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The motivation for this work:
Games and Behavior, Economics and Genetics

James Francis Hannan

Hannan did very fundamental work in the theory of repeated
games, compound decision problems, and mathemat. statistics

here, the human behavior w.r.t. games is measured
and one asks whether it is caused by genetics



High-dimensional data
Behavioral economics and genetics (with Ernst Fehr, U. Zurich)

I n = 1′525 persons
I genetic information (SNPs): p ≈ 106

I 79 response variables, measuring “behavior”

p � n

goal: find significant associations
between behavioral responses
and genetic markers
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... and let’s have a look at Nature 496, 398 (25 April 2013)

Challenges in irreproducible research
...
“the complexity of the system and of the tech-
niques ... do not stand the test of further stud-
ies”

I “We will examine statistics more closely and encourage
authors to be transparent, for example by including their
raw data.”

I “We will also demand more precise descriptions of
statistics, and we will commission statisticians as
consultants on certain papers, at the editors discretion and
at the referees suggestion.”

I “Too few budding scientists receive adequate training in
statistics and other quantitative aspects of their subject.”
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Linear model

Yi︸︷︷︸
response i th obs.

=

p∑
j=1

β0
j X (j)

i︸︷︷︸
j th covariate i th. obs.

+ εi︸︷︷︸
i th error term

, i = 1, . . . ,n

standard vector- and matrix-notation:

Yn×1 = Xn×pβ
0
p×1 + εn×1

in short : Y = Xβ0 + ε

I design matrix X : either deterministic or stochastic
I error/noise ε:
ε1, . . . , εn independent, E[εi ] = 0, Var(εi) = σ2

i ≤ σ
2

εi uncorrelated from Xi (when X is stochastic)



interpretation:

β0
j measures the effect of X (j) on Y when

“conditioning on” the other covariables {X (k); k 6= j}

that is: it measures the effect of X (j) on Y which is not
explained by the other covariables
much more a “causal” interpretation

very different from (marginal) correlation between X (j) and Y



Regularized parameter estimation

`1-norm regularization
(Tibshirani, 1996; Chen, Donoho and Saunders, 1998)

also called Lasso (Tibshirani, 1996):

β̂(λ) = argminβ(n−1‖Y − Xβ‖22 + λ ‖β‖1︸ ︷︷ ︸∑p
j=1 |βj |

)

convex optimization problem

I sparse solution (because of “`1-geometry”)
I not unique in general... but unique with high probability

under some assumptions (which we make “anyway”)

LASSO = Least Absolute Shrinkage and Selection Operator



Near-optimal statistical properties of Lasso

assumptions:
I identifiability:

note Xβ0 = Xθ for any θ = β0 + ξ, ξ in the null-space of X
; restricted eigenvalue or compatibility condition

(weaker than RIP)
I sparsity: let S0 = supp(β0) = {j ; β0

j 6= 0} and assume
s0 = |S0| = o(n/ log(p)) (or o(

√
n/ log(p)))

I sub-Gaussian error distribution
; with high probability

‖β̂ − β0‖22 = O(s0 log(p)/n), ‖β̂ − β0‖1 = O(s0
√

log(p)/n),

‖X (β̂ − β0)‖22/n = O(s0 log(p)/n)

(PB & van de Geer (2011), Hastie, Tibshirani & Wainwright (2015),...)

; Lasso is a standard workhorse in high-dimensional statistics
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Uncertainty quantification:
p-values and confidence intervals

frequentist
uncertainty quantification

(in contrast to Bayesian inference)

I use classical concepts but in high-dimensional
non-classical settings

I develop less classical things ; hierarchical inference
I ...



Toy example: Motif regression (p = 195,n = 143)

Lasso estimated coefficients β̂(λ̂CV)
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Y = Xβ0 + ε (p � n)

classical goal: statistical hypothesis testing

H0,j : β0
j = 0 versus HA,j : β0

j 6= 0

or H0,G : β0
j = 0 ∀ j ∈ G︸︷︷︸

⊆{1,...,p}

versus HA,G : ∃j ∈ G with β0
j 6= 0

background: if we could handle the asymptotic distribution of
the Lasso β̂(λ) under the null-hypothesis

; could construct p-values

this is very difficult!
asymptotic distribution of β̂ has some point mass at zero,...
Knight and Fu (2000) for p <∞ and n→∞



because of “non-regularity” of sparse estimators
“point mass at zero” phenomenon ; “super-efficiency”

(Hodges, 1951)

; standard bootstrapping and subsampling should not be used



Low-dimensional projections and bias correction (Zhang & Zhang, 2014)
Or de-sparsifying the Lasso estimator (van de Geer, PB, Ritov & Dezeure, 2014)

motivation (for p < n):

β̂LS,j from projection of Y onto residuals (Xj − X−j γ̂
(j)
LS)

projection not well defined if p > n
; use “regularized” residuals from Lasso on X -variables

Zj = Xj − X−j γ̂
(j)
Lasso



using Y = Xβ0 + ε ;

Z T
j Y = Z T

j Xjβ
0
j +

∑
k 6=j

Z T
j Xkβ

0
k + Z T

j ε

and hence

Z T
j Y

Z T
j Xj

= β0
j +

∑
k 6=j

Z T
j Xk

Z T
j Xj

β0
k︸ ︷︷ ︸

bias

+
Z T

j ε

Z T
j Xj︸ ︷︷ ︸

noise component

; de-sparsified Lasso:

b̂j =
Z T

j Y

Z T
j Xj
−

∑
k 6=j

Z T
j Xk

Z T
j Xj

β̂Lasso;k︸ ︷︷ ︸
Lasso-estim. bias corr.



{b̂j}pj=1 is not sparse!... and this is crucial for Gaussian limit

and it is “optimal” (see next)

I target: low-dimensional component β0
j

I η := {β0
k ; k 6= j} is a high-dimensional nuisance parameter

; exactly as in semiparametric modeling!
and sparsely estimated (e.g. with Lasso)



Asymptotic pivot and optimality
Theorem (van de Geer, PB, Ritov & Dezeure, 2014)

√
n(b̂j − β0

j )

σε
√

Ωjj
⇒ N (0,1) as p ≥ n→∞

Ωjj explicit expression ∼ (Σ−1)jj optimal!
reaching semiparametric information bound

; asympt. optimal p-values and confidence intervals
if we assume:

I population Cov(X ) = Σ has minimal eigenvalue ≥ M > 0
√

I sparsity for regr. Y vs. X : s0 = o(
√

n/ log(p))“quite sparse”
I sparsity of design: Σ−1 sparse

i.e. sparse regressions Xj vs. X−j : sj ≤ o(
√

n/ log(p))
may not be realistic

I no beta-min assumption !
minj∈S0 |β

0
j | � s0

√
log(p)/n (or s0 log(p)/n)
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It is optimal!
Cramer-Rao



for data-sets with p ≈ 4′000− 10′000 and n ≈ 100
; often no significant variable

because
“β0

j is the effect when conditioning on all other variables...”

for example:
cannot distinguish between highly correlated variables X (j),X (k)

but can find them as a significant group of variables where

at least one among {β0
j , β

0
k} is 6= 0

but unable to tell which of the two is different from zero



Behavioral economics and genomewide association
with Ernst Fehr, University of Zurich

I n = 1525 probands (all students!)
I m = 79 response variables measuring various behavioral

characteristics (e.g. risk aversion) from well-designed
experiments

I biomarkers: ≈ 106 SNPs

model: multivariate linear model

Yn×m︸ ︷︷ ︸
responses

= Xn×p︸ ︷︷ ︸
SNP data

β0
p×m + εn×m︸ ︷︷ ︸

error



Yn×m = Xn×pβ
0
p×m + εn×m

interested in p-values for

H0,jk : β0
jk = 0 versus HA,jk : β0

jk 6= 0,

H0,G : β0
jk = 0 for all j , k ∈ G versus HA,G = Hc

0,G

adjusted for multiple testing (among ` = O(106) hypotheses)
I standard: Bonferroni-Holm adjustment ; p-value

PG → PG;adj = PG · ` = PG ·O(106) !!!
I we want to do something much more efficient

(statistically and computationally)



there is structure!

I 79 response experiments
I 23 chromosomes per response experiment
I groups of highly correlated SNPs per chromosome

.  .  .

.. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

1 2
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23 1 23

1 2 20

global
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do hierarchical FWER adjustment (Meinshausen, 2008)

.  .  .

.. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

1 2

1

23 1 23

1 2 20

global

79

significant not significant

1. test global hypothesis
2. if significant: test all single response hypotheses
3. for the significant responses: test all single chromosome hyp.
4. for the significant chromosomes: test all groups of SNPs

; powerful multiple testing with
data dependent adaptation of the resolution level

cf. general sequential testing principle (Goeman & Solari, 2010)



Mandozzi & PB (2015, 2016):

single variable method
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hierarchical method
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a hierarchical inference method is able to find
additional groups of (highly correlated) variables



Sequential rejective testing: an old principle
(Marcus, Peritz & Gabriel, 1976)

` hypothesis tests, ordered sequentially with hypotheses:

H1 ≺ H2 ≺ . . . ≺ H`

the rule:
I hypotheses are always tested on significance level α

(no adjustment!)
I if Hr not rejected: stop considering further tests

(Hr+1, . . . ,H` will not be considered)

easy to prove that

FWER = P[at least one false rejection] ≤ α



in the context of hierarchical (e.g. binary) tree:

“essentially”:
I H1 ↔ top node of the tree ; level α
I H2 ↔ the 2 nodes of the second level of the tree

; do Bonferroni adjustment over 2 nodes
; level α/2

I H3 ↔ the 4 nodes of the second level of the tree
; do Bonferroni adjustment over 4 nodes
; level α/4

I ...



input:
I a hierarchy of groups/clusters G ⊆ {1, . . . ,p}
I valid p-values PG for

H0,G : β0
j = 0 ∀j ∈ G vs. HA,G : β0

j 6= 0 for some j ∈ G

(use de-sparsified Lasso with test-statistics maxj∈G
|b̂j |
ŝ.e.j

)

the essential operation is very simple:

PG;adj = PG ·
p
|G|

, PG = p-value for H0,G

PG;hier−adj = max
D∈T ;G⊆D

PG;adj (“stop when not rejecting at a node”)

if the p-values PG are valid, the FWER is controlled
(Meinshausen, 2008)

=⇒ P[at least one false rejection] ≤ α



again, for a binary tree:
I root node: tested at level α
I next two nodes: tested at level ≈ (αf1, αf2) where
|G1| = f1p, |G2| = f2p

I at a certain depth in the tree: the sum of the levels ≈ α
on each level of depth: ≈ Bonferroni correction



optimizing the procedure:
α-weight distribution with inheritance (Goeman and Finos, 2012)
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α-weight distribution with inheritance procedure
(Goeman and Finos, 2012)
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α-weight distribution with inheritance procedure
(Goeman and Finos, 2012)
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the main benefit is not primarily the “efficient” multiple testing
adjustment

it is the fact that we automatically (data-driven) adapt to an
appropriate resolution level of the groups

single variable method
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hierarchical method
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and avoid to test all possible subset of groups...!!!
which would be a disaster from a computational and multiple
testing adjustment point of view



Does this work?

Mandozzi and PB (2015, 2016) provide some theory,
implementation and empirical results for simulation study

I fairly reliable type I error control (control of false positives)
I reasonable power to detect true positives (and clearly

better than single variable testing method)
single variable method
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Behavioral economics example:
number of significant SNP parameters per response
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Genomewide association studies in medicine/biology
a case for hierarchical inference!

where the ground truth is much better known
(Buzdugan, Kalisch, Navarro, Schunk, Fehr & PB, 2016)

The Wellcome Trust Case Control Consortium (2007)
I 7 major diseases
I after missing data handling:

2934 control cases
about 1700− 1800 diseased cases (depend. on disease)
approx. p = 380′000 SNPs per individual



coronary artery disease (CAD); Crohn’s disease (CD);
rheumatoid arthritis (RA); type 1 diabetes (T1D); type 2 diabetes (T2D)

significant small groups and single ! SNPs

for bipolar disorder (BD) and hypertension (HT): only large
significant groups (containing between 1’000 - 20’000 SNPs)



findings:
I recover some “well-established” associations:
• single “established” SNPs
• small groups containing an “established” SNP

“established”: SNP (in the group) is found by WTCCC or by
WTCCC replication studies

I infer some significant non-reported groups
I automatically infer whether a disease exhibits high or low

resolution associations to
• single or a small groups of SNPs (high resolution)

CAD, CD, RA, T1D, T2D
• large groups of SNPs (low resolution) only

BD, HT



Crohn’s disease

large groups

SNP group size chrom. p-value
3622 1 0.036
7571 2 0.003

18161 3 0.001
6948 4 0.028

16144 5 0.007
8077 6 0.005

12624 6 0.019
13899 7 0.027
15434 8 0.031
18238 9 0.003

4972 10 0.036
14419 11 0.013
11900 14 0.006

2965 19 0.037
9852 20 0.032
4879 21 0.009

most chromosomes
exhibit
signific. associations

no further resolution
to finer groups



standard approach:
identifies single SNPs by marginal correlation

; significant marginal findings cluster in regions

and then assign ad-hoc regions±10k base pairs around the single significant SNPs
still: this is only marginal inference

not the effect of a SNP which is adjusted by the effects of all
other SNPs
i.e., not the causal SNPs

(causal direction goes from SNPs to disease status)



improvement by linear mixed models: instead of marginal
correlation, try to partially adjust for presence of other SNPs
(Peter Donnelly et al., Matthew Stephens et al., Peter Visscher et al.,...

2008-2016)

when adjusting for all other SNPs:
I less false positive findings!
I hierarchical inference is the “first” promising method to

infer causal (groups of) SNPs
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Genomewide association study in plant biology
push it further...

collaboration with Max Planck Institute for Plant Breeding Research (Köln):
Klasen, Barbez, Meier, Meinshausen, PB, Koornneef, Busch & Schneeberger (2016)

root development in Arabidopsis Thaliana
resp. Y : root meristem zone-lenhth (root size)
n = 201, p = 214′051

hierarchical inference: 4 new significant small groups
(besides nearly all known associations)

3 new associations are within and neighboring to PEPR2 gene
; validation: wild-type versus pepr2-1 loss-of-function mutant
which resulted to impact root meristem
p-value = 0.0007 in Gaussian ANOVA model with 4 replicates

“a so far unknown component for root growth”



Model misspecification
true nonlinear model:

Yi = f 0(Xi) + ηi , ηi independent of Xi (i = 1, . . . ,n)

or multiplicative error
potentially heteroscedastic error:
E[ηi ] = 0, Var(ηi) = σ2

i 6≡ const., η′i s independent

fitted model:

Yi = Xiβ
0 + εi (i = 1, . . . ,n),

assuming i.i.d. errors with same variances

questions:
I what is β0 ?
I is inference machinery (uncertainty quant.) valid for β0?



crucial conceptual difference
between random and fixed design X (when conditioning on X )

this difference is not relevant if model is true



Random design

data: n i.i.d. realizations of X
assume Σ = Cov(X ) is positive definite

β0 = argminβE|f 0(X )− Xβ|2 (projection)

= Σ−1 (Cov(f 0(X ),X1), . . . ,Cov(f 0(X ),Xp))T︸ ︷︷ ︸
Γ

error:

ε = f 0(X )− Xβ0 + η,

E[ε|X ] 6= 0, E[ε] = 0

; inference has to be unconditional on X



support and sparsity of β0:
Proposition (PB and van de Geer, 2015)

‖β0‖r ≤ (max
`

s`︸︷︷︸
`0-spar. X` vs.X−`

+1)1/r‖Σ−1‖∞‖Γ‖r (0 < r ≤ 1)

If Σ exhibits block-dependence with maximal block-size bmax:

‖β0‖0 ≤ b2
max|Sf0 |

Sf0 denotes the support (active) variables of f 0(.)

in general: linear projection is less sparse than f 0(.)

but `r -sparsity assump. (0 < r ≤ 1) is sufficient for valid
inference with e.g. de-sparsified Lasso



Proposition (PB and van de Geer, 2015)

for Gaussian design: S0 ⊆ Sf 0

if a variable is significant in the misspecified linear model
; it must be a relevant variable in the nonlinear function

protection against false positive findings even though the linear
model is wrong
but we typically miss some true active variables

S0
strict
⊂ Sf 0

message:
for random design, inference machinery for projected
parameter β0 is valid if β0 is sparse
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Fixed design (e.g. “engineering type” applications)

data: realizations of

Yi = f 0(Xi) + ηi (i = 1, . . . ,n),

η1, . . . , ηn independent, but potentially heteroscedastic

if p ≥ n and rank(X ) = n: can always write

f 0(X ) = Xβ0 ; Y = Xβ0 + ε, ε = η

for many β0’s !

take e.g. the basis pursuit solution (compressed sensing):

β0 = argminβ‖β‖1 such that Xβ = (f 0(X1), . . . , f 0(Xn))T



sparsity of β0:
“simply” assume that there exists β0 which is sufficiently
`r -sparse (0 < r ≤ 1)

no new theory is required

interpretation: the inference procedure leads to e.g. a
confidence interval which covers all `r -sparse solutions

(PB and van de Geer, 2015)

message:
for fixed design, there is no misspecification w.r.t. linearity !
we “only” need to “bet on (weak) `r -sparsity”



Further issues

the bootstrap: more reliable and powerful inference
; better finite-sample approximation (empirically) and more
powerful multiple testing correction under dependence

the work from the 1980’s can be used in the modern context of
high-dimensional inference!

computation:
the de-sparsified Lasso has O(p2n2) computational cost
work in progress to improve this



Conclusions
key concepts for high-dimensional statistics:

I sparsity of the underlying regression vector
• sparse estimator is optimal for prediction
• non-sparse estimators are optimal for uncertainty

quantification
I identifiability via restricted eigenvalue assumption

hierarchical inference:
I very powerful to detect significant groups of variables at

data-driven resolution
I exhibits impressive performance and validation on

bio-/medical data

model misspecification: some issues have been addressed
(PB & van de Geer, 2015)

bootstrapping non-sparse estimators improves inference
(Dezeure, PB & Zhang, 2016)



robustness, reliability and reproducibility of results...

in view of (yet) uncheckable assumptions
;

confirmatory high-dimensional inference
remains an interesting challenge

Thank you!
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Software:
R-package hdi (Meier, Dezeure, Meinshausen, Mächler & PB, since 2013)
Bioconductor-package hierGWAS (Buzdugan, 2016)

References to some of our own work:
I Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methodology, Theory and

Applications. Springer.

I van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014). On asymptotically optimal confidence
regions and tests for high-dimensional models. Annals of Statistics 42, 1166-1202.

I Bühlmann, P. and van de Geer, S. (2015). High-dimensional inference in misspecified linear models.
Electronic Journal of Statistics 9, 1449-1473.

I Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen, N. (2015). High-dimensional inference: confidence
intervals, p-values and R-software hdi. Statistical Science 30, 533–558.

I Mandozzi, J. and Bühlmann, P. (2016). Hierarchical testing in the high-dimensional setting with correlated
variables. Journal of the American Statistical Association 111, 331-343.

I Mandozzi, J. and Bühlmann, P. (2015). A sequential rejection testing method for high-dimensional
regression with correlated variables. International Journal of Biostatistics 12, 79-95.

I Buzdugan, L., Kalisch, M., Navarro, A., Schunk, D., Fehr, E. and Bühlmann, P. (2016). Assessing statistical
significance in joint analysis for genome-wide association studies. Bioinformatics 32, 1990-2000.

I Klasen, J.R., Barbez, E., Meier, L., Meinshausen, N., Bühlmann, P., Koornneef, M., Busch, W. and
Schneeberger, K. (2016). A multi-marker association method for Genome-Wide Association studies without
the need for population structure correction. Nature Communications 7, Article number 13299 (2016).

I Dezeure, R., Bühlmann, P. and Zhang, C.-H. (2016). High-dimensional simultaneous inference with the
bootstrap. To appear in TEST, with discussion.



Computational issue

de-sparsified Lasso for all components j = 1, . . . ,p:

requires p + 1 Lasso regressions
forp � n : O(p2n2) computational cost

p = O(106) ; O(1012n2) despite trivial distributed computing

work in progress with Rajen Shah using thresholded Ridge or generalized LS

the GWAS examples have been computed with preliminary
Lasso variable screening and multiple sample splitting



The bootstrap (Efron, 1979): more reliable inference

Efron

residual bootstrap for fixed design:
Y = Xβ0 + ε

ε̂ = Y − X β̂, β̂ from the Lasso

I i.i.d. resampling of centered residuals ε̂i ; ε∗1, . . . , ε
∗
n

I wild bootstrapping for heteroscedastic errors
(Wu (1986), Mammen (1993)):

ε∗i = Wi ε̂i , W1, . . . ,Wn i.i.d. E[Wi ] = E[W 3
i ] = 0

then:
Y ∗ = X β̂ + ε∗

bootstrap sample: (X1,Y ∗1 ), . . . , (Xn,Y ∗n )

goal: distribution of an algorithm/estimator θ̂ = g({Xi ,Yi}ni=1)



goal: distribution of an algorithm/estimator θ̂ = g({Xi ,Yi}ni=1)

compute algorithm/estimator

θ̂∗ = g( {Xi ,Y ∗i }
n
i=1︸ ︷︷ ︸

bootstrap sample

) (plug-in principle)

many times to approximate the true distribution of θ̂
(with importance sampling for some cases...)



bootstrapping the Lasso ; “bad” because of sparsity of the
estimator and super-efficiency phenomenon

Joe Hodges

I poor for estimating uncertainty about non-zero regression
parameters

I uncertainty about zero parameters overly optimistic

one should bootstrap a regular non-sparse estimator
(Giné & Zinn, 1989, 1990)

; bootstrap the de-sparsified Lasso b̂
(Dezeure, PB & Zhang, 2016)



Bootstrapping the de-sparsified Lasso (Dezeure, PB & Zhang, 2016)

assumptions:
I linear model with fixed design Y = Xβ0 + ε “always true”
I sparsity for Y vs. X : s0 = o(n1/2 log(p)−3/2) “OK”

sparsity Xj vs. X−j real assumption
I errors can be heteroscedastic and non-Gaussian with 4th

moments (wild bootstrap for heter. errors) weak assumption
I log(p)7 = o(n) weak assumption

; consistency of the bootstrap for simultaneous inference!

sup
c

∣∣∣∣∣P[ max
j=1,...,p

±
b̂j − β0

j

ŝ.e.j
≤ c]− P∗[ max

j=1,...,p
±

b̂∗j − β̂j

ŝ.e.∗j
≤ c]

∣∣∣∣∣ = oP(1)

(Dezeure, PB & Zhang, 2016)
involves very high-dimensional maxima of non-Gaussian (but
limiting Gaussian) quantities (cf. Chernozhukov et al. (2013))
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de−sparsified Lasso

implications:
I more reliable confidence intervals and tests for individual

parameters
I powerful simultaneous inference for many parameters
I more powerful multiple testing correction (than

Bonferroni-Holm), in spirit of Westfall and Young (1993):
effective dimension is e.g. peff = 100K instead of p = 1M

this seems to be the “state of the art” technique at the moment



more powerful multiple testing correction (than Bonferroni-Holm)

effective dimension is e.g. peff ≈ 1000 instead of p ≈ 4000
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need to control under the “complete null-hypotheses”

P[ max
j=1,...,p

|b̂j/ŝ.e.j | ≤ c] ≈ P∗[ max
j=1,...,p

|b̂∗j /ŝ.e.
∗
j | ≤ c]

maximum over (highly) correlated components with p variables
is equivalent to maximum of peff independent components



Outlook: Network models

Gaussian Graphical model
Ising model

undirected edge encodes con-
ditional dependence given all
other random variables

problem: given data, infer the undirected edges
Gaussian Graphical model: (Meinshausen & PB, 2006)
Ising model: (Ravikumar, Wainwright & Lafferty; 2010)

; uncertainty quantification; “similarly” as discussed


