Properties of Stationary Solutions of the SDE \(dV_t = V_t - dU_t + dL_t\)

Tuesday, October 5, 2010
A405 Wells Hall
10:20 a.m. - 11:10 a.m.
Refreshments: 10:00 a.m.

Abstract

The generalized Ornstein-Uhlenbeck process driven by a bivariate Lévy process \((\xi_t, \eta_t)_{t \geq 0}\) with starting random variable \(V_0\) (usually assumed independent of \((\xi_t, \eta_t)_{t \geq 0}\)) is defined as
\[V_t = e^{-\xi_t} \left(V_0 + \int_0^t e^{\xi_s - d\eta_s} \right), \quad t \geq 0.\] It is the unique solution of the stochastic differential equation
\[dV_t = V_t - dU_t + dL_t, \quad t \geq 0\]
where \((U_t, L_t)_{t \geq 0}\) is again a bivariate Lévy process, completely determined by \((\xi_t, \eta_t)_{t \geq 0}\). In particular it holds \(\xi_t = -\log(\mathcal{E}(U)_\square), \quad \square \geq t\), with \(\mathcal{E}(U)\) denoting the Doléans-Dade Exponential of \(U\), which forces the process \(U\) to have no jumps which are smaller or equal to \(-1\).

In this talk the solution of the given SDE for a general bivariate Lévy process \((U_t, L_t)_{t \geq 0}\) is treated. Hereby we also allow dependance of the starting random variable on \((U_t, L_t)_{t \geq 0}\). We determine necessary and sufficient conditions for the existence of strictly stationary solutions and develop some of their distributional properties like expectation, autocorrelation and tail behaviour.

To request an interpreter or other accommodations for people with disabilities, please call the Department of Statistics and Probability at 517-355-9589.