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Abstract: We use the Potter’s Theorem and the tightness criterion in Besov-Orlicz
spaces, recently proved by Ait Ouahra et al. (2011), to generalize some limit theorem
for occupation times problem of certain self-similar process, namely symmetric sta-
ble process of index 1 < a < 2 and fractional Brownian motion of Hurst parameter
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1- Introduction

In the present paper, we are interested in the limit theorems of a class of continuous
additive functionals of some self-similar process, namely stable process and fractional
Brownian motion. The interesting properties such as self similarity and stationarity of
increments make these processes good candidates as models for different phenomena,
related to financial mathematics and telecommunications, etc...

Most of the estimates in this paper contain unspecified positive constants. We use
the same symbol C for these constants, even when they vary from one line to the next.
We first collect some facts about these processes.

Let X = {X? ; t > 0} be a real valued symmetric stable process of index 1 < a £ 2,
with Xg& = 0, (-SSP for brevity). The sample paths of X7 are right-continuous with
left limits a.s. (cadlag for brevity) and has stationary independent increments with
characteristic function

Eexp(i\X?) = exp(—t|A|®), ¥t>0.A€R.

It is known from Bovlan (1964) and Barlow (1988) that X® admits a continuous local
time process {L(t,x); t > 0, € R} satisfying the scaling property

{L()\t.x)\ﬂ')} c {,\“JlL(t.z)}m. YA > 0,

t=0 =
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where ”L” means the equality in the sense of the finite-dimensional distributions, and
the occupation density formula

/ F(X2)ds = f (@)Lt x)dr,
S0 R

for any bounded or nonnegative Borel function f.

Moreover, in Marcus and Rosen (1992) and in Ait Ouahra and Eddahbi (2001), for
each T > 0 fixed, there exists a constant 0 < C' < oc such that for any integer p > 1,
al0<t,s<Tandall r,y € R,

IL(t, ) = L(s,2)l2p < C((2p)") % |t — 5|7,

- a-—1
[L(t,2) = Lt,y)ll2p < C(2P)) |z — 9|7,
a2 a=1,
IL(t. z) — L(s,x) — L(t, y) + L(s,y)ll2p < C((2p))) 7 [t — 5| 2= |z — y
where [|.|l2p = (E|.[)%.
Given a constant H €]0, 1], the fractional Brownian motion (fBm for brevity) with

Hurst parameter H is the real valued centered Gaussian process BY = {BF; t > 0}
with stationary inerements and covariance function

-1

R

R o) = %(t”f +82H _ |t = g2H),

However, the increments of fBm are not independent except in the Brownian motion
case (H = %, Bm for brevity). The dependence structure of the increments is modeled
by a parameter H. fBm is self-similar with exponent 7 = H, and its local time satisfies
the occupation density formula and the scaling property.
Notice that the a-SSP is self-similar with exponent 7 = 1.

Geman and Horowitz (1980) proved that the local time of fBm exists and has a.s.
Hélder continuous modification of order 49 — £ in space and of order 1 — H — = in time
for any £ > 0 and ~y = min(1, 12'§ ). More precisely, it is proved by Xiao (1997), that
for each T > 0 fixed, there exists a constant 0 < C' < cc such that for any integer
pzlall0<t,s<Tandallz.yecR,

IL(t,z) = L(s, 2)llsp < CU2DNF |t — o7,
1(t:2) = L(t. )l < O((2p)) 5

Lt x) — L(s, @) — L(t,y) + L(s,y)ll2p < C((2p)")

for any 0 < 6 < m

Notice that 0 < 2+—H <18 4 and for any 0 < 6 < —2-_'_—‘,; we have

|.'I,' 3 yrjs

R gt HO+O)p g,

26+ H(1+4) <1,
therefore the last regularities becomes:
IL(t. 2) = L(s,2)ll2p < C((2p)) F |t - 5"~ 7,

IL(t,z) = L(t, y)ll2p < C((2p)) % |z — y|%,

IL(t, ) — L(s,z) — L(t,y) + L(5,y)ll2p < C((2p)) F |t — 8]~ HOD|z — g%,
for any 0 < 6 < % < .
For an excellent summary of fBm, the reader is referred to Mandelbrot and Van Ness

(1968) and Samorodnitsky and Taqqu (1994).



Remark 1. 1) Notice that for H = 1 (respectively a = 2). B¥ (respectively X*)

is a Bm. ’

2) The -SSP has independent increments, contrary to fBm which does not have inde-
pendent increments, except for the special case of the Bm.

3) BH has a.s. Hélder continuous modification of order 8 < H but X is just cadlag.

Throughout this paper, we use the same symbol Y7 = {¥{7,f > 0} to denote a-
SSP (7 = 1) or fBm (7 = H) and we denote {L(t,z);t > 0,z € R} its local time.
Then, for each 7" > 0 fixed, there exists a constant 0 < C < oo such that for any
integer p> 1. all0<t,s <T and all z,y € R,

IL(t,z) — L(s,2)]l2p < C((20)") %5 |t — s|*~7, (1)
IL(t, ) — L(t,y)ll2p < C(2D)) F |2 — y’, 2)

|L(t,2) = L(s, @) = L{t,y) + L(s,y)l2p < C2PN Tt = s Tz —gf?,  (3)

where § = dp = 12'—: for a-SSP and 0 < § < &y = ;—1—:- < ~p for fBm.
Self-similar process arise naturally in limit theorems of random walks and other
stochastic process. Many authors have studied the limit theorems of the process

1 At .

m 6 f(ys )ds'.' (4)
where f = D1g and g € C® N L}(R) with compact support. We cite Yamada (1986),
(1996) for Bm (7 = %), Shieh (1996) for fBm (7 = H) and Fitzsimmons and Getoor
(1992) for a-SSP (7 = ). All these results are established in the space of continuous
functions. Ait Ouahra and Eddahbi (2001) extended the results of Fitzsimmons and
Getoor (1992) to Holder spaces and Ait Ouahra et al (2002) in Besov spaces and
recently, Ait Ouahra et al. (2011) in Besov-Orlicz spaces. The result of Shieh (1996)
was extended by Ait Ounahra and Ouali (2009) in Besov spaces.

The objective of the present paper is to study in Besov-Orlicz spaces, the limit the-
orem of the process (4), where f has the form f = K;"g, (see the definition of Kf_{"
below).

We recall the following definition which will be useful in the sequel.

Definition 1. A measurable function U : RT — R7 is regularly varying at infin-
ity in (Karamata’s sense), with a real exponent r, if for all t positive

Ulta) _,

T T

If = 0, we call U slowly varying function denoted by I. We see that U(z) = z"l(z).
We are interested in the behavior of | at +00, then we can assume for example that

| is bounded on each interval of the form [0, a]. (a > 0).

In what follows, we assume that for v > 0, k4 is a regularly varying function with

exponent —(1 + ~) defined by

Wl ify>0
k) =q @ LY7o
0, ify <0,

where [ is slowly varying function at 400, continuously differentiable and I(z) > 0 for
all » > 0 and I(0") = 1, (see Bingham et al. (1987), Theorem 1.3.3).
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For any 7 €]0. 8] and g € C” N L*(R), we define

i 1 R
KY0(0) = s /0 by () Loz £ 9) - 9(2)) d,
and we put ; :

K'Y = K - KM,

K" is called the generalized fractional derivative.

Remark 2. By (2) and the occupation time formula we have L(t,.) € C% n LY(R)
for some 8 > 0, then we can define K*7L(t,.)(z) for any 0 < < 5.

The following theorem called Potter’s Theorem has played a central role in the proof
of our results, (see Bingham et al. (1987)).

Theorem 1. 1) If [ is slowly varying function, then for any chosen constants 4 > 1
and £ > 0, there exists X = X (A, £) such that

Hy) Yap s

) <4 {ma‘_ é} > X,y > X).

5 < Ama {0} @2X2

2) If further, [ is bounded away from 0 and oo on every compact subset of [0, +oc],
then for every € > 0, there exists A’ = A'(¢) > 1 such that

Ll A’max{(g)f,(g)—ﬁ} (x> 0,4 > 0).
: €T £

3) If U is regularly varying function with exponent r € R, then for any chosen 4 > 1
and £ > 0, there exists X = X (A, £) such that

Uly) y 3.

s undl e {—‘”ﬂf.—"f} =X s XY

g < Ams (G G] @2xyzX)
The monograph by Seneta (1976) contains a very readable exposition of the basic the-
ory of regularly varying functions on R.
The following proposition is the main result of this section. It is a consequence of a
simple computation integral.

Proposition 1. For h: R — R and a > 0, we denote by h, the function z — h(az),
then
K (ha) = (KS¥™), ¥y>0, Va>0. (5)

Remark 3. 1) K7 and K7 satisfy the switching identity

] @K g@de = [ @KL f(x)ds, (6)
R i3

for any f,g € C® N L*(R) and ¥ €]0. 3[.
2) If we take [ = 1, we recover the definition of fractional derivative, (see Yamada
(1985), Samko et al. (1993) and the references therein).

The remainder of this paper is organized as follows: In the next section, we present
some basic facts about Besov-Orlicz spaces. In section 3, we give the proof of our main
result. Finally, in the last section, we state and prove strong approximation version of
our limit theorem.



2- The Functional Framework

In this section, we will present a brief survev of Besov-Orlicz spaces. For more
details, we refer the reader to Boufoussi (1994) and Ciesielski et al. (1993).

Let (€, X, u) be a o-finite measure space. We denote by L*(2), 1 < p < +0o0, the
space of Lebesgue integrable real valued functions f on € with exponent p endowed
with the norm

1

£, = ([ 170Paue)’

The Orlicz space Ly, (apu)(2) corresponding to the Young function Mg(z) = elzl” 1,
3 > 1. is the Banach space of real valued measurable functions f on Q, endowed with

the norm )
| f1l 5t (s —mf {fM |d,u()<l}

This norm is equivalent to the norm of Luxemburg (1955) given by

113y = inf { 1+ [ M3000) I)du(-)}-

In case of (§1,Z, P) being a probability space, the Orlicz norm become

1 asaap) = inf {E(Ms(l { ) < 1} ,

In this paper, we use the following equivalence norm in Ly, . (€2), (see for example
Ciesielski et al. (1993)),
|Ef ]lp

L1 At ey ~ F“lp

Benchekroune and Benkirane (1995) have proved that for any open A C  and any
f € Lins,(au)(A), we have

1 f-gllatacduy < 9llooll 1l azzan)s (7)

where ||g|loc = sup,c 4 lg(2)|.
These last two results and the Potter’s Theorem have played a central role in the proof

of our limit theorem.
The modulus of continuity of a Borel function f : [0,1] — R in Orlicz norm is defined
by
wary (f:1) = sup [|Apfllars(az)s
0<h<t

where

Anf(t) =1y, 1= (B[t +h) = f(1)).
The Besov-Orlicz space, denoted by B} M, o) 15 @ non separable Banach space of real
valued continuous functions f on [0, 1] endowed with the norm

war, (f.1)

[ = fllpsiaz) + su A
||f|}\rfjg‘02 ” ” #(dz) 0<t21 W;a,u(t}

where
Wy (t) = t#(1 4+ log(= })"

foranyO<p<landwv >0
Let {¢n =¢jx, 5 =2 0,k=1, ...,27} be the Schauder basis. The decomposition and



the coefficients of continuous functions f on [0, 1] in this basis are respectively given as

follows w
f®) =) CalHNenl®)

n=0

n=2+4k j=0, k-l
Cn(f) = f:k—252f(%'h11 f(%?fg)—f(ﬁér)-

Lupv

{ Co(f) = £(0), Ci(f f(1 f(O

We consider the separable Banach subspace of B} defined as follows

w;..()

Mﬁ R =Afc BMB = [ war, (f,1) = olw,,.(t)) (t40)}.

It is known from Ciesielski et al. (1993) that the subspace B}/ My corresponds to
sequences (f;1);k such that

9—Hi-nt+3)

lim {ZIL elf]7 =0.

PL+Se oyl

For the proof of our results, we need the following tightness criterion in the subspace
Bf{;i"m, (see Ait Ouahra et al. (2011)).

Theorem 2. Let {X]" : t € [0,1]}n>1 be a sequence of stochastic processes satis-
fying:

(i) X =0foraln>1.

(ii) There exists a constant 0 < C' < oo such that for any (t,s) € [0.1]

IXF = X2 Imyap) < Clt — s8],

gy 000

where 0 < p < 1. Then, the sequence {X[" : t € [0,1]},,»1 is tight in the space B o
forallv > 1and 8 = 1.
‘We end this section by the following regularity of local time.

Corollary 1. For each T' > 0 fixed, there exists a constant 0 < € < oo such that for
all0<t,s<T andall z € R,

IL(t ) = L(s, 2)llan ap) < Clt = '

Proof. By virtue of the equivalence norm in Ly, (4, (€2) and (1), there exists a constant
0 < C < oo, such that
[IL(t, x) = L(s,)]|2p

IL(t, =) — L(s, T)llanyap) < CS“D 5

o)1} 75
< Csup -(-g-"—’?l-}-—ﬂt ogld ]
=1 2p

< Cl—sl

where we have used in the last inequality the fact that ((2p)!)515 < 2p.
This complete the proof of Corollary 1.



3- Limit Theorems
In order to establish our limit theorem, we need the following regularities.

Lemma 1. Let T > 0 fixed, 0 < v < é and K € {K;”,K“}‘ There exists a
constant 0 < ¢ < oo such that for all 0 < t,8 < T, all r € R and any integer p > 1,

IKL(t, .)(z) — KL(s,.)(z)ll2p < C((2p)!) % |t — "~ 7O,

Remark 4. This regularity is similar to that given in Ait Ouahra and Eddahbi (2001)
for fractional derivatives of local time of a-SSP and in Ait Ouahra and Ouali (2009)
for fBm case.

Proof of Lemma 1. We treat only the case K = Ki_'"“, the other cases are simi-
lar. Let b= |t — s|7. By the definition of Ki‘w', we have

KL L(t, (@) = KL L(s, )(@)ll2p

1 s [IL(t, x4+ u) — L(s,x + u) = L(t, z) + L(s,z)||2p
< T N

1 R . |IL(t.x +u) — L(s, 24+ u) — L(t,z) + L(s,z)ll2p ,
e TR e d“

=10 + Is.
We estimate I; and I separately.
Estimate of I;:
Since [ is bounded on each compact in R™, it follows from (3) that,

L < O((2p)) %[t — 8|75

< C(@p))% |t — o7,

Now we return to estimate Io:
Potter’s Theorem with 0 < £ < v implies the existence of A(§) > 1 such that

u
l(u) < A(g)z(b)(g);
Combining this fact with (1), we obtain
I, < C((2p)) % |t — s ~7(F),

The proof of Lemma 1 is done.
We prove, in the same way as before the following result. It will be useful to prove the
tightness in Theorem 3.

Corollary 2. Let T > 0 fixed and 0 < v < 4. There exists a constant 0 < C < o0
such that for all 0 < ¢,s < T, all # € R and n large enough,

b = iy

) | R () - KT s ) (2)

‘2 < C((2p))F |t — o7+,
r

P
—— A
n—7/

, the other cases are similar.
Al==F)

i
Proof. We treat only the case K’ +(

Let b= |t — s|7. By the definition of , we have



=== =)~

]*IHK UL )(GE) - Ko L (s, ) ()l
L L U LS 0 = Ko 4w = L)+ L Sy
TP Jo UnT) ul+y
f °°I(ﬂ ) ||.E(t ?+u}—~L[s = +u) — L(t,f‘__w)+L(s,n—m;)!|gpd
bt 5 7}1 ul+y ¥
=J; + Ja.

We estimate J; and J; separately.
Estimate of J;: It follows from (3) that,

B < C(Ep)E sup KWy _ gi-ritiys

u€R+ I(HT)
l(n"wu) L,
| EP 1=7( 1+~)
C((2p)") b AT n,)l s|

Now we return to estimate Jo:
Potter’s Theorem with 0 < £ < v implies the existence of A(£) > 1 such that

Un"u) < A(E)Hﬂ-Tb)(%)E‘
Combining this fact with (1), we obtain

ey LAl
< .75 Y 1) [P et T(1+“J).
5 < e F e s

Finally, by using the fact that

we complete the proof of Corollary 2.

Remark 5. As in Corollary 1, for 0 < 4 < 4, there exists a constant 0 < C < oc such
that forall 0 < ¢,s < T, all x € R and n large enough,

] [ RETT 2 02 - KT LG, < Ct - sft=70+,

M, (dF)

Now we are ready to state the main result of this section.

Theorem 3. Let 0 < v < 4. Suppose f = Kf:‘;"'g where g € C? n L}(R) with
compact support for some v < 3. Then as n — +oc, the sequence of process

{masry | i fonas)
20

converges in law to the process

{[ / g(x)dx”D;L“")(m}@

: ; (1D
in the Besov-Orlicz space By, 207" for all v > 1.



Remark 6. Notice that even if f is not a fractional derivative of some function g.
the limiting process is fractional derivative of local time.

Proof. 1) Case of a-SSP. By Fitzsimmons and Getoor (1992), (Remark 3.18), the
finite-dimensional distributions of

nt
AP = [+ 7)) ! / F(Y7)ds
Jo
converge as n — +oc to the finite-dimensional distributions of
| st@)aaID3L.)(0)

So to prove this theorem, we need only to show the tightness of the processes Af in

; . W= (145,00 )
the Besov-Orlicz space B, """ for any v > 1.

By the occupation density formula and the scaling property of local time, we have

l nt ” ne -
‘E(n“‘)nl—-'(lﬂ-w) (fo FOY)du — fﬂ f(Yy, )dﬂ)

= "7 H f i@ - [ 1@, Z)da

|AF — A%l ar) =

M, (dP)

Mi(dP)

= " [U(n7)] ! ‘

f K4 g(a) [L(t Z) ~ L(s, )] dz
X .

My1(dP)

=n"(I(n7)]™

/R g() [K‘_-’-*L(t. —)(z) - KX"L(s, ;_'?)(x)] dz

M, (dP)

Therefore, it follows from (5) and (7), that
| AN _ 4™ -1 ; Ho=) & =)oy x
AT = A% Lags (apy < CT(T)] ];Hg(r.} (K710 )(2) - K L(s..)(nl_))HM]{dP)dx
=1 || £ prtl==F) x, == z
<€ [ Nolloltan )™ [ (BST7E 25 = KT B )CD)

where § = supp(g).
Thanks to Remark 5, for n large enough, we have

|AF — ATl sy ap) < Clt - 8|1"T[1+w)‘

2) Case of fBm. By analogous arguments using in Fitzsimmons and Getoor (1992), (Re-
mark 3.18). in the case of a-SSP, we obtain the convergence of the finite-dimensional
distributions of the processes A7. The tightness follows easily as in the case of a-SSP.
This with Theorem 2 completes the proof of Theorem 3.

Remark 7. Our limit theorems in the case of fBm are new even in the space of
continuous functions.

4- Strong approximation

In this section, we give strong approximation, LP-estimate, of Theorem 3. Our main
result in this paragraph reads.



Theorem 4. Let f be a Borel function on R satisfying

/ lel*|f(@)]de < oo, (8)
R

for some k > 0. Then, for any sufficiently small £ > 0 and any integer p = 1, when t
goes to infinity, we have

]i-/; K!,wf(Y;)dstp — F_(J;(_{),Y_)”DTL(tv-)(U)Hzp+0(31_'F(1+"}_5),

where I(f) = [; f(z)dz and 0 <y < 4.

In order to prove Theorem 4, we shall first state and prove some technical lemmas.
Lemma 2. Let 0 < v < 4. For any ¢ > 0 and any integer p > 1, when ¢ goes to
infinity, 3

Sg}; “K:'._'\ L(t‘ )(I)Hzi 1 O(t2p(1—f(l-r'r'))+g}.

Proof. Using Lemma 1 for s = 0 and the fact that K'"7L(0,.)(z) = 0 a.s., we get

2P o o2p(l=T(147)
2p =

sup [[KYL(t, ) (@)
TER
The conclusion follows immediately.

In the same way, using (3) for s = 0 and the fact that L(0,z) = 0 a.s., we get the
following lemma.

Lemma 3. Let 0 < 6 < §;. For any € > 0 and any integer p > 1, when t goes
to infinity,

oup JEAE:7) = L )iy
oy |;"3 ] y|2p6

Lemma 4. Let 0 < v < § < §p. For any £ > 0 and any integer p > 1, when t goes to
infinity,

= O(tzp[l —‘r(l+6})+s)_

1 2p
Lt,x+y)— Ltz —y) L

sup f I(y) ( e { dy ot O(tQP(l [1+5)]+E)_

zER ||J0 y 2p
Proof. We have

1 2p 2p 1 2p
L(t,z +y) - L(t,z — IL(t =z +y) — L(t, =z — y)|| l

sup f l{y) ( ) e ( v) dy < sup sup 553 2 f 1£?i)_6 dy
zR || Jo gt op =eR0<y<l Y a) i (e

By virtue of Lemma 3 and the fact that [ is bounded on [0, 1], we deduce the lemma.

Lemma 5. Let 0 < § < 5. For any ¢ > 0 and any integer p > 1, when t goes
to infinity,

2p

sup L O(t2p(1—‘r(1+§))+2pm§+£),

|z <te

1

y1+'r

2p

10



for some a > 0.

Proof. We have for any 0 < 4 < dg,

*0 : —Ei2, an & d
sup f y) e Zf) (t:9) dy| < sup sup||L(t.a+y)—L(t,y)l2p / Eﬂ dy‘
|zj<te II/1 ghe 2p  lziste yeR u ¥
IZ(t, = +) = LEY)lIzp | £ 1)
< sup |z/*su L f =
|:|5Ea| | yeg Juefee Y
Using Potter’s Theorem for r = 1, y > 1 and 0 < £ < 7, we obtain
+o0 {
f EHL dy < oo. (9)
1 Y

Finally, by virtue of (9) and Lemma 3, we deduce the desired estimate.

Lemma 6. Under same conditions as in Theorem 4, For any sufficiently small £ > 0
and any integer p > 1, when ¢ goes to infinity, we have

t
”/(} K!.’Jf(YST)dSHZP = I‘(Il(i),_()||KLTL(t?')(U)”L’p+9(t1_1—[1+1}‘5),

where 0 < v < 4.

Proof. The proof is similar to that given by Ait Ouahra and Ouali (2009) in the
case of fractional derivatives. Indeed, by the occupation density formula and (6), we
have

R s 1) ., *
Y = ol Tyds — ———— Ly i
110 = [ 55070 - s KL )0
2p
e fm*!:w;(;, Mz) = KL, )(0) f(2)de
R 2p
< C(L(t) + I2(t)),
where 3
L) = ‘ [ (KL (@) - KL )0) )i
|z|>t2 2p
and ap
Iy(t) i= [ | (K" L(t, )(z) — KM L(E )(0) f(2)dz||
|| <te Ip

forsome 0 <a<T.
Let us deal with the first term [;(¢). Lemma 2 and (8) imply that,

2p
Lt) € sup |K'L(t,.)(@) - K"L(t,)(0)]3}

o] >ta

[l

2p

<7 sup ||KMYL(E, ) (@)~ K1 L(E )(0)3:

i
ig
|z|>t*

/ lal*|f ()| dz
|z|>te

== 0(t2p(l—r[l+'}n—2pak+s).

11
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Now, we deal with I>(t). By the definition of K*7 and the fact that f is integrable, we
have

a2 2p
®  L{t,z+y) — L(t,x — y) — L(t,y) + L(t, - iji
B < mp | [y Rt KO KON RO 4 [ e
lzj<t= || /o Y 2p [V ste
1 il LR 1 £
et fﬂ(y)L(t,:c—i—y) Ltz 3) L(t,y) + L(t, y)dy
lzi<ta || Jo il 2p
® [Lt,z+y)— Lt y)] - [L(t,z - y) — L{t, — =
P =0 f l[y)[ (t,z +y) — L( y)J. 1+[T( z—y) — L{ "”)]dy '
zl<te |[J1 ] 2p

which, in view of Lemmas 4 and 5, implies

Ig{t) 2 O(tzp(l—r{l—i-é))-f-s) iy O(t2p(1—r(1+6))+2pa§—i—8)

:O(tﬂp(l—r(l+6))+2pﬂé—'—€)_
Then,
I(f) s o(th(l—'r(l+"r])—2pka+s) i O(tZ‘p(1—1'{]+5})+2pa.6+z}’
choosing
_T6-7
o+k

It is clear that 0 < a < 7. We finally get
I(t) = ot*"*),

with

po 00 -T(1+7) + k(1 - 7(1+9))
e k+4

Clearly b < 1 — 7(1 + «), because v < . Then for all sufficiently small £ > 0, when ¢
goes to infinity,

It) = 0(f2p{1_7(1+ﬂ)_5],

which gives the desired estimate.

‘We will also need the following estimate between fractional derivative D7 and gen-
eralized fractional derivative K7,

Lemma 7. Let f be a Borel function on R satisfying (8) for some & > 0. Then,
for any sufficiently small £ > 0 and any integer p > 1, when t goes to infinity, we have

I(f)
(1 =)

Proof. We have by (8)

(K L(t, )(O)l2p = IDVL(t, )(0)]]2p) = o($~7C+0),

I = e 1K Lt Ol < C () + Ja(0),
where
B = s KL IOl [ el el @lde,
|z{>¢ |z[>¢
and

Ja(t) = o 1" Lt ) (0) l2p-
T|{<te

12



The same arguments used in the proof of Lemma 6 implies that
Jilt) =gt YIThaE),
For Ja(t), we have by Lemma 2
Jo(t) = o(tl—'r(1+5)+£}1

therefore
J2 (t} - G(tl—'r(l——ﬁ)+ar5+s )1

for any a>0.
Consequently
J(t) = o(t}~71T7~E),

In particular, if we take [ = 1, we get

Hi(_i)w)ilD”ﬂ(t-. 0 lzp = ot ~TH*M 7).

The proof of Lemma 7 is done.

Now. we return to the proof of Theorem 4.

Proof of Theorem 4. This theorem is an immediate consequence of Lemma 6 and
Lemma 7.

Remark 8. 1) In case f is the fractional derivative of some function g, the analo-
gous results of Theorem 4 appeared in Ait Ouahra and Ouali (2009). On the other
hand. the a.s. estimate of Theorem 4 is given in Csaki et al. (2000) for special Bm
case.

2) We should point out that in this paper we only study the LP-estimate of our limit
theorems. This is enongh for the purpose of this paper. We will study the a.s. esti-
mates in future work and apply this idea to study the law of the iterated logarithm of
stochastic process of the form [} K*7 (Y] )ds.
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