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I.Identifying Networks and II.Working With Given Ones

I Given vectors of measurements Xi, for example, given gene

expression sequence nearby binding site information, physical

(epigenetic information), protein assays etc. Determine

dependency/causal relation between genes.

Tools: Gaussian graphical models, clustering etc.

II Given a network of relations (edges) identify higher level

structures, clusters, like pathways in genomics. In practice,

both can be done simultaneously. Focus on the models for II,

in the simplest case of unlabelled graphs.



Example: Social Network

Figure: Facebook Network for Caltech with 769 nodes and average

degree 43.



Example: Bio Network

Figure: Transcription network of E. Coli with 423 nodes and average

degree 2.45.



Example: Collaboration Network

Figure: Collaboration Network in Arxiv for High Energy Physics with

8638 nodes and average degree 5.743.
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Questions

Focus

(i) Community identification for block models (simple and

degree-corrected).

Other

(ii) Link Prediction: Predicting edges between nodes based on partially

observed graph. (Liben-Nowell and Kleinberg (2007)), Zhao and

Levina (2012).

(iii) Model selection: Number of blocks.

(iv) Testing stochastic identity of graphs (networks) using count statistics

(motifs) (Wasserman and Faust (1994)).

(v) Error bars on descriptive statistics, eg. homophily.

(vi) Model incorporating edge identification errors.

(vii) Directed graphs: graphs with additional edge and vertex information.



Erdős-Rényi and Block Models (Holland, Laskey and

Leinhardt 1983)

• Graph on n vertices is equivalent to An×n adjacency matrix.

• Probability on Sn = {all n × n symmetric 0-1 matrices}. (For

undirected graphs)

• E-R: Aij
i .i .d .∼ Ber(p).

• H-L-L: K “communities”

• ca ≡ 1[vertex i ∈ a]

• c ∼M (n, (π1, . . . , πK ))

• Given c, Aij are independent and

P(Aij = 1|ci = a, cj = b) =
wab

πaπb
.

where,
∑

a,b wab = 1 and wab = wba.



Nonparametric Asymptotic Model for Unlabeled Graphs

Given: P on ∞ graphs

Aldous/Hoover (1983)

L(Aij : i , j ≥ 1} = L(Aπi ,πj : i , j ≥ 1),

for all permutations π ⇐⇒

∃ g : [0, 1]4 → {0, 1} such that Aij = g(α, ξi , ξj , ηij),

where

α, ξi , ηij , all i , j ≥ i , i.i.d. U(0, 1), g(α, u, v ,w) = g(α, v , u,w),

ηij = ηji .



Ergodic Models

L is an ergodic probability iff for g with g(u, v ,w) = g(v , u,w)

∀(u, v ,w),

Aij = g(ξi , ξj , ηij).

L is determined by

h(u, v) ≡ P(Aij = 1|ξi = u, ξj = v), h(u, v) = h(v , u).

Notes:

• Equivalent: Hoff, Raftery, Handcock (2002). JASA

• More general: Bollobas, Riordan, Janson (2007). Random

Structures and Algorithms



“Parametrization” of NP Model

• h is not uniquely defined.

• h
Ä
ϕ(u), ϕ(v)

ä
, where ϕ is measure-preserving, gives same model.

• Property CAN holds If there exists hCAN such that

τ(z) ≡
∫ 1

0
hCAN(z , u)du = P[Aij = 1|ξi = z ]

is

(a) monotonically non-decreasing and

(b) If F (·) is CDF of τ(ξ), w (F τ(ξ1),F τ(ξ2)) ∼ w(ξ1, ξ2).

• If τ is strictly increasing, such an hCAN always exists.

• ξi could be replaced by any continuous variables or vectors - but

there is no natural unique representation.



Asymptotic Approximation

• hn(u, v) = ρnwn(u, v)

• ρn = P[Edge]

• w(u, v)dudv = P [ξ1 ∈ [u, u + du], ξ2 ∈ [v , v + dv ]|Edge]

• wn(u, v) = min
{
w(u, v), ρ−1

n

}
• Average Degree = E(D+)

n ≡ λn ≡ ρn(n − 1).

• λn ranges from O(1) to O(n).



Examples of models

(I) Block models:

hCAN(u, v) ≡ Fab ≡
wab

πaπb
on Ia × Ib, |Ia| = πa, a = 1, . . . ,K .

Degree-Corrected: (Karrer and Newman (2010))

P(Aij = 1|ci = a, cj = b, θi , θj) = θiθjFab.

θi is independent of c, P[θi = λj ] = ρj ,
∑J

j=1 ρj1.

Parametric sub model of M = KJ block model.

Not to be considered

(II) Preferential Attachment: (De Solla-Price (1965))

(Asymptotic version, w not bounded)

w(u, v) =
τ(u)∫ 1

u τ(s)ds
1(u ≤ v) +

τ(v)∫ 1
v τ(s)ds

1(v ≤ u)

τ(u) =

∫ 1

0
h(u, v)dv

Dynamically defined, τ(u) ∼ (1− u)−1/2 is equivalent to power law of

degree distribution F ≡ τ−1.



Two Questions

(I) (a) Estimate π,λ,ρ,F.

(b) Classify vertex i by its community.

(II) Given i , j construct ŵ(ξi , ξj) (ŵ is an estimate of w) to

predict whether Aij = 1.



3 Regimes

(a) If λn
log n →∞, equivalent to,

P[there exists an isolated point]→ 0.

(b) If λn →∞, full identifiability of w .

(c) If λn = O(1), phase boundaries and partial identifiability of w .



Block Models: Community Identification and Maximize

Modularities

• Newman-Girvan modularity (Phys. Rev. E, 2004) e = (e1, · · · , en):

ei ∈ {1, · · · ,K} (community labels)

• The modularity function:

QN(e) =
∑K

k=1

Å
Okk (e,A)

D+
−
(

Dk (e)
D+

)2
ã

,

where

Oab(e,A) =
∑

i ,j Aij1(ei = a, ej = b)

= (# of edges between a and b) a 6= b

= 2× (# of edges between members of a), a = b

Dk(e) =
∑K

l=1 Okl(e,A)

= sum of degrees of nodes in k

D+ =
∑K

k=1 Dk(e) = 2× (# of edges between all nodes )



Profile Likelihood

• Given e estimate parameters and plug into block model

likelihood.

• Always consistent for classification and efficient estimation.



Global Consistency

Theorem 1

If population version of F is ”consistent” and λn
log n →∞, then

lim supn λ
−1
n log P [ĉ 6= c] ≤ −sQ , with sQ > 0.

Extension to Fn ≈ F requires simple condition. See also Snijders

and Nowicki (1997) J. of Classification.



Basic Approach to Proof

General Modularity: Data and population

• Given Qn: K × K positive matrices ×K simplex → R+.

• Qn(e,A) = Fn

(
O(e,A)
µn

, D+

µn
, f (e)

)
.

O(e,A) ≡ ||oab(e)||, f(e) ≡ (f1(e), . . . , fK (e))T , fj(e) ≡ nj

n .

ĉ ≡ arg max Qn(e,A).

µn = E (D+) = (n − 1)λn.

• NG: Fn ≡ F .

• Population: Replace random vectors by expectations under

block model



Corollary

Under the given conditions if

π̂a = 1
n

∑n
i=1 1(ĉi = a) ≡ n̂a

n ,

Ŵ = O(ĉ,A)
D+

,

then if S = ∆−1W ∆−1, where, ∆ = Diag(π),

√
n(π̂ − π)⇒ N (0, πD − ππT ),
√

nλn(Ŝ − S)⇒ N (0,Σ(π,W )) .

These are efficient.



Maximum Likelihood, Variational Likelihood for Block

Models

(B. and Choi (2012) Arxiv, Celisse et. al. (2011) Arxiv)

• Complete data likelihood for block data

f (z,A, θ) =
n∏

i=1

πzi

∏
i≤j

Ä
ρSzizj

äAij
Ä

1− ρSzizj

ä1−Aij

P[zi = a] = πa and z1, . . . , zn i.i.d.

• Graph likelihood ratio

g

g0
(A, θ) = E0

Å
f

f0
(z,A, θ) | A

ã
where, f0 ≡ f (z,A, θ0), g0 ≡ g(A, θ0) and θ ≡ (ρ,π, S)T .



Variational Likelihood (Daudin et. al. (2009))

Define,

q(z, τ) ≡
n∏

i=1

τi (zi )

fVAR(z,A, θ) = q(z, τ(A, θ), θ)g(A, θ)

τ(A, θ) = arg min
τ

D (q(z, τ) | f (z|A, θ))

where, D(f1|f2) =
∫ Ä

log f1
f2

ä
f1dµ.

Notation:

• ˆ̂θ: Complete Data likelihood estimator,

• θ̂: Graph Likelihood estimator,

• θ̂VAR : Variational Likelihood estimator.



Theorem

Theorem (B. and Choi)

If λn
log n →∞, there exists E such that supθ Pθ(Ē |A)

P0→ 0 such that

(a)

g

g0
(A, θ)1E (z,A) =

f

f0
(z,A)(1 + oP(1))1E (z,A)

(b) The same holds for fVAR
f0,VAR

(c) fVAR can be used for consistent classification.



Consequence of Theorem

Hence,

•
√

n(ˆ̂π − π̂) = oP(1).

•
√

n(ˆ̂π − π̂VAR) = oP(1).

•
√

nλn(ˆ̂S − Ŝ) = oP(1).

•
√

nλn(ˆ̂S − ŜVAR) = oP(1).

•
√

nλn( ρ̂ρ − 1) = OP(1).

• ρ̂ ≡ 1
n

∑n
i=1 Di , Di =

∑
j Aij .



Concentration Results and Consequences in Regimes (a)

and (b)

Theorem (B., Levina and Chen (2012)), (Channarond,

Daudin, Robin (2012))

(i) If λn →∞ ∣∣∣∣Di

D̄
− τ(ξi )

∣∣∣∣ = OP(λ−1/2)

(ii) If λn
log n →∞

max
i

∣∣∣∣Di

D̄
− τ(ξi )

∣∣∣∣ = oP(1)



Statistical Consequences of (ii)

(Channarond, Daudin, Robin (2011, Arxiv))

• Let us suppose that the block model has the Property CAN with

parameters, (π,W , ρ), where, Wab = P[i ∈ a, j ∈ b|ij is an Edge].

• Algorithm: Apply k-means to
¶

Di

D̄

©
1 ≤ i ≤ n.

• If λn →∞ and Ĉ1, . . . , Ĉk are the resulting clusters and

π̂j ≡
|Ĉj |
n .

(i) π̂j
P→ πj , for j = 1, . . . , k.

(ii) D̄
λn

P→ 1

(iii) Ŵab ≡ 2{# of edges between Ĉa and Ĉb}
nλn

P→Wab

• The algorithm does not perform well compared to spectral

methods.



Other methods which work well for block models under

regime (a)

1. Spectral Clustering: Rohe et. al.(2011), McSherry (1993),

Dasgupta, Hopcroft and McSherry (2004), Chaudhuri, Chung

and Tsiatis (2012) develop methods which classify perfectly

for λn
log n →∞ (CCT (2012).

2. Pseudo-likelihood (with a good starting point). (Chen,

Arash Amini, Levina and B (2012))

3. Methods based on empirical distribution of geodesic distances.

(Bhattacharyya and B (2012))



Count statistics

• Another approach works broadly even for λn = O(1) regime.

• Count statistics are normalized subgraph counts and smooth

functions of them.

• The subgraph count,T (R), for subgraph corresponding to edge set R

is -

T (R) =
∑

S subgraph of G

1(S ∼ (VR ,R))/C (R, n)

where, C (R, n) ≡ # of all possible subgraphs of type R of Gn.

• Example:

(a) Total number of triangles in a graph is an example of count statistic.

(b) Homophily := # of ∆’s
# of ∆’s + # of V ′s

is an example of smooth function of

count statistics.



O(1) ≤ λn ≤ O(n)

Note that,

• ρn → 0, T (R)
P→ 0.

But,

• If |R| = p, E(T (R))
ρ̂p stabilizes.



Theorem on Moment Estimate

Theorem 1

I. In dense case, if p, R are fixed

√
n (T (R)− E(T (R)))⇒ N(0, σ2(R,P))

II. In general non-dense case conclusion of I. applies to T (R)
ρ̂p

where |R| = p and ρ̂ ≡ D̄
n , if R is acyclic. Else result depends

on λn.



The λn = O(1) Regime

• Major difficulty: For ρ = λn
n ,

E[# of isolated points] ∼ ne−λn .

• We expect isolated points to correspond to special ranges of ξ.

Example: For block models, πa small and Wab small for all b.

Theorem (Decelle et. al. (2011)), (Mossel, Neeman and Sly

(2012))

For particular ranges of (π,W , λn) block models can not be

distinguished from Erdos-Renyi models. This includes but is not

limited to λn ≤ 1.



Consequence (Bickel, Chen and Levina (2011))

For all λn regimes, block models with fixed K if 1,Q1, . . . ,Qk−11

are linearly independent with Qij ≡
Wij

πi
,

• π is estimable at rate n−1/2.

• S is estimable at rate (nλn)−1/2

• D̄ = λn(1 + OP((nλn)−1/2)

(all λn > 0).



Identifiability

The independence condition implies

1. 1 is not an eigenvector of W .

2. Block models with π1 = · · · = πK are not identifiable by

acyclic count statistics.



A Computational Issue

• Computing T (R) for R complex and σ2(T ,R) is non-trivial.

• Possible methods: Estimates counts using

(a) Naive Monte Carlo (Sets of m out of n vertices).

(b) Weighted sampling of edges (Kashtan et. al. (2004)).

(c) Combination of above two methods (Bhattacharyya and B

(2012)).



Discussion

• Count statistics computation needs “bootstrap”. (S. Bhattacharyya

(2012))

• Simulations and real data applications available but much needed.

• Block models: In theory

• λn

log n →∞ and τ satisfying Property CAN are well-understood. λn

log n →∞ is

same as if the class memberships are known. Fast algorithms being

developed in this regime.

• λn →∞ but λn

log n 9∞ consistent but not
√

n-consistent estimation

possible

• λn = O(1) very subtle.

• Many statistical extensions needed: covariates, dynamics etc.

• If λn →∞ should be able to formulate minimax result for estimation of

w(ξ1, ξ2) or more generally w(z1, z2) for “sparse” situations under

smoothness conditions on w(·, ·).


