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Heterogeneous large-scale data

Big Data

the talk is not (yet) on “really big data”

but we will take advantage of heterogeneity
often arising with large-scale data where

i.i.d./homogeneity assumption is not appropriate



Two seemingly different problems

1. prediction in heterogeneous environments
2. causal inference = intervention analysis

but they are very closely related!
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1. Prediction in heterogeneous environments
data from different known observed
environments/experimental conditions/sub-populations e ∈ E :

(X e,Y e) ∼ F e, e ∈ E
with response variables Y e and predictor variables X e

examples:
• data from 10 different countries
• data from economic scenarios (from different “time blocks”)

immigration in the UK



consider “all possible” but
mostly non-observed environments F ⊃ E︸︷︷︸

observed

examples for F :
• 10 countries and many other than the 10 countries
• the presence and the unseen future with new scenarios

immigration in the UK

the unseen future
problem:
predict Y given X such that the prediction works well (is
“robust”) for “all possible” environments e ∈ F
based on data from much fewer environments from E
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with respect to predicting values in new unseen environments
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2. causal inference = intervention analysis

in genomics (for yeast or plants):
if we would make an intervention at a single (or many) gene(s),
what would be its (their) effect on a response of interest?

want to infer/predict such effects without actually doing the
intervention
e.g. from observational data (cf. Pearl; Spirtes, Scheines & Glymour)
(from observations of a “steady-state system”)
or from observational and interventional (heterogeneous) data
; want to predict unseen interventions

we need a model, of course! (one which is good/“justifiable”)
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Example: Policy making

James Heckman: Nobel Prize Economics 2000

e.g.:
“Pritzker Consortium on Early Childhood Development identifies when and how child intervention programs can be
most influential”
; predict what happens if child would be assigned to an educational program “X” for which we have no data



Example: Flowering of Arabidopsis Thaliana

phenotype/response variable of interest:
Y = days to bolting (flowering)
“covariates” X = gene expressions from p = 21′326 genes

goal: based on observational/interventional data,
predict the effect of knocking-out a new single gene on the
response variable Y

and we can validate the prediction by doing randomized
follow-up experiments afterwards
(Stekhoven, Moraes, Sveinbjörnsson, Hennig, Maathuis & PB, 2012)



in both
I prediction in heterogeneous environments
I causal inference

; prediction for new unseen scenarios/environments

; “equivalence” of problems!
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validated with follow-up
biological experiments
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REGRESSION

because: for

Y =

p∑
j=1

βjX (j) + ε

βj measures effect of X (j) on Y when
keeping all other variables {X (k); k 6= j} fixed

but when doing an intervention at a gene ; some/many other
genes might change as well and cannot be kept fixed



Causality, Graphical and Structural equation models
late 1980s: Pearl; Spirtes, Glymour, Scheines; Dawid; Lauritzen;. . .

“definition” of causality:
I direct causal variables for Y : the parental variables of Y
I total causal effect of X (j) on Y :

intervention or “treatment” effect of X (j) on Y
do(X (j) = x): the effect on Y when setting X (j) = x

; sum up directed paths (“edge weights”) from X (j) to Y



variables X1, . . . ,Xp+1 (Xp+1 = Y is the response of interest)

directed acyclic graph (DAG) D0 encoding the true underlying
causal influence diagram

structural equation model (SEM):

Xj ← f 0
j (XpaD0 (j), εj), j = 1, . . . ,p + 1,

ε1, . . . , εp+1 independent

e.g. linear Xj ←
∑

k∈paD0 (j)

β0
jkXk + εj , j = 1, . . . ,p + 1

causal variables for Y = Xp+1: S0 = {k ; k ∈ paD0(Y )}



severe issues of identifiability !

given distribution(s) generating the data: typically cannot
identify the true DAG D0 and the parental set S0

examples:

(X ,Y ) ∼ N2(0,Σ)

X XY Y

X causes Y Y causes X



agenda for estimation: based on observ. or observ./interv. data
(Chickering, 2002; Shimizu, 2005; Kalisch & PB, 2007;...)

1. estimate the Markov equivalence class of DAGs
severe issues of identifiability !

2. derive causal variables: the ones which are causal in all
DAGs from; derive bounds for causal effects (Maathuis,
Kalisch & PB, 2009)



drawbacks:
I rather unstable and “doesn’t really work”
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goals:

1. construction of confidence statements for causal var. S0

(without knowing the structure of the underlying graph)

2. deal with “unspecified”︸ ︷︷ ︸
general

heterogeneous/interv. data

NOT or AVOIDING
– graphical model fitting
– potential outcome models

; Neyman’s master thesis 1923!
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Causal inference using invariant prediction

Peters, PB and Meinshausen (2016)

a main message:

causal structure/components remain the same
for different sub-populations

while the non-causal components can change across
sub-populations

thus:
; look for “stability” of structures among

different sub-populations
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Heterogeneous data

(X e,Y e) ∼ F e, e ∈ E︸︷︷︸
space of observed experimental conditions

example 1: E = {1,2} encoding observational (1) and all
potentially unspecific interventional data (2)

example 2: E = {1,2} encoding observational data (1) and
(repeated) data from one specific intervention (2)

example 3: E = {1,2,3} ... or E = {1,2,3, . . . ,26} ...

do not need data from carefully
designed (randomized) experiments



Invariance Assumption (w.r.t. E)
there exists S∗ ⊆ {1, . . . ,p} such that:

L(Y e|X e
S∗) is invariant across e ∈ E

for linear model setting:
there exists a vector γ∗ with supp(γ∗) = S∗ = {j ; γ∗j 6= 0}
such that:

∀e ∈ E : Y e = X eγ∗ + εe, εe ⊥ X e
S∗

εe ∼ Fε the same for all e
X e has an arbitrary distribution, different across e

γ∗, S∗ is interesting in its own right!

namely the parameter and structure which remain invariant
across experimental settings, or across heterogeneous groups
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Invariance Assumption w.r.t. F

where F ⊃︸︷︷︸
much larger

E

now: the set S∗ and corresponding regression parameter γ∗ are
for a much larger class of environments than what we observe!
;

γ∗, S∗ is even more interesting in its own right!

since it says something about unseen new environments!



Link to causality
Invariance Assumption w.r.t. any space of environments G:

there exists S∗ such that L(Y e|X e
S∗) is invariant across e ∈ G

Proposition (Peters, PB & Meinshausen, 2016)
Assume structrual equation model (SEM)

X1 ← f 0
1 (Xpa(1), ε1),

X2 ← f 0
2 (Xpa(2), ε2),

. . .

Y ← f 0
Y (Xpa(Y ), εY )

Assume that G does not affect the structural equation for Y :

e.g. linear SEM: Y e ←
∑

k∈pa(Y )

βYk︸︷︷︸
∀e

X e
k + εe

Y︸︷︷︸
∼Fε∀e∈G

Then: S0 = pa(Y )︸ ︷︷ ︸
causal var.

satisfies the Invariance Assumption w.r.t. G

can take G = E, G = F = all environments, ...
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the causal variables lead to invariance (of conditional distr.)

w.r.t. “all” possible environments

the Proposition has been known for a long time in causality
(Haavelmo, 1944; Aldrich, 1989; Hoover, 1990; ... Dawid and Didelez, 2010)

causal structure (parental variables) =⇒ invariance

the new thing (surprisingly!) will be the reverse relation:

causal structure (parental variables) ⇐= invariance
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invariance – an important mathematical and scientific concept



recap: main assumptions implying that
the causal variables lead to invariance

I a structural equation model
I E (or F ⊃ E) does not affect structural equation for Y

this assumption holds for example for:
I do-intervention (Pearl) at variables different than Y

Judea Pearl

I noise (or “soft”) intervention (Eberhardt & Scheines, 2007)
at variables different than Y



Invariance Assumption : plausible to hold with real data

two-dimensional conditional distributions of observational (blue)
and interventional (orange) data
(no intervention at displayed variables X ,Y )

seemingly
no invariance
of conditional d.

plausible
invariance
of conditional d.



A procedure for inferring S0: population case

require and exploit the Invariance Assumption (w.r.t. E)

L(Y e|X e
S∗) the same across e ∈ E

for linear model: consider hypothesis

H0,S(E) : there exists γ with supp(γ) = S and
there exists Fε such that ∀ e ∈ E :

Y e = X eγ + εe, εe ⊥ X e
S , ε

e ∼ Fε the same for all e

i.e. H0,S(E) holds↔ Invariance Assumption holds for set S

and there might be many such S...



identifiable causal variables/predictors under E :

is defined as the set S(E), where

S(E) =
⋂
{ S; H0,S(E) holds︸ ︷︷ ︸
Invariance Assumption holds for S

}

the intersection of all sets S where Inv. Ass. holds

for any S∗ satisfying the Invariance Assumption we have:

S(E) ⊆ S∗

and this is key to obtain confidence statements for identifiable
causal variables
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we have by definition:

S(E)↗ as E ↗

with
I more interventions
I more “heterogeneity”
I more “diversity in complex data”

we can identify more causal variables



question: when is S(E) = S0 ?

answer not of primary importance
(see later)



Theorem (Peters, PB and Meinshausen, 2016)

S(E) = S0 = (parental set of Y in the causal DAG)

if there is:
I a single do-intervention for each variable other than Y and |E| = p
I a single noise intervention for each variable other than Y and |E| = p
I a simultaneous noise intervention and |E| = 2

the conditions can be relaxed such that it is not necessary to intervene at all
the variables



Statistical confidence sets for causal predictors

“the finite sample version of S(E) =
⋂

S{S; H0,S(E) is true}”

for “any” S ⊆ {1, . . . ,p}:
test whether H0,S(E) is accepted or rejected

Ŝ(E) =
⋂
S

{H0,S accepted at level α}



for H0,S(E):
test constancy of regression param. and of residual error distr.
across e ∈ E

weaken this H̃0,S(E):
test constancy of regression param. and of standard deviation
of residual error across e ∈ E

known since a long time how to do this:
assume Gaussian errors
; an exact test with an F-distribution under H̃0,S(E)



Ŝ(E) =
⋂
S

{H̃0,S accepted at level α}

for some significance level 0 < α < 1

no multiple testing adjustment is needed!

method is called: ICP = Invariant Causal Prediction

going through all sets S?
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going through all sets S? in the worst case: yes

1. start with S = ∅: if H0,∅(E) accepted =⇒ Ŝ(E) = ∅
2. consider small sets S of cardinality 1,2, . . .

and construct corresponding intersections S∩ with
previously considered accepted sets S (H0,S(E) accepted)

for S with H0,S accepted :

S∩ ← S∩ ∩ S

if intersection S∩ = ∅ =⇒ Ŝ(E) = ∅
if not:

discard all S with S ⊇ S∩

and continue with the remaining sets
3. for large p:

restrict search space by variables from Lasso regression;
need a faithfulness assumption (and sparsity and assumptions
on X e for justification)



Theorem (Peters, PB and Meinshausen, 2016)

assume: linear model, Gaussian errors
E does not affect structural equation for Y

Then:

P[Ŝ(E) ⊆ S0] ≥ 1− α : confidence w.r.t. true causal var.

“on the safe side” (conservative)

we do not need to care about identifiability: if the effect is not
identifiable, the method will not wrongly claim an effect
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“the first” result on
frequentist statistical confidence for potentially non-identifiable
causal predictors when structure is unknown
(route via graphical modeling for confidence sets seems awkward)

leading to (hopefully) more
reliable causal inferential statements



how do we know whether
E is not affecting structural equation for Y ?

if E does affect structural equation for Y
;

“robustness” of our procedure

– no causal statements
– no false positives
– conservative, but on the safe side
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Empirical results: simulations
100 different scenarios, 1000 data sets per scenario:
|E| = 2, nobs = ninterv ∈ {100, . . . ,500}, p ∈ {5, . . . ,40}
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Single gene deletion experiments in yeast

p = 6170 genes
response of interest: Y = expression of first gene
“covariates” X = gene expressions from all other genes

and then
response of interest: Y = expression of second gene
“covariates” X = gene expressions from all other genes

and so on

infer/predict the effects of unseen/new single gene deletions on
all other genes
that is: make predictions for

new observations from new probability distributions



collaborators:
Frank Holstege, Patrick Kemmeren et al. (Utrecht)

data from modern technology
Kemmeren, ..., and Holstege (Cell, 2014)



Kemmeren et al. (2014):
genome-wide mRNA expressions in yeast: p = 6170 genes

I nobs = 160 “observational” samples of wild-types
I nint = 1479 “interventional” samples

each of them corresponds to a single gene deletion strain

for our method: we use |E| = 2 (observational and
interventional data)

training-test data splitting:
• training set: all observational and 2/3 of interventional data
• test set: other 1/3 of gene deletion interventions

predicted effects of these interventions are validated
• repeat this for the three blocks of interventional test data

multiplicity adjustment:
since ICP is used 6170 times (once for every response var.) we
use coverage 1− α/6170 with α = 0.05



Results for inferring causal variables

8 genes are significant (α = 0.05 level) causal variables
(each of the 8 genes “causes” one other gene)

not many findings...
but we use a stringent criterion with Bonferroni corrected
α/6170 = 0.05/6170 to control the familywise error rate

and ICP might be conservative (as discussed before)



8 genes are significant (α = 0.05 level) causal variables

validation:
thanks to the intervention experiments (in the test data) we can
validate the method(s)

SIE = the observed response value associated to an
intervention is in the 1%- or 99% tail of the observational data

; a very stringent conservative definition of a true positive
intervention effect



8 genes are significant (α = 0.05 level) causal variables

method invar.pred. GIES PC-IDA marg.corr. rand.guess.

no. true pos. 6 2 2 2 *
(out of 8)

*: quantiles for selecting true positives among 7 random draws
2 (95%), 3 (99%)

; our invariant prediction method has most power !
and it should exhibit control against false positive selections
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I : invariant prediction method
H: invariant prediction with some hidden variables



Validation (Meinshausen, Hauser, Mooij, Peters, Versteeg & PB, 2016)
with intervention experiments: strong intervention effect (SIE)
with yeastgenome.org database: scores A-F

rank cause effect SIE A B C D E F
1 YMR104C YMR103C X
2 YPL273W YMR321C X
3 YCL040W YCL042W X
4 YLL019C YLL020C X
5 YMR186W YPL240C X X X X X X
6 YDR074W YBR126C X X X X X X
7 YMR173W YMR173W-A X
8 YGR162W YGR264C
9 YOR027W YJL077C X

10 YJL115W YLR170C
11 YOR153W YDR011W X X
12 YLR270W YLR345W
13 YOR153W YBL005W
14 YJL141C YNR007C
15 YAL059W YPL211W
16 YLR263W YKL098W
17 YGR271C-A YDR339C
18 YLL019C YGR130C
19 YCL040W YML100W
20 YMR310C YOR224C

SIE: correctly predicting a strong intervention effect which is in
the 1%- or 99% tail of the observational data



Robustness

remember:
I if model is not correct exhibiting e.g. nonlinearities

; loss of power, but controlling false positives is still OK
I if Invariance Assumption does not hold

; loss of power, but controlling false positives is still OK
I hidden variables

; the method might pick up ancestors of Y

X1 X2 X3 Y

H

X4

e.g. X2 which still exhibits a total intervention/causal effect
(and hence is interesting for the gene perturbation
experiments)



Flow cytometry data (Sachs et al., 2005)

I p = 11 abundances of chemical reagents
I 8 different environments (not “well-defined” interventions)

(one of them observational; 7 different reagents added)
I each environment contains ne ≈ 700− 1′000 samples

goal:
recover network of causal relations (linear SEM)

Raf

Mek

PLCg

PIP2

PIP3

Erk

Akt

PKA

PKC

p38

JNK

approach: “pairwise” invariant causal prediction
(one variable the response Y ; the other 10 the covariates X ;

do this 11 times with every variable once the response)



Raf

Mek

PLCg

PIP2

PIP3

Erk

Akt

PKA

PKC

p38

JNK

blue edges: only invariant causal prediction approach (ICP)
red: only ICP allowing hidden variables and feedback
purple: both ICP with and without hidden variables
solid: all relations that have been reported in literature
broken: new findings not reported in the literature

; reasonable consensus with existing results
but no real ground-truth available

serves as an illustration that we can work with “vaguely defined
interventions”



Concluding thoughts

generalize Invariance Assumption and statistical testing to
nonparametric/nonlinear models
in particular also additive models

∀e ∈ E : Y e = f ∗(X e
S∗) + εe, εe ∼ Fε, ε

e ⊥ XS∗

∀e ∈ E : Y e =
∑
j∈S∗

f ∗j (X e
j ) + εe, εe ∼ Fε, ε

e ⊥ XS∗

the statistical significance testing becomes more difficult
improved identifiability with nonlinear SEMs (Mooij et al., 2009)



provocative next step:
how about using “Big Data” when E is unknown?

that is: learn E from data

; partition E to maximize the number of confident detections
(wrong partitions will not destroy type I error control)
• need to adjust for searching for best partition
• much easier for (time-ordered) data
; some kind of change point/segmentation problem
(work in progress by Pfister & PB)



further issues:
I feedback loops in causal influence diagram

(Rothenhäusler, Heinze, Peters & Meinshausen, 2015)
I hidden variables

(Rothenhäusler, Heinze, Peters & Meinshausen, 2015)
I dynamic processes (with applications in economics,

finance, neuroscience,...)
I ...



causal components remain the same for
different sub-populations or experimental settings

; useful for
I causal inference with confidence statements

(as illustrated in this talk)
I prediction in heterogeneous environments (in progress)

; exploit the power of heterogeneity in complex data!



Thank you!

Software
R-package: pcalg

(Kalisch, Mächler, Colombo, Maathuis & PB, 2010–2015)
R-package: InvariantCausalPrediction (Meinshausen, 2014)
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