Inhomogenous large-scale data: new opportunities for causal inference and prediction

Peter Bühlmann

Seminar für Statistik, ETH Zürich joint work with

Jonas Peters Univ. Copenhagen

Nicolai Meinshausen SfS ETH Zürich

(ロ) (同) (三) (三) (三) (○) (○)

Heterogeneous large-scale data

the talk is not (yet) on "really big data"

but we will take advantage of heterogeneity often arising with large-scale data where i.i.d./homogeneity assumption is not appropriate

Two seemingly different problems

1. prediction in heterogeneous environments

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2. causal inference = intervention analysis

but they are very closely related!

Two seemingly different problems

1. prediction in heterogeneous environments

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2. causal inference = intervention analysis

but they are very closely related!

1. Prediction in heterogeneous environments

data from different known observed environments/experimental conditions/sub-populations $e \in \mathcal{E}$:

 $(X^e, Y^e) \sim F^e, e \in \mathcal{E}$

with response variables Y^e and predictor variables X^e

examples:

- data from 10 different countries
- data from economic scenarios (from different "time blocks")

immigration in the UK

examples for \mathcal{F} :

- 10 countries and many other than the 10 countries
- the presence and the unseen future with new scenarios

problem:

predict *Y* given *X* such that the prediction works well (is "robust") *for "all possible"* environments $e \in \mathcal{F}$ based on data from much fewer environments from \mathcal{E}

problem:

predict *Y* given *X* such that the prediction works well (is "robust") *for "all possible"* environments $e \in \mathcal{F}$ based on data from much fewer environments from \mathcal{E}

we need a model, of course! (one which is good/"justifiable")

(日) (日) (日) (日) (日) (日) (日)

and we will illustrate "validated" examples from genomics with respect to predicting values in new unseen environments

problem:

predict *Y* given *X* such that the prediction works well (is "robust") *for "all possible*" environments $e \in \mathcal{F}$ based on data from much fewer environments from \mathcal{E}

we need a model, of course! (one which is good/"justifiable")

(ロ) (同) (三) (三) (三) (○) (○)

and we will illustrate "validated" examples from genomics with respect to predicting values in new unseen environments

problem:

predict *Y* given *X* such that the prediction works well (is "robust") *for "all possible*" environments $e \in \mathcal{F}$ based on data from much fewer environments from \mathcal{E}

we need a model, of course! (one which is good/"justifiable")

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

and we will illustrate "validated" examples from genomics with respect to predicting values in new unseen environments

2. causal inference = intervention analysis

in genomics (for yeast or plants):

if we would make an intervention at a single (or many) gene(s), what would be its (their) effect on a response of interest?

want to infer/predict such effects without actually doing the intervention

e.g. from observational data (cf. Pearl; Spirtes, Scheines & Glymour) (from observations of a "steady-state system")

or from observational and interventional (heterogeneous) data

 \rightsquigarrow want to predict unseen interventions

we need a model, of course! (one which is good/"justifiable")

2. causal inference = intervention analysis

in genomics (for yeast or plants):

if we would make an intervention at a single (or many) gene(s), what would be its (their) effect on a response of interest?

want to infer/predict such effects without actually doing the intervention

- e.g. from observational data (cf. Pearl; Spirtes, Scheines & Glymour) (from observations of a "steady-state system")
- or from observational and interventional (heterogeneous) data
- → want to predict unseen interventions

we need a model, of course! (one which is good/"justifiable")

Example: Policy making

James Heckman: Nobel Prize Economics 2000

e.g.:

"Pritzker Consortium on Early Childhood Development identifies when and how child intervention programs can be most influential"

→ predict what happens if child would be assigned to an educational program "X" for which we have no data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example: Flowering of Arabidopsis Thaliana

phenotype/response variable of interest:

Y = days to bolting (flowering)

"covariates" X = gene expressions from p = 21'326 genes

goal: based on observational/interventional data, predict the effect of knocking-out a new single gene on the response variable Y

and we can validate the prediction by doing randomized follow-up experiments afterwards (Stekhoven, Moraes, Sveinbjörnsson, Hennig, Maathuis & PB, 2012) in both

- prediction in heterogeneous environments
- causal inference
- \rightsquigarrow prediction for new unseen scenarios/environments

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

→ "equivalence" of problems!

validated with follow-up biological experiments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

because: for

$$Y = \sum_{j=1}^{p} \beta_j X^{(j)} + \varepsilon$$

 β_j measures effect of $X^{(j)}$ on Y when keeping all other variables $\{X^{(k)}; k \neq j\}$ fixed

but when doing an intervention at a gene \leadsto some/many other genes might change as well and cannot be kept fixed

Causality, Graphical and Structural equation models late 1980s: Pearl; Spirtes, Glymour, Scheines; Dawid; Lauritzen;...

"definition" of causality:

direct causal variables for Y: the parental variables of Y

(日) (日) (日) (日) (日) (日) (日)

► total causal effect of X^(j) on Y: intervention or "treatment" effect of X^(j) on Y do(X^(j) = x): the effect on Y when setting X^(j) = x

 \sim sum up directed paths ("edge weights") from $X^{(j)}$ to Y

variables X_1, \ldots, X_{p+1} ($X_{p+1} = Y$ is the response of interest) directed acyclic graph (DAG) D^0 encoding the true underlying causal influence diagram

structural equation model (SEM):

$$\begin{split} & X_j \leftarrow f_j^0(X_{\operatorname{pa}_{D^0}(j)}, \varepsilon_j), \ j = 1, \dots, p+1, \\ & \varepsilon_1, \dots, \varepsilon_{p+1} \text{ independent} \\ \text{e.g. linear} \quad & X_j \leftarrow \sum_{k \in \operatorname{pa}_{D^0}(j)} \beta_{jk}^0 X_k + \varepsilon_j, \ j = 1, \dots, p+1 \end{split}$$

causal variables for $Y = X_{p+1}$: $S^0 = \{k; k \in \operatorname{pa}_{D^0}(Y)\}$

severe issues of identifiability !

given distribution(s) generating the data: typically cannot identify the true DAG D^0 and the parental set S^0 examples:

An equivalence class can be uniquely represented by a completed partially directed acyclic graph (CPDAG)

agenda for estimation: based on observ. or observ./interv. data (Chickering, 2002; Shimizu, 2005; Kalisch & PB, 2007;...)

- 1. estimate the Markov equivalence class of DAGs severe issues of identifiability !
- derive causal variables: the ones which are causal in all DAGs from; derive bounds for causal effects (Maathuis, Kalisch & PB, 2009)

(日) (日) (日) (日) (日) (日) (日)

drawbacks:

rather unstable and "doesn't really work"

- I : invariant prediction method
- H: invariant prediction with some hidden variables
- no confidence statements
- is tailored for very specidifc interventions (experimental conditions) only

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

goals:

- 1. construction of confidence statements for causal var. S^0 (without knowing the structure of the underlying graph)
- 2. deal with <u>"unspecified"</u> heterogeneous/interv. data general

NOT or AVOIDING

- graphical model fitting
- potential outcome models

Neyman's master thesis 1923!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

goals:

- 1. construction of confidence statements for causal var. S^0 (without knowing the structure of the underlying graph)
- 2. deal with <u>"unspecified"</u> heterogeneous/interv. data general

NOT or AVOIDING

- graphical model fitting
- potential outcome models

ightarrow Neyman's master thesis 1923!

(日) (日) (日) (日) (日) (日) (日)

Causal inference using invariant prediction

Peters, PB and Meinshausen (2016)

(日) (日) (日) (日) (日) (日) (日)

a main message:

causal structure/components remain the same for different sub-populations

while the non-causal components can change across sub-populations

thus:

→ look for "stability" of structures among different sub-populations Causal inference using invariant prediction

Peters, PB and Meinshausen (2016)

(ロ) (同) (三) (三) (三) (三) (○) (○)

a main message:

causal structure/components remain the same for different sub-populations

while the non-causal components can change across sub-populations

thus:

→ look for "stability" of structures among different sub-populations

Heterogeneous data

example 1: $\mathcal{E} = \{1, 2\}$ encoding observational (1) and all potentially unspecific interventional data (2)

example 2: $\mathcal{E} = \{1, 2\}$ encoding observational data (1) and (repeated) data from one specific intervention (2)

example 3: $\mathcal{E} = \{1,2,3\}$... or $\mathcal{E} = \{1,2,3,\ldots,26\}$...

do not need data from carefully designed (randomized) experiments

Invariance Assumption (w.r.t. \mathcal{E}) there exists $S^* \subseteq \{1, \dots, p\}$ such that:

 $\mathcal{L}(Y^{e}|X^{e}_{S^{*}})$ is invariant across $e \in \mathcal{E}$

for linear model setting: there exists a vector γ^* with supp $(\gamma^*) = S^* = \{j; \gamma_j^* \neq 0\}$ such that:

 $\begin{array}{ll} \forall e \in \mathcal{E} : & Y^e = X^e \gamma^* + \varepsilon^e, \; \varepsilon^e \perp X^e_{S^*} \\ & \varepsilon^e \sim F_{\varepsilon} \; \text{the same for all } e \\ & X^e \; \text{has an arbitrary distribution, different across } e \end{array}$

 γ^*, S^* is interesting in its own right!

namely the parameter and structure which remain invariant across experimental settings, or across heterogeneous groups

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Invariance Assumption (w.r.t. \mathcal{E}) there exists $S^* \subseteq \{1, \dots, p\}$ such that:

 $\mathcal{L}(Y^{e}|X^{e}_{S^{*}})$ is invariant across $e \in \mathcal{E}$

for linear model setting: there exists a vector γ^* with supp $(\gamma^*) = S^* = \{j; \gamma_j^* \neq 0\}$ such that:

 $\begin{array}{ll} \forall e \in \mathcal{E} : & Y^e = X^e \gamma^* + \varepsilon^e, \ \varepsilon^e \perp X^e_{S^*} \\ & \varepsilon^e \sim F_{\varepsilon} \ \text{the same for all } e \\ & X^e \ \text{has an arbitrary distribution, different across } e \end{array}$

 $\gamma^*, \ S^*$ is interesting in its own right!

namely the parameter and structure which remain invariant across experimental settings, or across heterogeneous groups

Invariance Assumption w.r.t. \mathcal{F}

now: the set S^* and corresponding regression parameter γ^* are for a much larger class of environments than what we observe! \sim

 γ^*, S^* is even more interesting in its own right!

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

since it says something about unseen new environments!

Link to causality

Invariance Assumption w.r.t. any space of environments \mathcal{G} :

there exists S^* such that $\mathcal{L}(Y^e|X^e_{S^*})$ is invariant across $e \in \mathcal{G}$

Proposition (Peters, PB & Meinshausen, 2016) Assume structrual equation model (SEM)

> $X_1 \leftarrow f_1^0(X_{\text{pa}(1)}, \varepsilon_1),$ $X_2 \leftarrow f_2^0(X_{\text{pa}(2)}, \varepsilon_2),$

 $Y \leftarrow f_Y^0(X_{\mathrm{pa}(Y)},\varepsilon_Y)$

Assume that G does not affect the structural equation for Y:

e.g. linear SEM:
$$Y^e \leftarrow \sum_{k \in pa(Y)} \underbrace{\beta_{Yk}}_{\forall e} X^e_k + \underbrace{\varepsilon^e_Y}_{\sim F_e \forall e \in \mathcal{G}}$$

Then: $\underbrace{S^0 = pa(Y)}_{\text{causal var.}}$ satisfies the Invariance Assumption w.r.t. \mathcal{G}

can take $\mathcal{G} = \mathcal{E}, \mathcal{G} = \mathcal{F} =$ all environments, ...

Link to causality

Invariance Assumption w.r.t. any space of environments G:

there exists S^* such that $\mathcal{L}(Y^e|X^e_{S^*})$ is invariant across $e \in \mathcal{G}$

Proposition (Peters, PB & Meinshausen, 2016) Assume structrual equation model (SEM)

$$egin{aligned} X_1 &\leftarrow f_1^0(X_{ ext{pa(1)}},arepsilon_1),\ X_2 &\leftarrow f_2^0(X_{ ext{pa(2)}},arepsilon_2), \end{aligned}$$

$$Y \leftarrow f_Y^0(X_{\mathrm{pa}(Y)}, \varepsilon_Y)$$

Assume that \mathcal{G} does not affect the structural equation for Y:

. . .

e.g. linear SEM:
$$Y^e \leftarrow \sum_{k \in pa(Y)} \underbrace{\beta_{Yk}}_{\forall e} X^e_k + \underbrace{\varepsilon^e_Y}_{\sim F_e \forall e \in \mathcal{G}}$$

Then: $\underbrace{S^0 = pa(Y)}_{causal var.}$ satisfies the Invariance Assumption w.r.t. \mathcal{G}

can take $\mathcal{G} = \mathcal{E}, \, \mathcal{G} = \mathcal{F} = \,$ all environments, ...

the causal variables lead to invariance (of conditional distr.) w.r.t. "all" possible environments

the Proposition has been known for a long time in causality (Haavelmo, 1944; Aldrich, 1989; Hoover, 1990; ... Dawid and Didelez, 2010)

causal structure (parental variables) \implies invariance

the new thing (surprisingly!) will be the reverse relation:

causal structure (parental variables) <= invariance

(日) (日) (日) (日) (日) (日) (日)

the causal variables lead to invariance (of conditional distr.) w.r.t. "all" possible environments

the Proposition has been known for a long time in causality (Haavelmo, 1944; Aldrich, 1989; Hoover, 1990; ... Dawid and Didelez, 2010)

causal structure (parental variables) \implies invariance

the new thing (surprisingly!) will be the reverse relation:

causal structure (parental variables) <= invariance

invariance - an important mathematical and scientific concept

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

recap: main assumptions implying that the causal variables lead to invariance

- a structural equation model
- \mathcal{E} (or $\mathcal{F} \supset \mathcal{E}$) does not affect structural equation for Y

this assumption holds for example for:

do-intervention (Pearl) at variables different than Y

Judea Pearl

(日) (日) (日) (日) (日) (日) (日)

noise (or "soft") intervention (Eberhardt & Scheines, 2007) at variables different than Y

Invariance Assumption : plausible to hold with real data

two-dimensional conditional distributions of observational (blue) and interventional (orange) data (no intervention at displayed variables X, Y)

seemingly no invariance of conditional d.

▲ロと▲聞と▲臣と▲臣と 臣 のの(で)

A procedure for inferring S^0 : population case

require and exploit the Invariance Assumption (w.r.t. \mathcal{E})

 $\mathcal{L}(Y^{e}|X^{e}_{S^{*}})$ the same across $e \in \mathcal{E}$

for linear model: consider hypothesis

 $\begin{array}{ll} {\it H}_{0,{\cal S}}({\cal E}): & \mbox{there exists } \gamma \mbox{ with } \mbox{supp}(\gamma) = {\cal S} \mbox{ and} \\ & \mbox{there exists } {\it F}_{\varepsilon} \mbox{ such that } \forall \mbox{ } e \in {\cal E}: \\ & {\it Y}^{e} = {\it X}^{e} \gamma + \varepsilon^{e}, \ \varepsilon^{e} \perp {\it X}^{e}_{{\cal S}}, \ \varepsilon^{e} \sim {\it F}_{\varepsilon} \mbox{ the same for all } e \end{array}$

i.e. $H_{0,S}(\mathcal{E})$ holds \leftrightarrow Invariance Assumption holds for set *S* and there might be many such *S*...

identifiable causal variables/predictors under \mathcal{E} :

is defined as the set $S(\mathcal{E})$, where

$$S(\mathcal{E}) = \bigcap \{\underbrace{S; \ H_{0,S}(\mathcal{E}) \text{ holds}}_{\text{Invariance Assumption holds for } S} \}$$

the intersection of all sets S where Inv. Ass. holds

for any S^* satisfying the Invariance Assumption we have:

$oldsymbol{\mathcal{S}}(\mathcal{E})\subseteq oldsymbol{\mathcal{S}}^*$

and this is key to obtain confidence statements for identifiable causal variables

(日) (日) (日) (日) (日) (日) (日)

identifiable causal variables/predictors under \mathcal{E} :

is defined as the set $S(\mathcal{E})$, where

$$S(\mathcal{E}) = \bigcap \{\underbrace{S; \ H_{0,S}(\mathcal{E}) \text{ holds}}_{\text{Invariance Assumption holds for } S} \}$$

the intersection of all sets S where Inv. Ass. holds

for any S^* satisfying the Invariance Assumption we have:

 $\mathcal{S}(\mathcal{E}) \subseteq \mathcal{S}^*$

and this is key to obtain confidence statements for identifiable causal variables

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

we have by definition:

 $S(\mathcal{E}) \nearrow$ as $\mathcal{E} \nearrow$

with

- more interventions
- more "heterogeneity"
- more "diversity in complex data"

we can identify more causal variables

▲□▶▲□▶▲□▶▲□▶ □ のQ@

question: when is $S(\mathcal{E}) = S^0$?

answer not of primary importance (see later)

Theorem (Peters, PB and Meinshausen, 2016)

$$\mathcal{S}(\mathcal{E})=\mathcal{S}^{0}$$
 = (parental set of Y in the causal DAG)

if there is:

- ▶ a single do-intervention for each variable other than *Y* and $|\mathcal{E}| = p$
- ▶ a single noise intervention for each variable other than Y and $|\mathcal{E}| = p$
- a simultaneous noise intervention and $|\mathcal{E}| = 2$

the conditions can be relaxed such that it is not necessary to intervene at all the variables

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Statistical confidence sets for causal predictors

"the finite sample version of $S(\mathcal{E}) = \bigcap_{S} \{S; H_{0,S}(\mathcal{E}) \text{ is true} \}$ "

for "any" $S \subseteq \{1, ..., p\}$: test whether $H_{0,S}(\mathcal{E})$ is accepted or rejected

$$\hat{S}(\mathcal{E}) = \bigcap_{S} \{H_{0,S} \text{ accepted at level } \alpha\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for $H_{0,S}(\mathcal{E})$: test constancy of regression param. and of residual error distr. across $e \in \mathcal{E}$

weaken this $\tilde{H}_{0,S}(\mathcal{E})$: test constancy of regression param. and of standard deviation of residual error across $e \in \mathcal{E}$

(日) (日) (日) (日) (日) (日) (日)

known since a long time how to do this: assume Gaussian errors \sim an exact test with an F-distribution under $\tilde{H}_{0,S}(\mathcal{E})$

$$\hat{S}(\mathcal{E}) = \bigcap_{S} \{ \tilde{H}_{0,S} \text{ accepted at level } \alpha \}$$

for some significance level $0 < \alpha < 1$

no multiple testing adjustment is needed!

method is called: ICP = Invariant Causal Prediction

going through all sets S?

・ロト・四ト・モート ヨー うへの

$$\hat{S}(\mathcal{E}) = \bigcap_{S} \{ \tilde{H}_{0,S} \text{ accepted at level } \alpha \}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

for some significance level 0 < α < 1

no multiple testing adjustment is needed!

method is called: ICP = Invariant Causal Prediction

going through all sets S?

going through all sets S? in the worst case: yes

- 1. start with $S = \emptyset$: if $H_{0,\emptyset}(\mathcal{E})$ accepted $\implies \hat{S}(\mathcal{E}) = \emptyset$
- consider small sets S of cardinality 1, 2, ... and construct corresponding intersections S_∩ with previously considered accepted sets S (H_{0,S}(E) accepted)

for S with $H_{0,S}$ accepted : $S_{\cap} \leftarrow S_{\cap} \cap S$

if intersection $S_{\cap} = \emptyset \implies \hat{S}(\mathcal{E}) = \emptyset$ if not:

discard all S with $S \supseteq S_{\cap}$

and continue with the remaining sets

3. for large *p*:

restrict search space by variables from Lasso regression; need a faithfulness assumption (and sparsity and assumptions on X^e for justification)

Theorem (Peters, PB and Meinshausen, 2016)

assume: linear model, Gaussian errors \mathcal{E} does not affect structural equation for Y

Then:

 $\mathbb{P}[\hat{S}(\mathcal{E}) \subseteq S^0] \ge 1 - \alpha$: confidence w.r.t. true causal var.

"on the safe side" (conservative)

we do not need to care about identifiability: if the effect is not identifiable, the method will not wrongly claim an effect

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (Peters, PB and Meinshausen, 2016)

assume: linear model, Gaussian errors \mathcal{E} does not affect structural equation for Y

Then:

 $\mathbb{P}[\hat{S}(\mathcal{E}) \subseteq S^0] \ge 1 - \alpha$: confidence w.r.t. true causal var.

"on the safe side" (conservative)

we do not need to care about identifiability: if the effect is not identifiable, the method will not wrongly claim an effect

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

"the first" result on frequentist statistical confidence for potentially non-identifiable causal predictors when structure is unknown (route via graphical modeling for confidence sets seems awkward)

leading to (hopefully) more reliable causal inferential statements

(ロ) (同) (三) (三) (三) (三) (○) (○)

how do we know whether \mathcal{E} is not affecting structural equation for *Y*?

if ${\mathcal E}$ does affect structural equation for Y ightarrow

"robustness" of our procedure

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- no causal statements
- no false positives
- conservative, but on the safe side

how do we know whether \mathcal{E} is not affecting structural equation for *Y*?

if ${\mathcal E}$ does affect structural equation for $Y \rightsquigarrow$

"robustness" of our procedure

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- no causal statements
- no false positives
- conservative, but on the safe side

Empirical results: simulations 100 different scenarios, 1000 data sets per scenario:

8

$$|\mathcal{E}| = 2, \, n_{obs} = n_{interv} \in \{100, \dots, 500\}, \, p \in \{5, \dots, 40\}$$

 $\mathbb{P}[\hat{S}(\mathcal{E}) \not\subseteq S^0]$, aimed at 0.05

Single gene deletion experiments in yeast

p = 6170 genes response of interest: Y = expression of first gene "covariates" X = gene expressions from all other genes

```
and then
response of interest: Y = expression of second gene
"covariates" X = gene expressions from all other genes
```

and so on

infer/predict the effects of unseen/new single gene deletions on all other genes

that is: make predictions for

new observations from new probability distributions

collaborators: Frank Holstege, Patrick Kemmeren et al. (Utrecht)

data from modern technology

Kemmeren, ..., and Holstege (Cell, 2014)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Kemmeren et al. (2014):

genome-wide mRNA expressions in yeast: p = 6170 genes

- n_{obs} = 160 "observational" samples of wild-types
- n_{int} = 1479 "interventional" samples each of them corresponds to a single gene deletion strain

for our method: we use $|\mathcal{E}| = 2$ (observational and interventional data)

training-test data splitting:

- training set: all observational and 2/3 of interventional data
- test set: other 1/3 of gene deletion interventions predicted effects of these interventions are validated
- repeat this for the three blocks of interventional test data

multiplicity adjustment:

since ICP is used 6170 times (once for every response var.) we use coverage 1 – α /6170 with α = 0.05

8 genes are significant ($\alpha = 0.05$ level) causal variables (each of the 8 genes "causes" one other gene)

not many findings...

but we use a stringent criterion with Bonferroni corrected $\alpha/6170 = 0.05/6170$ to control the familywise error rate

and ICP might be conservative (as discussed before)

8 genes are significant ($\alpha = 0.05$ level) causal variables

validation: thanks to the intervention experiments (in the test data) we can validate the method(s)

SIE = the observed response value associated to an intervention is in the 1%- or 99% tail of the observational data

 \sim a very stringent conservative definition of a true positive intervention effect

8 genes are significant ($\alpha = 0.05$ level) causal variables

method	invar.pred.	GIES PC-IDA ma		marg.corr.	rand.guess.		
no. true pos. (out of 8)	6	2	2	2	*		

- *: quantiles for selecting true positives among 7 random draws 2 (95%), 3 (99%)
- → our invariant prediction method has most power ! and it should exhibit control against false positive selections

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

- I: invariant prediction method
- H: invariant prediction with some hidden variables

Validation (Meinshausen, Hauser, Mooij, Peters, Versteeg & PB, 2016) with intervention experiments: strong intervention effect (SIE) with yeastgenome.org database: scores A-F

rank	cause	effect	SIE	А	В	С	D	Е	F
1	YMR104C	YMR103C	~						
2	YPL273W	YMR321C	~						
3	YCL040W	YCL042W	\checkmark						
4	YLL019C	YLL020C	~						
5	YMR186W	YPL240C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
6	YDR074W	YBR126C		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
7	YMR173W	YMR173W-A	~						
8	YGR162W	YGR264C							
9	YOR027W	YJL077C	~						
10	YJL115W	YLR170C							
11	YOR153W	YDR011W		\checkmark	\checkmark				
12	YLR270W	YLR345W							
13	YOR153W	YBL005W							
14	YJL141C	YNR007C							
15	YAL059W	YPL211W							
16	YLR263W	YKL098W							
17	YGR271C-A	YDR339C							
18	YLL019C	YGR130C							
19	YCL040W	YML100W							
20	YMR310C	YOR224C							

SIE: correctly predicting a strong intervention effect which is in the 1%- or 99% tail of the observational data

Robustness

remember:

- ► if model is not correct exhibiting e.g. nonlinearities → loss of power, but controlling false positives is still OK
- ► if Invariance Assumption does not hold ~ loss of power, but controlling false positives is still OK
- hidden variables

 \rightsquigarrow the method might pick up ancestors of Y

e.g. X_2 which still exhibits a total intervention/causal effect (and hence is interesting for the gene perturbation experiments)

Flow cytometry data (Sachs et al., 2005)

- p = 11 abundances of chemical reagents
- 8 different environments (not "well-defined" interventions) (one of them observational; 7 different reagents added)
- each environment contains $n_e \approx 700 1'000$ samples

goal:

recover network of causal relations (linear SEM)

approach: "pairwise" invariant causal prediction (one variable the response *Y*; the other 10 the covariates *X*; do this 11 times with every variable once the response)

blue edges: only invariant causal prediction approach (ICP) red: only ICP allowing hidden variables and feedback purple: both ICP with and without hidden variables solid: all relations that have been reported in literature broken: new findings not reported in the literature

 reasonable consensus with existing results but no real ground-truth available serves as an illustration that we can work with "vaguely defined interventions"

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Concluding thoughts

generalize Invariance Assumption and statistical testing to nonparametric/nonlinear models in particular also additive models

$$\forall e \in \mathcal{E} : \ Y^e = f^*(X_{S^*}^e) + \varepsilon^e, \ \varepsilon^e \sim F_{\varepsilon}, \ \varepsilon^e \perp X_{S^*} \\ \forall e \in \mathcal{E} : \ Y^e = \sum_{j \in S^*} f_j^*(X_j^e) + \varepsilon^e, \ \varepsilon^e \sim F_{\varepsilon}, \ \varepsilon^e \perp X_{S^*}$$

(ロ) (同) (三) (三) (三) (○) (○)

the statistical significance testing becomes more difficult improved identifiability with nonlinear SEMs (Mooij et al., 2009)

provocative next step: how about using "Big Data" when \mathcal{E} is unknown?

that is: learn $\ensuremath{\mathcal{E}}$ from data

- \sim partition \mathcal{E} to maximize the number of confident detections (wrong partitions will not destroy type I error control)
 - need to adjust for searching for best partition
 - much easier for (time-ordered) data
 - \rightsquigarrow some kind of change point/segmentation problem (work in progress by Pfister & PB)

further issues:

feedback loops in causal influence diagram

(Rothenhäusler, Heinze, Peters & Meinshausen, 2015)

hidden variables

(Rothenhäusler, Heinze, Peters & Meinshausen, 2015)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 dynamic processes (with applications in economics, finance, neuroscience,...)

...

causal components remain the same for different sub-populations or experimental settings

- \rightsquigarrow useful for
 - causal inference with confidence statements
 - (as illustrated in this talk)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

prediction in heterogeneous environments (in progress)

 \rightsquigarrow exploit the power of heterogeneity in complex data!

Thank you!

Software R-package: pcalg

(Kalisch, Mächler, Colombo, Maathuis & PB, 2010–2015)

R-package: InvariantCausalPrediction (Meinshausen, 2014)

References to some of our own work:

- Peters, J., Bühlmann, P. and Meinshausen, N. (2016). Causal inference using invariant prediction: identification and confidence intervals (with discussion). J. Royal Statistical Society: Series B 78, 947-1012.
- Meinshausen, N., Hauser, A. Mooij, J., Peters, J., Versteeg, P. and Bühlmann, P. (2016). Causal inference from gene perturbation experiments: methods, software and validation. Proc. Nat. Acad. Sci. USA 113, 7361-7368.
- Hauser, A. and Bühlmann, P. (2015). Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs. Journal of the Royal Statistical Society: Series B, 77, 291-318.
- Hauser, A. and Bühlmann, P. (2012). Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. Journal of Machine Learning Research 13, 2409-2464.
- Kalisch, M., Mächler, M., Colombo, D., Maathuis, M.H. and Bühlmann, P. (2012). Causal inference using graphical models with the R package pcalg. Journal of Statistical Software 47 (11), 1-26.
- Stekhoven, D.J., Moraes, I., Sveinbjörnsson, G., Hennig, L., Maathuis, M.H. and Bühlmann, P. (2012). Causal stability ranking. Bioinformatics 28, 2819-2823.
- Maathuis, M.H., Colombo, D., Kalisch, M. and Bühlmann, P. (2010). Predicting causal effects in large-scale systems from observational data. Nature Methods 7, 247-248.
- Maathuis, M.H., Kalisch, M. and Bühlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Annals of Statistics 37, 3133-3164.