partitions of W and L are represented as

W =

 ? ? ?
? wjj wT

j

? wj Wjj

 and L =

 ? 0 0
? ljj 0
? lj Ljj

 , (3)

where the ?s are some arbitrary elements of the corresponding matrices. The
following proposition explicitly models the constraints imposed on the diago-
nal elements of W in terms of the vector lj ≡ (lj+1j, lj+2j, · · · , lpj)T for j =
1, 2, · · · , p− 1, which consists of the free (unconstrained) elements lij, j < i.

Theorem 2.1 Let W = LLT be the Cholesky decomposition of W as given by
(3). Then,

l2jj = 1 + lTj (LjjL
′
jj)
−1lj. (4)

We refer the reader to a proof in the Appendix. For j = 1, we havewi1 = li1l11

and so, wi1 = 0⇔ li1 = 0. For the remaining columns j ≥ 2, iij = 0 corresponds
to wij being equal to some pre-specified value (but not necessarily zero). There
are several attractive properties of the above parametrization of W that we shall
use later: (1) For each j = 1, 2, · · · , p, we have an explicit expression for the
diagonal element ljj in terms of lij, i > j and Ljj , thus removing the implicit
constraint imposed on W ; (2) The above proposition allows us to treat the lijs
for i > j as the free (i.e., unconstrained) parameters with each lij ∈ R, allowing
proposal distributions for lj be elicited conveniently, and (3) the elements of Ljj
involve lkk′s for indices k > k′ > j only, and not any of the lkk′’s for k, k′ ≤ j.
In particular, in the expression (4) for ljj , Ljj does not depend on lj or any of the
other lk for k < j.
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We also partition R = W−1 as

R =

 ? ? ?
? 1 rTj
? rj Rjj

 , (5)

and note that (LjjL
T
jj)
−1 = Rjj for j = 2, 3, · · · , p− 1.

Suppose our dataset consists of n iid observations of X with pdf in (1) given
by D = (X1,X2, · · · ,Xn ) where R ∈ Cp is the unknown correlation matrix
with R−1 = W . Denote S to be the sample covariance matrix defined as S =∑n

i=1XiX
T
i . The likelihood for W based on the n observations is

`(D |W ) = e−
1
2
tr(R−1S)|R|−n/2 = e−

1
2
tr(WS)|W |n/2. (6)

Using the Cholesky decomposition of W in (3), the likelihood can be written as a
product of component likelihoods

`(D |W ) =

p∏
j=1

`j(lj |Ljj) (7)

where
`j(lj |Ljj) = (l2jj)

n/2e−
1
2

(sjj l
2
jj+2ljjs

T
j lj+lTj Sjj lj) (8)

for j = 1, 2, · · · , p. Also, we give S the representation

S =

 ? ? ?
? sjj sTj
? sj Sjj

 . (9)

The Bayesian inference methodology requires the development of a suitable class
of prior on Cp for model selection. We develop the prior on Cp in a hierarchical
way, similar in spirit to the prior in Wong et al. (2003) and Pitt et al. (2006), which
gives positive probabilities on combinations of off-diagonal elements of L being
identically zero. The details are presented in the subsequent section.

3 Inverse Correlation Selection Priors
We closely follow the exposition in Pitt et al. (2006) and Wong et al. (2003) to
develop the framework of inverse correlation selection priors for W . To elicit
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the prior on a constrained version of R−1 = W = ((wij)), we first develop some
additional notation. The prior is developed in terms of the number of zero and non-
zero entries ofL, the lower triangular matrix in the Cholesky decomposition ofW .
Let the binary random variable Jij = 1 if lij 6= 0 and Jij = 0 if lij = 0 for j < i
and i = 2, 3, · · · , p. Let J = { Jij j < i, i = 2, 3, · · · , p } denote the collection of
all the Jij . The random variable N(J) will denote the total number of elements in
J that are 1 out of the maximum possible number H = p(p− 1)/2. Let J·j denote
the collection of all { Jij, i = j+1, j+2, · · · , p } for each j = 1, 2, · · · , p−1. For
the j-th column, let Ij denote the collection of indices (i, j) in J·j such that Jij = 1
and Ij+ denote the collection of all indices { (i, k) : (i, k) ∈ J·k, i > k > j } such
that Jik = 1. The collection of elements of lj for the j-th column that are non-zero
is denoted by lIj . Also, let rIj and rIj+ denote, respectively, the collection of all
rij with (i, j) ∈ Ij and (i, j) ∈ Ij+. The sets rIj and rIj+ , respectively, denotes all
free (unconstrained) parameters corresponding to J in column j and in columns
j + 1, j + 2, · · · , p, for each j = 1, 2, · · · , p− 1.

We denote the prior distribution on R for a configuration J by g(R |J ) given
by

g(R |J) ∝
p−1∏
j=1

(det(R{Ij , Ij}))
−1/2; (10)

in (10), R{Ij , Ij} is the submatrix of Rjj consisting of the (Ij − j)-th rows and
columns of Rjj .

Our hierarchical prior specification for W is as follows:

π0(R |J) = V (J)−1 dr{J=1} I{r{J=0}} g(R |J ), (11)

π0{J |N(J) = h } =

(
H

h

)−1

, and (12)

π0{N(J) = h |ψ } =

(
H

h

)
ψh (1− ψ)H−h, and (13)

π0(ψ) = Uniform(0, 1) (14)

where
V (J) =

∫
R∈Cp

g(R |J) I{r{J=0}} dr{J=1} (15)

is the normalizing constant for g, and 0 ≤ ψ ≤ 1 is the probability that Jij = 1.
There are some major differences between the prior elicitation in (11-14) above
with that of Wong et al. (2003) and Pitt et al. (2006). First, the prior for R in
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(11) is defined in terms of the entries lij that are non-zero. Given the position
of the non-zero lijs, N(J), the rij entries at those positions can be taken to be
the free parameters for R. The Lebesgue measure dRJ=1 in equations (11) and
(15) is induced on these rij elements. The remaining rij entries are a function of
rJ=1, but not necessarily zero. Wong et al. (2003), and subsequently Pitt et al.
(2006), defined the prior directly in terms of the indices of rijs that are exactly
zero and non-zero, and therefore, is a different approach from the case here. Sec-
ond, the prior distribution on J given N(J) = h is taken to be uniform on the
space of all configurations J satisfying N(J) = h. This is different from the prior
specification in Wong et al. (2003) who take this prior to depend on the average
volume V̄ (h) over all such combinations of J . Wong’s approach avoids the need
to compute V (J) during each update of the Gibbs sampler but requires the com-
putation of an average volumes V̄ (h) based on non-linear regression and Monte
carlo sampling. In the present case, we take the prior on J to be uniform, which
means that we will be required to compute the volume V (J) at each iteration of
the Gibbs sampler. However, the expression for the normalizing constant V (J)
can be obtained analytically. We present

Theorem 3.1 Let J correspond to a configuration in Cp. Then, the volume

V (J) =

p−1∏
j=1

V (J·j) = 2−(p−1)

p−1∏
j=1

(B(αj, βj)V0(Snj )) (16)

with αj = nj/2, βj = 1 + nj/2 and nj is cardinality of Ij (i.e., the number of
non-zero entries in lj); in (16), B(α, β) is the Beta function given by B(α, β) =∫ 1

0
xα−1 (1−x)β−1 dx, and V0(Sm) is the volume of the unitm-dimensional sphere

in Rm = 2πm/2

mΓ(m/2)
.

The reader is referred to a proof in the Appendix. There is a strong motivation
for choosing g as in (11). The prior g, after an appropriate transformation, has the
tail behavior of multivariate t with one degree of freedom. Thus, in the univariate
case (with nj = 1), this tail behavior is like Cauchy. It is well known that densi-
ties with Cauchy tail-like behavior has been proposed by many researchers as the
appropriate default prior for the univariate variable; see, for example, Gelman. To
demonstrate this tail behavior, we transform the variables (rIj , rIj+) → (lIj , lIj+)
using the Jacobian in (25), and derive the density for lIj (conditional on lIj+) as

hj(lIj | lIj+) =
2

B(αj, βj)× V0(Snj )
×

(det(R{Ij , Ij}))
1/2

(1 + lTIjR{Ij , Ij}lIj )
1+(nj/2)

(17)
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for j = 1, 2, · · · , p. Another transformation y = R
1/2
{Ij , Ij}lIj gives the multivariate

t density with one degree of freedom for y. In terms ofL, the prior on the non-zero
entries of L, { lIj , j = 1, 2, · · · , p } is

π0(L |J) =

p∏
j=1

hj(lIj | lIj+) (18)

where hj is as (17).

4 Bayesian Inference
Inference is obtained based on the posterior distribution of L. The unknown pa-
rameters are (1) the values and (2) positions of non-zero entries of L, and (3) ψ.
The posterior of (L,J, ψ), up to a proportionality constant, is given by

π(J, L, ψ |D ) ∝ `(D |L) π0(L |J)π0{J |N(J) } π0{N(J) |ψ } π0(ψ)

from equations (6), (11-14) and (18). The update of (J, L, ψ) to a new state
(J∗, L∗, ψ∗) may change the number of unconstrained entries of L, and therefore,
can be viewed as an updating scheme that moves between parameter spaces of
varying dimensions. We develop a posterior sampling procedure based on the Re-
versible Jump Markov Chain Monte Carlo (RJMCMC) algorithm of Green (1995)
and Green and Richardson (1997). Fix ψ and a column j. We consider three up-
dating steps. The first two moves are reversible moves types for (J, L) for fixed
ψ. These updating moves are
• Remove Zero: In this step, (J, L) → (J∗, L∗) by increasing the number of
non-zero entries in J·j by one (hence n∗j = nj + 1). One of the zero entries in lIj
is selected at random and converted to non-zero. All other entries of L remain the
same.
• Add Zero: In this step, (J, L) → (J∗, L∗) by decreasing the number of non-
zero entries in J·j by one (hence n∗j = nj−1). One of the non-zero entries in lIj is
selected at random and converted to zero. All other entries of L remain the same.
• Update ψ: In this step, no reversible moves are needed. The update of ψ can
be carried out using a standard Gibbs step. Given J and L, the posterior density
of ψ,

π(ψ |J, L, D ) ∼ Beta(αψ, βψ)

with αψ = N(J) + 1 and βψ = H −N(J) + 1.
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The proposal densities corresponding to the Remove Zero and Add Zero
steps are given as follows: If J → J∗ for a Remove Zero move, the proposal
density is

qR(J,J∗) = rR(J,J∗)× 1

(p− j − nj)
× q(li∗j), (19)

where rR is the probability of selecting this move type, p−j−nj is the number of
available zeros for conversion to non-zero and q(li∗j) is the density of the proposal
distribution for the selected non-zero position i∗ in lIj . If the transition J → J∗

represents an Add Zero move, the associated proposal density is

qA(J,J∗) = rA(J,J∗)× 1

nj
(20)

where rA is the probability of selecting this move type; the new number of non-
zero elements is n∗j = nj − 1 where nj is the number of available non-zeros in J
for conversion to zero. The acceptance probabilities corresponding to the Remove
Zero move is given by

αR((J, L), (J∗, L∗)) = min
{

1,
π((J∗, L∗, ψ ) |D )qA(J∗,J)

π((J, L, ψ ) |D )qR(J,J∗)

}
; (21)

while the acceptance probabilities for the Add Zero step is

αA((J, L), (J∗, L∗)) = min
{

1,
π((J∗, L∗, ψ ) |D )qR(J∗,J)

π((J, L, ψ ) |D )qA(J,J∗)

}
. (22)

The expression of the acceptance probabilities of general RJMCMC schemes
involves a Jacobian that corresponds to the transformation relating the random
variables generated using the proposal distribution (either using qA or qR) with
the new proposed state. However, in our case, the Jacobian is 1 since we directly
sample li∗,j , an element of L. We also consider another step Unchanged Zero
where J remains fixed and only the entries of L are updated based on a proposal
distribution q1. The acceptance probability for the Unchanged Zero move for the
j column of L is

αU((J, L, ψ ), (J, L∗, ψ )) = min

{
1,
π((J, L∗, ψ ) |D )q1(lIj )

π((J, L, ψ |D )q1(l∗Ij )

}
(23)

where lIj and l∗Ij represent the current and proposed values for the j-th column of
L. Note that since J remains unchanged , both lIj and l∗Ij are of the same dimen-
sion nj . The probability of selecting the Unchanged Zero move type is denoted
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by rU(J,J) but does not appear in the expression for the acceptance probability
due to cancelation from the numerator and denominator.

To run the RJMCMC, we obtain an initial estimate of W based on the inverse
of the sample covariance matrix S. The Cholesky decomposition of W = LLT

is then obtained. In order to update the entries of L, the RJMCMC performs a
cycle starting from column j = p − 1, then j = p − 2, and so on, until j = 1
of L. At step j, one of the Add, Remove and Unchanged Zero moves are se-
lected with their corresponding r0 probabilities. If either Add Zero or Remove
Zero are selected, the chain is updated from state (J,W ) → (J∗,W ∗) according
to the acceptance probabilities (22) and (21). If Unchanged Zero is selected, the
chain is updated based on the acceptance probability (23) based on the proposal
q1. Running through the indices j = p − 1, p − 2, · · · , 1 and finally updating
ψ based on its conditional posterior density completes one iteration of the RJM-
CMC. The RJMCMC is then run through a large number of iterations and checked
for convergence before posterior samples are obtained for inference.

Suitable choices for the proposal densities q and q1 are challenging to obtain
for the following reason: Note that for each fixed j, the posterior is a compli-
cated function of lj; for example, lj is present in the conditional posterior density
π(lk |Lkk, D) for all k < j in a very complicated way, and cannot be factored out
or approximated easily. To develop efficient sampling procedures, the proposal
densities should be as close as possible to π(J, W, ψ |D) (viewed as a function
of lj only) to avoid low acceptance probabilities and slow mixing.

We develop proposal densities for the Remove Zero and Unchanged Zero
steps based on the initial estimates of L, l̂ij for i > j and i, j = 1, 2, · · · , p
obtained from the empirical correlation matrix R̂. The candidate non-zero entry
li∗j is sampled from a normal density with mean l̂i∗j and standard deviation σ0. We
choose a small value of σ0 in our experiments in Section 5. For the Unchanged
Zero move, q1 is chosen to be the multivariate normal distribution with mean l̂Ij
and covariance matrix σ2

0 Inj
.

5 Experimental Results

5.1 Simulation
A commonly used covariance structure is the band structure where going down
each column, only a few entries closest to the diagonal are non-zero and rest are
zero. For our simulation, we generated observations from a multivariate normal
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distribution on R5 with zero mean and a banded correlation matrix R. The matri-
ces R, W and L are given as follows:

R =


1 0 0 0 0
0 1 −0.28 0 0
0 −0.28 1 −0.2 0
0 0.06 −0.2 1 0
0 0 0 0 1

 ,W = R−1 =


1 0 0 0 0
0 1.09 0.31 0 0
0 0.31 1.13 0.2 0
0 0 0.2 1.04 0
0 0 0 0 1



and L =


1 0 0 0 0
0 1.04 0 0 0
0 0.03 1.02 0 0
0 0 0.2 1 0
0 0 0 0 1

 .

A total of n = 2, 000 realizations are generated which constitute the observed
data. The RJMCMC is started from several different initial values of R, W and
L. The variance of the proposal density σ2

0 is taken to be the sample variance
calculated based on the off-diagonal entries of L̂ = ((l̂ij)).

The RJMCMC chain was run upto 20,000 iterations and convergence of the
simulation was checked and established using ”Potential Scale Reduction Factor”
as described in Brooks and Gelman (1998). The marginal distribution of each lij
is a two component mixture with one component giving point mass at zero and
the other forming a smooth density based on the non-zero realizations. Figure 1
gives the density plots using a Gaussian kernel for the non-zero entries as well
as the true value of each lij . The number on top right corner of each panel is
the proportion of times that lij was chosen to be zero. A large number indicates
that the posterior puts high probability on the value 0 which is indicated by the
grey background of the corresponding panel. Clearly from Figure 1 the sparsity
of L and W matrix has been estimated correctly by the sampling scheme. The
recovered sparsity structure of R matrix is also similar to the true structure (not
shown in figure).

5.2 Real Data
Our method proposes a way to estimate covariance or correlation matrix through
sampling. This is applicable in a bigger context to answer biological questions
about pathway association. As a biological hypothesis, pathway association refers
to association of a group of genetic markers that are functionally related with some
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Figure 1: Location-wise Distribution of nonzero values of MCMC sample of
lower triangular part of L and W matrix. Grey background indicates posteior
mode at 0, and the point probability at 0 is displayed at the top right corner.

phenotype(disease). However, statistical attempts to make joint inference on a set
of genes are often inadequate in capturing the possible complexity in the associ-
ation pattern. In most cases, a combined analysis of all the genes in a study, or a
subset of them that are biologically connected, may not be feasible due to small
sample sizes and a large number of genes. Biological nature of gene interaction
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or dependence may be difficult to capture in the statistical parametrization. Also,
quite often the genes in a study is only a subset of all the different types of mark-
ers that construct the genetic pathways and the overall dependence pattern of them
may not translate in a simplistic way to the network of the subnet.

One recent example of pathway analysis is provided in Hendriksen et al.
(2006) where the Androgen pathway has been linked with progression of prostate
cancer. The data used in Hendriksen et al. (2006) is available in Gene Expres-
sion Omnibus (GSE4084). A similar study, Singh et al. (2008), on Androgen
receptor related genes concluded similar association from a different cohort. The
significant genes reported in Singh et al. (2008) are classified as over- and under-
expressed in cancer specimens. We took the data from Hendriksen et al. (2006)
with the over-expressed genes from Singh et al. (2008). Data missingness reduced
this set by two more genes. Eventually, p = 10 genes in n = 12 specimens were
available with genes denoted by AKAP9, GAGEB1, MET, MYLK, MYO3A, NR2F1,
NRXN3, PRLR, TCF4 and TNS. We applied our covariance estimation algorithm
on this dataset to find possible sparsity structures.

Reported structural data from KEGG database has not been useful as many
of the above genes are not part of the Androgen receptor pathway shown there.
We will use common wisdom about natural networks in defining our prior. Nat-
ural networks in various context shows a degree distribution with polynomial
tail with P (degree = n) ∝ 1/np. Recent studies of natural networks suggests
p ≈ 3 ( add reference ) and some suggestions on growth models suggest even
larger values of p. For our purpose, we take p = 3.5 to have a prior value of
both mean and variance of the degree distribution. For p = 3.5, mean degree is
ζ(2.5)
ζ(3.5)

= 1.19 and variance is ζ(1.5)
ζ(3.5)

− ( ζ(2.5)
ζ(3.5)

)2 = 0.901. In our setup, total degree
N(J) = 1

2

∑
node degrees, hence E(N(J)) = 5×E(degree), assuming degree

distribution of each node is iid. And V (N(J)) = 25 × V (degree). We incorpo-
rate these information into the prior ψ ∼ Beta(α, β) by choosing α = 0.9596 and
β = 3.0724.

Figures 2, 3 and 4 shows the estimated structure of the inverse correlation
matrix of the 10 genes along with the L matrix for chains 1, 2 and 3 respec-
tively. Convergence of the simulation has been checked using ”Potential Scale
Reduction Factor” as before; figure 5 shows the mixture of sequence and within
sequence variance estimates against the simulation index. Clearly the simulation
has converged by 10,000 iterations.

The locations in figures 2- 4 with grey background shows the location having
0.5 or higher point probability at zero. Although the sparsity estimated seems to
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be somewhat lower than observed sparsity of natural networks, the threshold for
sparsity can be made more stringent or the prior can be made more skewed to
enforce more sparsity provided we have some prior knowledge about the network
dependence pattern.

6 discussion
Bayesian estimation and model selection with a correlation matrix is challenging
due to the presence of non-linear constraints. We present an approach in this paper
that explicitly models the non-linear constraints in terms of the lower triangular
matrix of the Cholesky decomposition. Our algorithm reduced the domain restric-
tion on the Cholesky factor to only the diagonal elements being non-stochastic,
and all the off-diagonals being free parameters. Thus almost any default prior
on them would work. Also, the updating scheme updates one column at a time,
and hence the computation time is O(p) where p is the dimension of the corre-
lation matrix. This a significant improvement over the earlier attempts to default
bayesian analysis of correlation matrix.

A Bayesian analysis to infer pathway association will go through a model se-
lection exercise with an association parameter and the covariance matrix allowed
to have stochastic zeros. Posterior simulation will include steps to sample from
the posterior of the association parameter and then another step to sample from
the posterior of the covariance matrix conditional on the current value of the as-
sociation parameter. We intend to demonstrate in the stated applications that our
method provides an algorithm to simulate from the covariance matrix posterior
that allows for structural zeros.
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Appendix
We provide the proofs of the Theorems 2.1 and 3.1 in this section. The proof of
Theorem 2.1 proceeds by partitioning W and L as

W =

 B1j bj B2j

bTj wjj wT
j

BT
2j wj Wjj

 =

 Mj1 0 0
Mj ljj 0
Mj2 lj Ljj

 MT
j1 MT

j MT
j2

0 ljj lTj
0 0 LTjj

 .

Comparing the blocks we haveB1j = Mj1M
T
j1,B2j = Mj1M

T
j2,Wjj = Mj2M

T
j2+

ljl
T
j + LjjL

T
jj , wjj = l2jj +MjM

T
j , wj = Mj2M

T
j + ljjlj and bj = Mj1M

T
j . The

diagonal entries of the inverse of W are 1. These restrictions translate to

wjj −
(
bTj wT

j

)( B1j B2j

BT
2j Wjj

)−1(
bj
wj

)
= 1. (24)

Using the linear algebra result on deriving a matrix inverse, we have(
B1j B2j

BT
2j Wjj

)−1

=

(
B−1

1j + FE−1F T −FE−1

−E−1F T E−1

)
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where E = Wjj−BT
2jB

−1
1j B2j = ljl

T
j +LjjL

T
jj and F = B−1

1j B2j = (Mj2M
−1
j1 )T .

After some algebra, the second term on LHS of (24 ) can be simplified in the
following way:

wjj−
(
bTj B

−1
1j bj + bTj FE

−1F Tbj − 2bTj FE
−1wj + wT

j E
−1wj

)
= ljj−l2jjlTj E−1lj.

Equating the last expression above to unity, we get 1 = l2jj − l2jjlTj E−1lj or l2jj =
1/(1− lTj (ljl

T
j + LjjL

T
jj)
−1lj). Now use the result

(ljl
T
j + LjjL

T
jj)
−1 = (LjjL

T
jj)
−1 −

(LjjL
T
jj)
−1ljl

T
j (LjjL

T
jj)
−1

1 + lTj (LjjLTjj)
−1lj

to simplify the last expression for l2jj to l2jj = 1 + lTj (LjjL
T
jj)
−1lj .

Let J denote a configuration in Cp. We state the following lemma which will
be required for the proof of Theorem 3.1.

Lemma 7.1 The Jacobian of the transformation from (rIj , rIj+) → (lIj , rIj+)
is given by

∆j =
det(R{Ij , Ij})

l
2+nj

jj

(25)

where R{Ij , Ij} is the submatrix of Rjj consisting of the (Ij − j)-th rows and
columns of Rjj , and nj is the number of elements in Ij .

The proof of Theorem 3.1 now proceeds as follows. We have l2jj = 1 +
lTj (LjjL

T
jj)
−1lj = 1+lTIj R{Ij , Ij} lIj whereR{Ij , Ij} are the Ij−j rows and columns

of Rjj . Now fix j = 1. To evaluate the integral in (15), note that∫
Cp

p−1∏
j=1

(det(R{Ij , Ij}))
−1/2 I{r{J=0}} dr{J=1} =

∫
Cp

p−1∏
j=1

(det(R{Ij , Ij}))
−1/2 I{r{J=0}} drI01 drI11

=

∫
Cp−1

(∫
lIj

det(R{Ij , Ij}))
−1/2∆1 dlI01

)
p−1∏
j=2

(det(R{Ij , Ij}))
−1/2 I{rIc

11
= 0} drI11 ,

using Lemma 7.1. The inner integral with respect to lI1 is∫
lI1

(det(R{I1, I1}))
1/2

l2+n1
I1

dlI1 =

∫
lI1

(det(R{I1, I1}))
1/2

(1 + lTI1R{I1, I1}lI1)
1+(n1/2)

dlI1

=

∫
y

(1 + yTy)−(1+(n1/2)) dy
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where y = R
1/2
{I1, I1} lI1 is an n1-dimensional vector. Using polar transformation,

the integral with respect to y can be simplified to∫
s>0

(1 + s2)−(1+n1/2) sn1−2 ds × V0(Sn1) = 2−1 · B(α1, β1)× V0(Sn1)

using the substitution u = s2/(1 + s2), where α1, β1 and V0(Sn1) are as defined
in Theorem 3.1. Now, we repeat the above procedure for j = 2, 3, · · · , p − 1 for
the outer integral with respect to rI1+ .

We now give the proof of Lemma 7.1. It is easy to check by matrix multipli-
cation that

L =

 ? 0 0
? ljj 0
? lj Ljj

 , and L−1 =

 ? 0 0
? 1/ljj 0
? − 1

ljj
L−1
jj lj L−1

jj

 . (26)

Hence,

R =

 ? ? ?
? 1 rTj
? rj Rjj

 = (L−1)TL−1 =

 ? ? ?

? 1
l2jj

+
lTj (L−1

jj )TL−1
jj lj

l2jj
− lTj (L−1

jj )TL−1
jj

ljj

? − 1
ljj

(L−1
jj )TL−1

jj lj (L−1
jj )TL−1

jj

 .

Equating the diagonal entries provide a second proof of Theorem 2.1. From the
off-diagonal entries, we have Rjj = (L−1

jj )TL−1
jj and rj = − 1

ljj
Rjjlj. Using the

notation from section 3, we have rIj = − 1
ljj
R{Ij , Ij}lIj . Choose the indices i and

k such that (i, j) ∈ Ij and (k, j) ∈ Ij . Then,

∂ rij
∂ lkj

= −rkj
ljj

+
1

l2jj

∑
(m,j)∈Ij

rmj lmj
∂ ljj
∂ lkj

= −rkj
ljj

+
1

l2jj

∑
(m,j)∈Ij

rmj lmj
1

ljj
rTIj lIj .(27)

Note that the Jacobian of the transformation (rIj , rIj+) → (lIj , rIj+) is given
by

J = det

 ∂ rIj

∂ lIj

∂ rIj+

∂ lIj
∂ rIj

δrIj+

∂ rIj+

∂ rIj+

 = det

[
∂ rIj

∂ lIj

∂ rIj+

∂ lIj

0 I

]
= det

[
∂ rIj
∂ lIj

]
,

the 0 in the off-diagonal position being due to the fact that the vector rIj is not
constrained by the variables in rIj+ . Thus, the Jacobian of the transformation
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rIj → lIj depends on det
[
∂ rIj

∂ lIj

]
which can be obtained from equation (27). This

can be simplified as

det

[
∂ rIj
∂ lIj

]
= det

[
− 1

ljj
R{Ij , Ij} +

1

l3jj
R{Ij , Ij}lIj l

T
Ij
R{Ij , Ij}

]
=

1

l
nj

jj

det
[
R{Ij , Ij}

]
det
[
I − uuT

]
where u = 1

ljj
R

1/2
{Ij , Ij}lIj . The last expression can be simplified as

det
[
R{Ij , Ij}

]
l
nj

jj

(1− uTu) =
det
[
R{Ij , Ij}

]
l
nj

jj

(
1−

lTIjR{Ij , Ij}lIj

l2jj

)

=
det
[
R{Ij , Ij}

]
l
nj

jj

(
1−

l2jj − 1

l2jj

)
=
det
[
R{Ij , Ij}

]
l
nj+2
jj

.
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Figure 2: Location-wise Distribution of nonzero values of MCMC sample of
lower triangular part of L and W matrix of Androgen pathway genes for chain
1. Grey background indicates posteior mode at 0, and the point probability at 0 is
displayed at the top right corner.

19



Figure 3: Location-wise Distribution of nonzero values of MCMC sample of
lower triangular part of L and W matrix of Androgen pathway genes for chain
2. Grey background indicates posteior mode at 0, and the point probability at 0 is
displayed at the top right corner.
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Figure 4: Location-wise Distribution of nonzero values of MCMC sample of
lower triangular part of L and W matrix of Androgen pathway genes for chain
3. Grey background indicates posteior mode at 0, and the point probability at 0 is
displayed at the top right corner.
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Figure 5: Mixture of sequence and within sequence variance estimates for the
covariance matrix estimation of the Androgen genes
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