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Abstract
The identification of imprinted genes is becoming a standard procedure in searching for quantitative trait loci (QTL)
underlying complex traits. When a developmental characteristic such as growth or drug response is observed at
multiple time points, understanding the dynamics of gene function governing the underlying feature should provide
more biological information regarding the genetic control of an organism. Recognizing that differential imprinting
can be development-specific, mapping imprinted genes considering the dynamic imprinting effect can provide add-
itional biological insights into the epigenetic control of a complex trait. In this study, we proposed a Bayesian im-
printed QTL (iQTL) mapping framework considering the dynamics of imprinting effects and model multiple iQTLs
with an efficient Bayesian model selection procedure. The method overcomes the limitation of likelihood-based
mapping procedure, and can simultaneously identify multiple iQTLs with different gene action modes across the
whole genome with high computational efficiency. An inference procedure using Bayes factors to distinguish differ-
ent imprinting patterns of iQTL was proposed. Monte Carlo simulations were conducted to evaluate the perform-
ance of the method. The utility of the approach was illustrated through an analysis of a body weight growth data
set in an F2 family derived from LG/J and SM/J mouse stains.The proposed Bayesian mapping method provides an ef-
ficient and computationally feasible framework for genome-wide multiple iQTL inference with complex developmen-
tal traits.

Keywords: Bayes factor; Bayesian model selection; developmental traits; Markov chain Monte Carlo; imprinting pattern;
quantitative trait loci

INTRODUCTION
Genomic imprinting is a genetic phenomenon in

which the same genes express differently, depending

on their parental origin [1]. On the molecular level,

genomic imprinting may result from DNA methyla-

tion, histone modification, non-coding RNAs

(ncRNA) and even long distance interchromosomal

interactions [2]. As a ubiquitous phenomenon in

nature, genomic imprinting has been broadly identi-

fied in plants [3], animals [4, 5] and humans [6, 7].

The role of genomic imprinting in shaping an

organism’s development has been unanimously

recognized [8–10]. The imprinting effect on traits

of interest can be characterized by different types.

When the paternal allele at a gene is expressed and

the maternal allele is inactivated, this feature of im-

printing is referred to as paternal imprinting.

Maternal imprinting is defined similarly. Genomic

imprinting has been traditionally viewed as a

mono-allelic expression with complete maternal or

RunqingYang is a Professor in the School of Agriculture and Biology, Shanghai Jiaotong University and also a Professor in the

College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University. He is interested in developing

Bayesian methods in QTL mapping and genetic association studies.

XinWang is currently a PhD student in the Bioinformatics Research Center at North Carolina State University.

Yuehua Cui is an Associate Professor in the Department of Statistics and Probability at Michigan State University. He obtained his

PhD in Statistics at the University of Florida in 2005. His research focuses on developing novel statistical and computational methods to

disentangle the genetic basis of complex traits by integrating various tools and sources in genetics, molecular biology, statistics,

mathematics and computer sciences.

Corresponding author. Yuehua Cui. Department of Statistics and Probability, Michigan State University, East Lansing, MI 48864,

USA. Tel: þ517-432-7098; Fax: þ517-432-1405; E-mail: cui@stt.msu.edu

BRIEFINGS IN BIOINFORMATICS. VOL 13. NO 5. 555^568 doi:10.1093/bib/bbr079
Advance Access published on 8 February 2012

� The Author 2012. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com

 at M
ichigan State U

niversity on Septem
ber 3, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


paternal silence. The definition has been revised by

the inclusion of partial imprinting which signifies the

different levels of expression for alleles inherited

from different parents [11, 12]. Note that these clas-

sifications are all based on the additive effect of an

imprinting locus. Often imprinting can cause change

of interactions among alleles. Cheverud et al. [13]

recently illustrated a scheme for characterizing the

potential diversity of imprinting patterns, in which

imprinting patterns are classified as either parental

expression (paternal or maternal) or dominance

(bipolar and polar). To date this is the most complete

classification list for genomic imprinting.

Recent studies have shown the power of genetic

mapping in the identification of epigenetic modifi-

cation of imprinted genes or imprinted quantitative

trait loci (iQTLs) on complex traits such as the vari-

ance component methods for family based pedigree

data in human linkage analysis [14–16]; the variance

component methods for experimental crosses

[17, 18]; the regression-based approaches for con-

trolled crosses between outbreed parents [19, 20]

and between inbreed lines [21–23]. In a regular

iQTL mapping study, two sex-specific reciprocal

heterozygotes (e.g. AMaF and aMAF) are not fully

informative or distinguishable. However, as shown

by Cui et al. [21], the information about sex-specific

differences in recombination fraction can be used to

infer the imprinting effect of an iQTL.

Most imprinted genes play important roles in con-

trolling embryonic and post-natal growth and devel-

opment in mammals [8–10]. As a highly complex

process, genomic imprinting is involved in a

number of growth axes operating coordinately at

different development stages [24], and shows

time-dependent effect during development [25].

The unbalanced expression of an imprinted gene

that occurs during a development stage challenges

the traditional paradigm of inheritance and mapping

methods. We argue that traditional methods, by

treating a trait measured at a certain developmental

stage as mapping subject, without considering the

correlation information at different developmental

stages, are less powerful in dissecting dynamic

iQTL effects. Cui etal. [26] recently proposed a func-

tional iQTL mapping framework underlying devel-

opmental characteristics which incorporates a

mathematical function that best describes a develop-

mental feature into an iQTL mapping framework.

Such an approach can estimate and test time-specific

imprinting effect at specific developmental stages,

and displays several merits over traditional iQTL

mapping methods.

Current mapping procedures for iQTL inference

are all based on single iQTL models, estimating and

testing one locus at a time without considering the

effects of other iQTLs. When multiple iQTLs are

presented in the genome, such approaches are less

efficient under the likelihood-based framework

[27]. For a dynamic trait, the number of parameters

being estimated is several folds larger than those for a

univariate trait. In our previous QTL mapping

model, we demonstrated that a Bayesian mapping

method can handle this issue well with high compu-

tational efficiency [28]. In this study, we unify the

two endeavors, Bayesian mapping of developmental

traits and iQTL inference, into a unified framework

called Bayesian functional multiple iQTL mapping

(Bafmim). We propose an efficient Bayesian model

selection strategy for multiple iQTL inference for

developmental traits. The inference for the

number, position and effect of multiple iQTLs as

well as for different imprinting patterns is provided.

The statistical behavior of the proposed method is

illustrated by simulation studies. The utility of the

method is shown by applying to a real data set. A

total of six iQTLs are identified with Bafmim,

among which two were missed by the likelihood-

based method. The proposed approach has great im-

plications in understanding the function of imprinted

genes governing developmental characteristics.

STATISTICALMETHOD
The imprinting model
In a mapping population, assume that there are four

distinguishable genotypes, denoted by QMQP,

QMqP, qMQP and qMqP, at each locus where the sub-

scripts M and P refer to an allele inherited from the

mother and father, respectively. A set of codominant

molecular markers can be genotyped and phenotypes

for a developmental trait which is measured at m
time points on n individuals. In general, the additive

effect a is defined as half of the phenotypic difference

between two homozygotes; the dominance effect d,
is defined as the difference between the joint mean

of both heterozygotes and the mean of both homo-

zygotes; and the imprinting effect i, is defined as the

difference between both heterozygotes [19, 29].

Following the definitions for the genetic parameters,

an imprinting model for a phenotype measured for
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individual k at time t, denoted as ykðtÞ, can be for-

mulated as

ykðtÞ ¼ mðtÞþ
Xq
j¼1

½ckjajðtÞ þ zkjdjðtÞ þ skjijðtÞ�

þ xkðtÞ þ "kðtÞ

ð1Þ

where q is the number of potential (i)QTLs in the

genome; mðtÞ is the population mean at time t;
ajðtÞ, djðtÞ and ijðtÞ for j ¼ 1, 2, . . . , q are the addi-

tive, dominance and imprinting effects of the j-th
iQTL at time point t; xkðtÞ (k ¼ 1, 2, . . . , n) is an

individual-specific time-dependent random environ-

mental term modeled as a mean-zero Gaussian

process, i.e. Nð0, s2
xðtÞÞ and ekðtÞ is a random envir-

onmental error assumed to be normally distributed

with mean zero and variance s2. Note that

ckj, zkj and skj are genotype-specific indicator vari-

ables related to genetic effects ajðtÞ, djðtÞ and ijðtÞ,
which are defined by Mantey et al. [30] as

ckj ¼

þ1

0

0

�1

8>><
>>:

, zkj ¼

0

þ1

þ1

0

8>><
>>:

and skj ¼

0 for QMQP

þ1 for QMqP
�1 for qMQP

0 for qMqP

8>><
>>:

Note that in practical mapping, unless QTLs are

located exactly at the marker position (i.e. the mar-

kers and the QTLs overlap), these genotype-specific

indicator variables are unknown and need to be

inferred from flanking markers. We use Legendre

polynomial of order r to fit changing trajectories of

the population mean and the effects of each iQTL

[31, 32]. Let tðtÞ ¼ ðc0ðtÞ, . . . ,crðtÞÞ
T be the basis

of the Legendre polynomial with order r and have

that mðtÞ ¼ tðtÞk, ajðtÞ ¼ tðtÞaj, djðtÞ ¼ tðtÞdj,

ijðtÞ ¼ tðtÞij and xkðtÞ ¼ tðtÞmk, where each one

of k, aj, dj, ij and mk is a vector of rþ 1 dimensions.

Model (1) can be then rewritten as

ykðtÞ ¼ t
T
ðtÞkþ

Xq
j¼1

zkjt
T
ðtÞaj þ wkjt

T
ðtÞdj

�

þskjt
T
ðtÞij� þ t

T
ðtÞmk þ ekðtÞ

ð2Þ

Where mk is a vector of regression coefficients for

random effects, which is assumed to be multivariate

normal with mean zero and an ðr þ 1Þ � ðr þ 1Þ

positive definite covariance matrix D.

For simplicity, we assume that each individual

is measured at m time points and the time points are

common for all individuals. Let yk ¼ ½ykðt0Þykðt1Þ
. . . ykðtmÞ�

T be an ðmþ 1Þ � 1 column vector for

the repeated measurements of a developmental trait

and define t ¼ cT
ðt0Þc

T
ðt1Þ . . .

�
cT
ðtmÞ� as a

ðr þ 1Þ�ðmþ 1Þ matrix. In matrix notation,

Model (2) becomes

yk ¼ t
Tkþ

Xq
j¼1

zkjt
Taj þ wkjt

Tdj þ skjt
Tij

� �

þtTmk þ ek

ð3Þ

where ek ¼ ½ekðt0Þ ekðt1Þ . . . ekðtmÞ�
T is an

ðmþ 1Þ � 1 vector for the environmental errors,

distributed as ek � Nð0,Is2Þ with I being an

ðmþ 1Þ � ðmþ 1Þ identity matrix.

Bayesian model selection for genetic
parameters
Model (3) is a mixed-effect model where population

mean and genetic effects are fixed and the time-

dependent environmental effect is random. Also

note that Model (3) is not a regular linear mixed-

effect model, since the number of independent vari-

ables for the fixed effects and the associated indicator

variables are unknown due to unknown number of

QTLs. In principle, QTLs can be distributed any-

where in the genome, and hence any genomic posi-

tions can be potential QTL locations. Thus, we

approximate them for all possible iQTLs by parti-

tioning the entire genome into evenly spaced loci

by 1 or 2 cM, covering all observed markers and

additional loci between flanking markers. The

expected values of the indicator variables at each

locus can be calculated for an F2 mapping population

based on the conditional probabilities of a QTL gen-

otype given on two flanking markers as follows:

EðzÞ ¼pQQ � pqq,

EðwÞ ¼ pQq þ pqQ and EðsÞ ¼ pQq � pqQ

with pQQ, pQq, pqQ and pqq being the con-

ditional probabilities of a tested QTL genotype

QMQp,QMqp, qMQp or qMqp given on two flanking

markers (see Table 1 in Cui et al. [21] for details).

For a supersaturated model where each genomic

location could contain a potential iQTL, it is almost

impossible to estimate a huge number of genetic

effects. So we preset an upper bound on the

number of iQTLs in the model [52]. The upper

bound should be larger than the potential number

of detectable iQTLs in a given data set. Given an

upper bound on the number of iQTLs (L), these

iQTLs can be drawn from densely spaced loci over

the genome. Even with a moderate number of upper

bound, there are many genetic effects being
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estimated in Model (3). In order to infer the exis-

tence of these effects, we introduce a random binary

variable g to indicate which genetic effects should be

included in or excluded from the model, corre-

sponding to g¼ 1 or g¼ 0 [33–35]. Model (3)

then becomes

yk ¼t
Tkþ

XL
j¼1

gajzkjt
Taj þ gdjwkjt

Tdj þ gijskjt
Tij

h i

þ tTmk þ ek,

ð4Þ

where ggj (g¼ a, d or i) is the indicator variable for

genetic effects aj, dj or ij. Within the framework of

Bayesian model selection, Bayesian sampling for

unknown parameters including k, ggj, aj, dj, ij, mk,
D and QTL position lj, is implemented with the

Markov chain Monte Carlo (MCMC) algorithm.

Note that the released sampling value for binary

variable g at a previous round determines which

genetic effects and position of an iQTL should be

drawn or estimated at the next round. This will save

computing time significantly.

Likelihood function
Given unknown parameters y, the likelihood func-

tion of model (4) can be expressed as

LðyjyÞ ¼
Yn

k¼1
pðykjyÞ / jVj

�nðmþ1Þ=2

exp
Xn

k¼1
ðyk �UkÞ

TV�1ðyk �UkÞ

h i
,

where Uk ¼ t
Tkþ

PL
j¼1 ðgajzkjt

Taj þ gdjwkjt
Tdj

þgijskjt
TijÞ and V ¼ tT

Dcþ Is2.

Prior specification
Following Yi et al., we take upper bound of iQTL

number L as l0 þ 3
ffiffiffiffi
l0
p

, where l0 is the prior

expected number of iQTL loci and is determined

according to initial investigations with traditional

methods [26]. The binary indicator g is assumed

to have an independent prior pðggÞ ¼Q
wg

ggð1� wgÞ
ð1�ggÞ, where wg ¼ 1� 1� l0

L

� �1=3
is

the prior inclusion probability for certain QTL

effect [52]. Priors on iQTL positions are assumed

to be independent and uniformly distributed over

the entire genome.

The prior for the population mean k is assumed

to be Nðk0,D0Þ. We can empirically set k0 ¼
�b¼

1
n

Pn
k¼1 bk and D0 ¼

1
n�1

Pn
k¼1 bk � �b
� �

bk � �b
� �T

,

where bk ¼ tTt
� ��1

tTyk is a vector of regression

coefficients obtained by fitting individual dynamic

trajectory.

We propose the following hierarchical mixture

prior for each additive genetic effect, bj �
Npþ1 0, Dj

� �
with Dj ¼ gjc

�
tTV�1t

Pn
k¼1 x

2
kj

��1

and c being taken to n such that the prior variance

of each fixed effect stays approximately the same as n
increases.

The random effects mk are assumed to have an

independent multivariate normal distribution. That

is, mk � Nrþ1 0,Sað Þ with the hyperparameter Sa

being an ðr þ 1Þ � ðr þ 1Þ matrix. An inverse

Wishart prior is chosen for the covariance matrix

of regression coefficients for random environmental

effect, denoted by D � IW va, vaSað Þ with va being

hyperparameter. The residual variance is assumed

to have a scaled inverse w2 distribution, i.e.

s2 � ICðve, 1
vese
Þ where ve and se are hyperpara-

meters. pðljÞ ¼ 1
lj

for j ¼ 1, 2, . . . ,L, where lj is

the distance between the two neighboring QTLs

[36–38].

MCMC sampling
A joint posterior density can be formed by multi-

plying priors of all unknown parameters and the like-

lihood function above. The joint posterior

distribution is analytically intractable, hence we

need to derive the ‘conditional posterior’ for each

unknown parameter from the joint posterior density.

The details about the derivation can be found in the

Appendix 1. A MCMC methods such as Gibbs sam-

pler [39] and Metropolis–Hastings algorithm [40, 41]

are applied to sample each parameter conditional

on all other parameters. Prior to implementing

MCMC sampling, weset an upper bound for the

number of QTLs and distribute these QTLs on the

genome evenly and initialize all variables with

some initial values or values sampled from their

prior distributions (see the Appendix 1 for details

about prior specification). The MCMC sampling

procedure for unknown parameters is summarized

as follows:

(i) Update population mean k by sampling from a

normal distribution.

(ii) Update the genetic effects bj corresponding to

gj¼ 1 by drawing from a normal distribution.

(iii) Update the binary indicators gj by adopt-

ing an efficient Metropolis–Hastings algorithm

[52].
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(iv) Update individual-specific regression coeffi-

cients for random environmental effects mk by

sampling from a normal distribution.

(v) Update the covariance matrix D of mk by draw-

ing from an inverse Wishart distribution.

(vi) Update the residual variance s2 by sampling

from an inverse w2 distribution.

(vii) Update joint QTL positions l by adopting the

Metropolis–Hastings algorithm.

(viii)Repeat steps (i) –(viii) until the Markov chain

reaches a desirable length.

Post-MCMC analysis
Post-MCMC analysis includes the monitoring of the

mixing behavior and convergence rates of the

MCMC algorithm, and the assessment of character-

istics of the imprinting genetic architecture. The

former can be checked by visually inspecting trace

plots of the sample values of scalar quantities of inter-

est or formal diagnostic methods provided in the

package R/coda [42]. The latter can use model aver-

aging which accounts for model uncertainty and

average over possible models weighted by their pos-

terior probabilities [43–45]. The posterior inclusion

probability for each locus is estimated as its frequency

in the posterior samples. Bayes factor (BF) is used

as a measurement for inclusion against exclusion

at each iQTL locus [46]. Generally, a threshold

of BF is empirically determined as 3, or

2 lnBF ¼ 2:1, for declaring statistical significance of

an (i)QTL.

Bayesian inference for imprinting
mode of action
Generally speaking, (i)QTLs detected with the above

Bayesian algorithm cannot be declared as iQTLs

until we do further imprinting inference. After an

(i)QTL is detected, we can adopt the idea of a

Bayes factor to infer statistical significance for its

imprinting effect with the form:

BF ¼
pg

1� pg
:
1� p
p

where p is a prior probability and pg is a posterior

probability for a certain genetic effect, which is cal-

culated as the proportion of samples in which gg¼ 1

in MCMC sampling rounds. If the BF is >3 (or

2 lnBF > 2:1) for the imprinting effect i, then the

detected iQTL can be claimed as a true iQTL, other-

wise as a Mendelian QTL.

Following the definition of imprinting types and

the corresponding null hypothesis [13, 47, 48], we

classify imprinting patterns as parental imprinting, i.e.

a ¼ �i and d ¼ 0 which includes paternal ( a ¼ i)
and maternal ( a ¼ �i) imprinting subtypes; and

dominance imprinting with a ¼ 0 but i 6¼ 0,

which can be further distinguished as bipolar

imprinting in which d ¼ 0 and i 6¼ 0 and polar

imprinting in which d ¼ �i. Since the imprinting

pattern for the detected QTL depends on whether

genetic effect a or d equals imprinting effect i, it can

also be statistically inferred through the Bayes factor

statistic. The Bayes factor can be simplified as the

ratio of posterior probabilities for the genetic effects

being compared, due to same prior probability for

each genetic effect. Imprinting patterns, hypotheses

and corresponding statistical criteria for the iQTLs

are detailed in [48].

SIMULATION STUDIES
We conducted simulation studies to evaluate the

performance of the proposed Bayesian functional

multiple iQTL mapping approach. A genome con-

sisting of one single large chromosome of 600 cM

was simulated covering 61 evenly spaced markers.

The growth pattern of a dynamic trait was assumed

to be controlled by one QTL inherited in a

Mendelian fashion and four iQTLs with their

imprinting patterns, positions and effects listed in

Table 1. The order of the Legendre polynomial

that generates the developmental trajectory was

assumed to be r¼ 3. The trajectory for each

(i)QTL genetic effect is plotted in Figure 1. We

simulated a dynamic trait measured at eleven time

points assuming different sample sizes (n¼ 250, 500)

with inbreed F2 individuals. The marker and QTL

genotypes in the F2 family were generated by

mimicking sex-specific recombination fractions (see

Cui etal. [21] for more details). The population mean

and the individual-specific environmental error cov-

ariance matrix were set the same as described in Yang

and Xu [31] and the residual variance was set as four.

In Bayesian analyses for simulated data, we set the

prior number of main-effect QTLs as 3. The upper

bound of the number of QTLs was then equal to

L ¼ 3þ 3
ffiffiffi
3
p
¼ 8. The actual values for the hyper-

parameters used here mimic the results obtained in

real data analyses (see the real data analysis section).

The initial values of all variables were sampled from

their prior distributions. The MCMC was run for
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Table 1: The imprinting type and parameters (regression coefficients of Legendre polynomials) of iQTLs used in
simulation studies

QTL no. Imprinting type Position a0 a1 a2 a3 d0 d1 d2 d3 i0 i1 i2 i3

1 Mendelian 23 1.82 �0.80 �1.20 �0.80
2 Paternal 148 0.00 1.65 2.52 1.20 0.00 1.65 2.52 1.20
3 Maternal 256 2.55 1.36 �2.02 �1.27 �2.55 �1.36 2.02 1.27
4 Bipolar 332 2.94 0.00 1.08 1.72
5 Polar 522 2.00 �1.25 0.00 �1.28 2.00 �1.25 0.00 �1.28
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Figure 1: The trajectories for genetic effects of the simulated (i)QTLs: (1) d¼ i¼ 0, (2) a¼ i, d¼ 0, (3) a¼�i,
d¼ 0, (4) a¼d¼ 0 and (5) d¼ i, a¼ 0. In each plot, time is the original time measurement ranging from 1 to 10
weeks as in real data.
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10 000 cycles as a burn-in period (deleted) and then

for an additional 150 000 cycles after the burn-in.

The chain was then thinned to reduce serial correla-

tion by saving one observation in every 50 cycles.

The posterior sample contained 3000 observations

for post-MCMC analysis. Note that the length of

the burn-in was judged by visually inspecting the

plots of some posterior samples across rounds and

was set to enough cycles to ensure MCMC conver-

gence. The simulation experiment was replicated

100 times in order to evaluate the statistical power

of our method.

Table 2 shows the mean estimates as well as their

SD (in parenthesis) for the parameters given in

Table 1. The relative statistical power to detect

each QTL is also listed. Overall, the Bayesian map-

ping approach is able to estimate the regression

effects of the iQTLs with reasonable precision. All

four iQTL positions can be accurately estimated with

high precision. As we expected, increasing sample

size always leads to small bias, increased precision

of parameter estimation, and high mapping power.

For example, the mapping power for QTL 1

increased from 70 to 85% when sample size was

increased from 250 to 500. Even with small sample

size (n¼ 250), the QTL position can also be esti-

mated with high precision. In addition, we can also

accurately infer the imprinting pattern of the

detected locus using Bayes factor (data not shown).

These indicate the power of Bayesian mapping for

multiple iQTL inference. The simulated data sets

were also analyzed by likelihood-based functional

iQTL mapping [26]. We found that the likeli-

hood-based functional mapping provides less accu-

rate iQTL parameter estimates, cannot infer the

given imprinting pattern well, and performs poor

with relatively low statistical power of iQTL detec-

tion than the proposed Bayesian method (Table 3).

Moreover, the likelihood-based functional mapping

has a high false positive rate (FPR) in iQTLs detec-

tion with 12% for sample size of 250 and 9% for

sample size of 500, while the Bayesian method

gives lower FPR. As the maximum likelihood-

based method is not efficient in handling multiple

iQTLs, this might explain the performance differ-

ence of the two approaches. The simulation results

indicate the robustness of the proposed method in

multiple iQTL detection for dynamic traits with

moderate sample size.

Under the same simulation scenarios, replacing
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effects and residual errors in model (1) with AR(1)

structure where autoregressive coefficient was taken

as 0.6, we simulated phenotypes and fit model (1) to

the simulated data sets with the Bayesian method.

Table 4 lists mean estimates and SDs (in parentheses)

of the given (i)QTL regression effects. As expected,

the Bayesian method can powerfully identify the

given (i)QTLs and estimate the given (i)QTL regres-

sion effects reasonably well based on model (1), indi-

cating the flexibility of our model in fitting different

time-dependent residuals.

We also simulated data assuming the true

dynamics of the repeated measurement following a

logistic regression curve for genotypic effects of the

five simulated QTLs. The simulated parameters for

the logistic function are obtained by fitting changes

in genotypic means generated from the Legendre

polynomials (Supplementary Table 1). Residuals

are modeled by AR(1) structure with autoregressive

coefficient of 0.6. Estimates of QTL positions and

powers to detect QTLs are listed in Supplementary

Table 2. The results indicate that the proposed

method performs better than the likelihood-based

method.

REALDATA ANALYSIS
We illustrated the application of our proposed

approach by reanalyzing a mouse body weight

growth data set with an F2 mating population

derived from two inbreed strains, the Large (LG/J)

and the Small (SM/J). A total of 502 F2 mice were

genotyped for 96 microsatellite markers located on

19 autosomal chromosomes. A linkage map of a total

length 1780 cM has been constructed [49]. The body

mass was measured on each mouse at 10 weekly

intervals starting at Day 7. The raw weights were

adjusted for the effects of each covariate due to

dam, litter size at birth and parity, and sex [49].

The data set has been analyzed by Cui et al. [26]

with likelihood-based functional mapping.

By fitting the mean change of weight growth over

age, we chose the Legendre polynomial of order 3 as

the base model to describe the changing trajectory

for each component except for residuals, described in

Model (1). The female-to-male recombination rate

of 1.25:1 is used to estimate conditional probabilities

for the four QTL genotypes [21]. The expected

number of main-effect QTLs was set as l0 ¼ 4

according to the results by Cui et al. [26] and the

upper bound of the number of QTLs was then cal-

culated as L ¼ 4þ 3
ffiffiffi
4
p
¼ 10. Thus, the prior inclu-

sion probability for QTL effects was determined to be

1� 1� 4
10

� �1
3¼ 0:156. The actual values for the

hyperparameters were set as Sh ¼ Se ¼ 0:5I,
vh ¼ r þ 1 and ve ¼ 0. The initial values of all vari-

ables were sampled from their prior distributions. The

MCMC was run 200 000 cycles after the burn-in

period of 10 000 cycles. The analysis of the real data

set with our MATLAB code took �3 h on an Intel

Core 2 PC with a 2 GHz processor and 4 GB RAM.

Figure 2 plots the profiles of 2logBF obtained with

the Bayesian model selection. The top panel shows

that there are six peaks for 2logBFs exceeding the

horizontal reference line with an empirical critical

value 2.1, indicating that six iQTLs are detected on

chromosomes 2, 4, 6, 7, 10 and 15. All iQTLs

detected show significant imprinting effect, as their

relative 2logBFs are >2.1 for imprinting effects (the

bottom panel in Figure 2). Table 5 tabulates the

position on each chromosome and the estimated

effects (additive, dominance and imprinting) for the

six detected iQTLs. The estimated regression coeffi-

cients for each iQTL have no biological meaning,

but they can be used to predict the effects of an

iQTL at a given time point by substituting time

Table 3: Mean estimates and SDs (in parentheses) of iQTL positions and statistical power of iQTL detection

Sample size Method QTL no.

1 2 3 4 5

250 Bayesian Position 21.3 (3.6) 147.3 (4.2) 258.7 (5.4) 334.1 (5.8) 524.7 (6.1)
Power (%) 84 72 80 90 84

Likelihood Position 24.3 (5.3) 152.1 (8.1) 262.3 (9.2) 338.0 (11.8) 526.9 (13.5)
Power (%) 71 60 68 77 70

500 Bayesian Position 22.9 (3.3) 148.5 (3.7) 257.9 (4.1) 333.7 (4.6) 520.5 (5.0)
Power (%) 100 96 100 100 98

Likelihood Position 23.8 (4.9) 150.9 (7.1) 261.1 (8.6) 336.6 (10.4) 526.0 (11.9)
Power (%) 92 82 98 100 85
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into the Legendre polynomial with the regression

coefficients. Figure 3 shows the dynamic trajectory

of the genetic effects over time. Among the six

iQTLs, the main effect (i.e. a or d) shows a stronger

effect on mouse growth than the imprinting effect,

which makes biological sense as imprinting effect

generally plays a modifying role.

We further evaluated the imprinting pattern of the

six detected iQTLs. Two of them (on chromosomes

4 and 10) show polar imprinting, two (on chromo-

somes 2 and 6) show maternal imprinting and two

(on chromosomes 7 and 15) show paternal imprint-

ing, based on the results obtained from the signifi-

cance analysis given in Table 6. Compared to the

likelihood-based method [26], the Bayesian

method identified two more QTLs (on chromo-

somes 2 and 4).

DISCUSSION
The epigenetic phenomenon in genomic imprinting

has been constantly challenging and revising the tra-

ditional paradigm of inheritance. The inheritable

property of imprinting provides clues for compli-

cated genetic disorders [6]. In the meantime, it also

brings challenges for statistical modeling and map-

ping. We developed a Bayesian model selection

method to identifying multiple iQTLs for develop-

mental traits illustrated in an F2 mating population.

Extensions to other mating designs such as a recipro-

cal backcross design [50], is straightforward. The

Bayesian method has shown its relative merits in

handling multiple QTLs partly due to its flexibility

to handle a large parameter space [28, 31, 51, 52].

Both simulation and real data analysis indicate the

power and relative advantage of the proposed

Bayesian multiple iQTL mapping for dynamics

traits compared to the likelihood-based mapping

method. In addition, we proposed several inference

procedures to infer different imprinting types, which

have not been discussed in the likelihood-based

iQTL mapping study. The identified iQTLs as well

as their imprinting property provide valuable

information for further experimental verification.

The current method is developed specifically for

longitudinal or functional traits. Recently, Hayashi

and Awata [15] proposed a Bayesian mapping

approach that can simultaneously map multiple

QTLs, and further discriminating Mendelian and

imprinting expressions of a QTL. Although the

approach shows improvement in iQTL detection,Ta
bl
e
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it is limited by a number of facts. For example, draw-

ing number of QTLs with a reversible-jump MCMC

procedure may have low convergence efficiency.

Moreover, the method is developed for univariate

traits and ignores the dynamics of gene effects. In

an earlier article, Yang et al. [53] developed a

Bayesian multiple iQTL mapping method for uni-

variate traits. The current work is an extension of our

previous work, but is more challenging in modeling

the dynamics of genetic effects.

Our method assumes a maximum number of

detectable iQTLs and introduces latent binary vari-

ables to indicate which main effects for a putative

iQTL should be included or excluded from the

model. Compared to the likelihood-based method

[26], it allows MCMC sampling for iQTL

parameters to carry out in the reduced model

space, and thus enhances the computational effi-

ciency of Bayesian multiple iQTL mapping with

many parameters. Computationally, it also outper-

forms the likelihood-based method. In addition, it

facilitates statistical inference for imprinting patterns

of the detected iQTLs with appropriately defined

Bayes factors. In the real data analysis, we took the

dynamic course of a developmental trait as the map-

ping subject, and identified more iQTLs altering the

developmental trajectory than separately performing

iQTL mapping at each time point [21].

The key issue for iQTL mapping of developmen-

tal traits is to choose appropriate submodels for

imprinting inference. In the likelihood-based map-

ping framework, Cui et al. [26] proposed to describe
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Figure 2: The profile plot of 2lnBF for genome-wide iQTL scan (top) and for various genetic effects inference of
iQTLs (bottom) obtained with the Bafmim algorithm in mouse weight growth. In both figures, linkage groups are
separated by the vertical dotted lines and marker positions are indicated by the ticks on the horizontal axis.
The horizontal reference line is the empirical critical value 2.1 for 2lnBF. In the bottom panel, the thick solid, thin
solid and dashed curves represent additive, dominance and imprinting effects, respectively.

Table 5: Estimates of iQTL positions and regression coefficients for body weight growth in mice

QTL Position (Chr.-cM) a0 a1 a2 a3 d0 d1 d2 d3 i0 i1 i2 i3

1 2^104.3 0.254 0.633 0.166 0.033 0.074 0.180 0.061 0.013
2 4^38.1 �0.070 �0.360 �0.132 0.036 �0.050 �0.118 �0.028 0.028
3 6^73.2 0.425 0.525 0.075 0.055 0.162 0.210 0.060 0.032
4 7^63.1 0.787 0.851 �0.044 0.103 0.185 0.210 0.016 0.141
5 10^72.7 0.027 �0.165 0.018 �0.018 0.023 �0.061 0.004 �0.006
6 15^12.7 0.896 0.311 �0.314 0.062 0.117 0.071 �0.035 0.034
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the changes of iQTL genotypic effects by a logistic

growth function. This parametric assumption is,

however, difficult to implement in a multiple

iQTL model for Bayesian mapping due to the

non-linearity of different submodels. With the

orthogonal polynomial function, it is flexible

enough to capture the underlying trajectory for

dynamic iQTL inference. One issue when fitting

data with a polynomial function is to appropriately

select optimal polynomial order. Cui et al. [32] pro-

posed two methods to choose an optimal order: (i)

assume the same order for different phenotypic
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Figure 3: The trajectories for different genetic effects (a, i and d) of the detected iQTLs for body weight growth
in mice.

Table 6: List of 2lnBFs for genetic effects and
imprinting types of the detected iQTLs for body
weight growth in mice

QTL a d i Imprinting type

1 3.29 0.64 2.20 Additive-Paternal
2 1.01 3.34 4.47 Dominance-Over
3 4.72 1.83 3.24 Additive-Paternal
4 2.95 0.54 2.97 Additive-Paternal
5 0.87 4.32 3.68 Dominance-Over
6 4.46 1.70 4.23 Additive-Paternal
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trajectories which can be chosen under the null

hypothesis or (ii) assume different orders for different

phenotypic trajectories. The second method, how-

ever, is computationally intensive. Even though one

can select the polynomial order for different QTL

effects, the technical challenge lies on the selection of

the order for the time-dependent permanent envir-

onment effects [54]. Thus, we adopted the first

method and assumed the same order to fit changes

in QTL genetic effects and time-dependent environ-

mental effects. The polynomial regression coeffi-

cients determine the shape of the population mean

and each genetic effect. Certainly, an optimal map-

ping strategy is to choose polynomials of different

orders to best model each component in the imprint-

ing model, which we leave it for future investigation.

In functional mapping, how to model the correla-

tion structure for repeated measurements is also a

challenging problem. In most functional mapping

studies, a parametric residual covariance structure

such as the autoregressive model with order 1

[AR(1)] is often assumed [55]. However, it is difficult

to implement a Bayesian method for this covariance

function due to the difficulty to choose an appropri-

ate prior for the autoregressive coefficient. In con-

trast, the covariance structure described by

tTPtþ Is2 is more flexible than the parametric

structure because we can actually choose different

degrees of polynomial order to fit a covariance struc-

ture with a large degree of complexity [31].

Moreover, we can easily sample the covariance

matrix
P

from a closed form of marginal posterior

distribution. Yap et al. [56] recently proposed a non-

parametric method for covariance structure model-

ing in functional mapping. More work is needed to

integrate these techniques into a Bayesian mapping

framework to improve mapping power.

When unbalanced data are recorded, we can

change time covariate tðtÞ or t to tkðtÞ or tk
depending on the kth individual, to make the

method more general. Also, the multiple iQTL

model for developmental traits proposed herein

could be treated as a general form of the model for

analyzing genomic imprinting of a quantitative trait.

For instance, let t ¼ I and mk ¼ 0 in scale, that is,

only one measurement at a fixed time point is taken

for each individual, leading to a multiple interacting

iQTL model for a univariate quantitative trait; take

t to be an identity matrix of order m, and mk to be a

zero vector, resulting in a multiple interacting iQTL

model for a multiple quantitative trait. If mk is

assigned to be non-zero in the two cases above,

this leads to a multiple iQTL model for a single

developmental trait or multiple developmental

traits. Corresponding Bayesian model selection

approaches can be likewise obtained by taking dif-

ferent values for t and mk. The computational code

to implement the proposed method (termed

Bafmim) is available upon request.

SUPPLEMENTARYDATA
Supplementary Data are available online at http://

bib.oxfordjournals.org/.

Key Points

� We developed a Bayesian method for mapping iQTL underlying
dynamic/developmental traits.

� A Bayesian model selection strategy for longitudinal traits was
proposed to infer iQTLs with different imprinting patterns and
mechanisms as discussed in Cheverud et al. [13].

� The method can do multiple iQTL inference and outperforms
maximum likelihood-based single iQTL mapping methods for
developmental traits in terms of power to detect (i)QTLs.

� The method was applied to identify iQTLs responsible for
growth trajectory of body weight in mice. The pattern of
imprinting for the identified iQTLs was further dissected.
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45. Sillanpää MJ, Corander J. Model choice in gene mapping:
what and why. Trend Genet 2002;18:301–7.

46. Kass RE, Raftery AE. Bayes factors. JAmStatAssoc 1995;90:
773–95.

Bayesian inference for iQTL mapping 567
 at M

ichigan State U
niversity on Septem

ber 3, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


47. Wolf JB, Cheverud JM, Roseman C, et al. Genome-wide
analysis reveals a complex pattern of genomic imprinting in
mice. PLoSGenet 2008;4:1–12.

48. Yang R, Wang X, Wu Z, etal. Bayesian model selection for
characterizing genomic imprinting effects and patterns.
Bioinformatics 2010;26:235–41.

49. Vaughn TT, Pletscher LS, Peripato A, et al. Mapping quan-
titative trait loci for murine growth: a closer look at genetic
architecture. Genet Res 1999;74:313–22.

50. Cui Y, Cheverud J, Wu R. A statistical model for dissecting
genomic imprinting through genetic mapping. Genetica
2007;130:227–39.

51. Yi N, Banerjee S, Pomp D, et al. Bayesian mapping of
genomewide interacting quantitative trait loci for ordinal
traits. Genetics 2007;176:1855–64.

52. Yi N, Yandell BS, Churchill GA, et al. Bayesian model
selection for genome-wide epistatic quantitative trait loci
analysis. Genetics 2005;170:1333–44.

53. Yang R, Wang X, Wu Z, etal. Bayesian model selection for
characterizing genomic imprinting effects and patterns.
Bioinformatics 2010;26:235–41.

54. Min L, Yang R, Wang X, Wang B. Bayesian analysis for
genetic architecture of dynamics traits. Heredity 2011;106:
124–33.

55. Ma CX, Casella G, Wu R. Functional mapping of quanti-
tative trait loci underlying the character process: a theore-
tical framework. Genetics 2002;161:1751–62.

56. Yap JS, Fan J, Wu R. Nonparametric modeling of long-
itudinal covariance structure in functional mapping of quan-
titative trait loci. Biometrics 2009;65:1068–77.

57. Zhang YM, Xu S. Advanced statistical methods for detect-
ing multiple quantitative trait loci. Recent Res Devel Genet
Breeding 2005;1–23.

APPENDIX 1
The derivation of conditional posteriors
The joint posterior density can be expressed as

pðyjyÞ ¼ pðyjyÞpðyÞ ¼ pðyjyÞpðkÞpðbÞpðgÞpðmÞpðDÞpðlÞ,

where y ¼ ð k b g m � l Þ with b ¼ fbjg,
g ¼ fgj,lg ¼ fljg for j ¼ 1, 2, . . . ,L and m ¼ fmkg
for k ¼ 1, 2, . . . , n:

The full conditional posterior distributions of all

parameters can be derived from the joint posterior

density by fixing other parameters as constants.

Given the other parameters, the full con-

ditional posterior distribution of k is derived as a

multivariate normal with mean

ðntV�1tT
Þ
�1tV�1 Pn

k¼1 ðyk �Ui þ t
TkÞ and

covariance matrix ðntV�1tT
Þ
�1.

The full conditional posterior distribution of bj
(j ¼ 1, 2, . . . ,L) is also normal, whose mean is

b̂j ¼ 1þ 1
c

� �Pn
k¼1 x2

kjtV
�1tT

h i�1

tV�1Pn
k¼1

xkjðyk �Uk þ gjxkjt
TbjÞ and covariance matrix

is �̂j ¼ 1þ 1
c

� �Pn
k¼1 x

2
kjtV

�1tT
h i�1

, where

xkj ¼ zkj, wkj or skj and bj ¼ aj,dj or ij.
The full conditional posterior distribution of

mk follows a normal distribution with mean

DcV�1
ðyk �UkÞ and covariance matrix

D� DcV�1tT
D.

The full conditional posterior distribution of

D follows an inverse Wishart distribution

IW va þ n,
Pn

k¼1 mkm
T
k þ Sa

� �
.

The full conditional posterior distribution for

residual variance s2 corresponds to a scaled inverse

w2 with parameters ve þ n and ðve þ nÞseþ
ð
Pn

k¼1 e
T
k ekÞ

�1, where ek ¼ yk �Uk � t
Tmk.

The full conditional posterior for gj
(j ¼ 1, 2, . . . ,L) can be constructed as a Bernoulli

distribution. To improve sampling efficiency,

Metropolis–Hastings algorithm is applied with the

acceptance rate given by

a ¼
pðy gj ¼ 1,

��� g�j, b�jÞ

pðy gj ¼ 0, g�j, b�j
��� Þ

:
1� w
w

¼
pðy gj ¼ 1,g�j, b�j, bjÞ

��� pðbj gj ¼ 1,g�j, b�jÞ
���

pðy gj ¼ 0, g�j
��� ,b�jÞpðbj gj ¼ 1,g�j, b�j,yÞ

��� :
1� w
w

¼

ffiffiffiffiffiffiffiffiffiffi
c

cþ 1

r
exp �

1

2
b̂
T

j �̂
�1

j b̂j

� 	
:
1� w
w

where g�j means all the elements of g except for gj
and b�j represents all the elements of b except for bj.
pðbjjgj ¼ 1,g�j, b�jÞ: and pðbjjgj ¼ 1,g�j, b�j,yÞ: are

prior and posterior probabilities, respectively. By

generating a probability from a uniform distribution,

we accept gj ¼ 1 with a probability of min(1, a).

The full conditional posterior distribution for QTL

positions does not have a closed form, Metropolis–

Hastings algorithm will be used to sample QTL posi-

tions. Each locus is sampled from a variable interval

size whose boundaries are the positions of adjoining

QTLs [36, 57]. We restricted the minimal distance

between two QTLs to be 10cM at least. A new posi-

tion l�j ðj ¼ 1, 2, . . . ,LÞ is sampled from two placed

loci on the left and right of existing position l0
j with a

uniform distribution, then the new position is

accepted with a probability of min(1, a) with

a ¼

Qn
k¼1

pðykjl
�
j , y�lj Þ

Qn
k¼1

pðykjl
0
j , y�lj Þ
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