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Prediction of Functional Status for the Elderly Based
on a New Ordinal Regression Model

Hyokyoung Grace HONG and Xuming HE

The functional mobility of the elderly is a very important factor in aging research, and prognostic information is valuable in making
clinical and health care policy decisions. We develop a predictive model for the functional status of the elderly based on data from the
Second Longitudinal Study of Aging (LSOA II). The functional status is an ordinal response variable. The ordered probit model has been
moderately successful in analyzing such data; however, its reliance on the normal distribution for its latent variable hinders its accuracy and
potential. In this paper, we focus on the prediction of conditional quantiles of the functional status based on a more general transformation
model. The proposed estimation procedure does not rely on any parametric specification of the conditional distribution functions, aiming
to reduce model misspecification errors in the prediction. Cross-validation within the LSOA II data shows that our prediction intervals are
more informative than those from the ordered probit model. Monte Carlo simulations also demonstrate the merits of our approach in the
analysis of ordinal response variables.

KEY WORDS: Nonparametric transformation model; Ordinal data; Quantile regression; Second Longitudinal Study of Aging.

1. INTRODUCTION

One of the main goals in aging research is to improve
health status for older individuals. Monitoring and predicting
the health-related quality of life for the elderly is of partic-
ular importance because it helps public health policy makers
and caretakers understand the special needs of the elderly and
design appropriate interventions. Among many instruments to
measure the health status of the elderly, the functional status is
commonly used to represent a person’s ability to perform self-
care, self-maintenance, and physical activities (Bierman 2001).
An assessment of functional status allows us to detect subtle
yet measurable changes in individual health conditions. For this
reason, we chose the functional status as a premise of analysis
in this study.

It is good news that a number of panel surveys having rele-
vance to aging research have become available over the last two
decades. Specifically, the Second Longitudinal Study of Aging
(LSOA II) provides many opportunities for statistical analysis
of the characteristics of aging including the functional status.
Functional status (FS) is conceptualized as the ability to carry
out functional tasks, often measured by self-reports on activities
of daily living (ADL) and instrumental activities of daily living
(IADL). The ADLs refer to the basic activities of daily life such
as bathing, dressing, getting in/out of chairs, and toileting. The
IADLs include activities not necessary for fundamental func-
tioning, but still useful in a community. Examples of IADLs
are such as preparing meals, managing money, and performing
light housework. In this study, FS is classified into ordered and
integer values, ranging from 1 to 5, according to the severity
ratings used in earlier reports on disability by Anderson et al.
(1998) and Mor et al. (1994), among others. More specifically,
the five levels of FS are: (1) independent without any ADL or
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IADL disability; (2) IADL disabled only; (3) moderately ADL
disabled (1–2 ADLs impaired); (4) severely ADL disabled (≥3
ADLs impaired); and (5) deceased. An elderly person becomes
increasingly less functional as the FS level increases. Our pri-
mary aim is to predict how FS changes over a two-year time
span based on current health conditions.

By the nature of the clinical practice, as in the functional
status, ordinal scales are common in the clinical research; see
Dawson and Trapp (2004). The ordered probit and ordered
logit models are frequently used for ordinal data analysis; see
McCullagh and Nelder (1989). Inferences on the linear coeffi-
cients for the covariate are generally robust against the misspec-
ification of the link function (Duan and Li 1987). However, the
prediction of the probabilities or quantiles of the conditional
distribution can be seriously distorted by a misspecified link.
Semiparametric approaches to median regression for ordinal re-
sponses have been considered by Lee (1992) and Melenberg
and van Soest (1996), but those methods do not provide root-n
consistent estimates of the link functions.

In this paper, we use a semiparametric model with both flex-
ibility and prediction accuracy in mind. The proposed model is
a transformed quantile regression model based on the jittered
response (with random noise added to smooth the response val-
ues) and includes the ordered probit and logit models as spe-
cial cases. Our approach is related to data smoothing used by
Machado and Santos Silva (2005) as well as transformations
in quantile regression as discussed by Mu and He (2007). We
allow a nonparametric monotone function as the transforma-
tion, but under iid errors and certain conditions on the predictor
distribution, including what is commonly known as the linear-
ity assumption in the dimension reduction literature, the pro-
posed estimates attain the root-n rate of convergence. Further-
more, the proposed method has desirable robustness properties.
Given the transformation, we may use quantile regression esti-
mates for allowing different effects of the covariate in different
regions of the conditional distribution, making our prediction
robust against model misspecification.
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The rest of the paper is organized as follows. Section 2
describes the variables that we use from the LSOA II data.
Section 3 presents the transformed ordinal regression quan-
tile model and the estimation procedure that we shall use for
constructing the prediction intervals of the functional status of
the elderly. Some important properties of the estimates are dis-
cussed in Section 4, where the proposed method is also com-
pared with the ordered probit model through Monte Carlo sim-
ulations. We also discuss the essential conditions required for
those properties as well as some practical implications. We re-
turn to the LSOA II data in Section 5 and use the proposed
methodology to predict the functional status of the elderly over
a two-year time period. Our analysis shows that the proposed
method leads to more informative prediction than the ordered
probit model. We also discuss what we can learn from our
analysis regarding some of the limitations in the LSOA designs
for the prediction of functional status.

2. PREDICTORS FROM THE LSOA II DATA

The LSOA II is a publicly available dataset and a collabora-
tive project of the National Center for Health Statistics (NCHS)

and the National Institute on Aging (NIA). The subjects of
LSOA II are a nationally representative sample comprised of
9447 noninstitutionalized civilian persons of 70 years of age or
older at the time of the Second Supplement on Aging (SOA II)
in the United States. The SOA II was conducted by the Cen-
ters for Disease Control and Prevention. Participants completed
a baseline questionnaire in 1994–1996 and completed two fol-
lowup questionnaires about two years apart in 1997–1998 and
1999–2000. The sampling weights are a product of four com-
ponents, which take into account the complex multistage prob-
ability design (Skinner, Holt, and Smith 1989). The complete
set of LSOA II data is available online from the LSOA website
http://www.cdc.gov/nchs/ lsoa.htm.

Of the 9447 participants of the SOA II, 8300 complete
records were available for the first followup study, due to miss-
ing information or dropout. Death was identified through inter-
views with family representatives. Out of those 8300 partici-
pants, 680 were missing at the time of the administration of the
second followup, and 2169 deaths were reported, resulting in
5451 participants with complete information (including death)
at the end of the second followup (Figure 1). Based on the data

Figure 1. Flow diagram of participants in the Second Longitudinal Study of Aging.

http://www.cdc.gov/nchs/lsoa.htm
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Table 1. Summary of outcome, covariates, and descriptive measures of a dataset

Variables Data sources Explanation

Outcome
Functional status (y) First followup Responses were classified as 1 = independent, 2 = IADL disabled only, 3 = moderately ADL

disabled, 4 = severely ADL disabled, or 5 = death

Covariates
Self-rated health (x1) Baseline Coded into two levels (0 = excellent/very good, 1 = good/fair/poor)

Diabetes (x2) Baseline Classified as 0 = absent or 1 = present

Race (x3) Baseline Classified as 1 = white or −1 = non-white

Marital status (x4) Baseline Classified as 1 = married or −1 = not married (including respondents who were widowed, di-
vorced, separated, or never married)

Age (x5) Baseline Calculated from reported birth month and year

Education (x6) Baseline Years ranged from 0 (never attended or kindergarten only) to 18 (indicating ≥6 years of college)

Sex (x7) Baseline Classified as 1 = male or −1 = female

Cancers (x8) Baseline Classified as 0 = absent or 1 = present

CVD (x9) Baseline Classified as 0 = absent or 1 = present

MSD (x10) Baseline Classified as 0 = absent or 1 = present

BMI (x11) Baseline Classified as 0 = BMI ≥ 25 or 1 = BMI < 25

Smoking (x12) Baseline Classified as 0 = non-smoking or 1 = smoking

Condition (x13) Baseline The total number of self-reported chronic health conditions, ranging 0–11 (lower scores indicate
fewer chronic health conditions) is recoded as 0 = number of condition ≤ 2 or 1 = number of
condition ≥ 3

Lung disease (x14) Baseline Classified as 0 = absent or 1 = present

NOTE: Abbreviations: CVD, cardiovascular diseases, which include heart disease (heart attack), stroke, hypertension, and heart failure; MSD, musculoskeletal diseases, which include
whether the respondent ever had a broken hip, osteoporosis, or arthritis; BMI, body mass index, which is calculated by dividing weight in kilograms by the square of height in meters;
ADL, activities of daily living; IADL, instrumental activities of daily living.

from the first followup study (with 8300 subjects), we aim to
develop a statistical model for predicting the functional status
of the elderly over a two-year period. It is also possible to use
the second followup data to predict functional status of a sec-
ond two-year period, or to build a four-year predictive model
using the longitudinal data from the entire study; see a caution-
ary note in the concluding section of the paper.

The sampling weights from the survey are used in the sum-
mary and in the estimation throughout our analysis (e.g., av-
erages refer to weighted averages), but this point will not be
repeated every time the results are discussed.

To select the predictors for functional status, we follow
Anderson et al. (1998) and Lee et al. (2006). We consider
two classes of hierarchical variables as predictors: sociodemo-
graphic variables and behavioral and biomedical variables.

The sociodemographic variables included in our analysis are
age, marital status, race, gender, and education. Marital status
was recorded as married or not married, the classification of not
married including individuals who were widowed, never mar-
ried, and seperated/divorced. Race was classified into two cat-
egories (white and nonwhite). Education is years of attainment
ranging from 0 to 18. Age is calculated from birth month and
year and ranging from 70 to 99.

We use a total of nine behavioral and biomedical vari-
ables: diabetes; cancers excluding minor skin cancer; chronic
lung disease (bronchitis/emphysema); cardiovascular diseases
(CVD) including heart disease, stroke, hypertension, or heart
failure; musculoskeletal diseases (MSD) including whether the
respondent ever had a broken hip, osteoporosis, or arthritis;

self-rated health; number of chronic health conditions (diabetes,
arthritis, heart disease, stroke, cancer, hypertension, asthma,
etc.); smoking; and body mass index (BMI) (less than 25 or
not). Table 1 describes the data sources and definition of the
variables. It is worth noting, however, some variables in Table 1
could be further refined, and the variable selection procedure
may help identify better predictors in future studies.

3. TRANSFORMED ORDINAL REGRESSION
QUANTILE ESTIMATOR

3.1 Proposed Model

In this section, we develop a general methodology that will
be used later for the analysis of the LSOA II data described in
Section 2. Here, Y is an ordinal response variable taking values
in {1,2,3, . . .}, and X = (x1, . . . , xp) ∈ Rp is a p-dimensional
predictor.

We conceive a random variable Ỹ by adding to Y , the ordinal
response variable, U, a pseudo random variable from U [0,1),
that is, Ỹi = Yi +Ui, where Ui ∼ U [0,1) are independent draws.
We shall refer to Ỹi as the jittered responses. Then we adopt the
following model for the sample (Xi,Yi):

�(Ỹi) = XT
i β0 + εi, i = 1, . . . ,n, (1)

where � is a monotone function, and β0 is the vector of linear
coefficients. Two basic conditions made in the paper are:

A0. The εi’s are independent and identically distributed,
whose distribution is unspecified.
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A1. The conditional expectation E(X|XTβ) exists and is lin-
ear in XTβ .

These two conditions make it easier to find a consistent esti-
mator of β0, and Condition A0 leads to the root-n rate of con-
vergence in our proposed estimate, but we shall also propose
the quantile regression method that is more accommodating to
a more general class of error distributions. Additional condi-
tions and their implications will be discussed in Section 4.

Jittering enables us to specify a distributional relationship in
the model, which is sufficient to identify the conditional quan-
tiles of Y given X. The use of a uniform distribution for Ui is for
convenience and without loss of generality because a different
choice for the jittering distribution simply leads to a different
� function without changing the distribution of �(Ỹ). Mathe-
matically, we note that if Ui = G(Vi) for any jittering distrib-
ution function G on (0,1), the corresponding link function in
Model (1) becomes �G(y + v) = �(y + G(v)) for y ∈ {1,2, . . .}
and v ∈ (0,1).

Location and scale normalizations are needed to make the pa-
rameters in Model (1) identifiable. The location normalization
can be made by setting �(Ỹ0) = 0 for some prespecified Ỹ0. As
in Chen (2002), we set the first coefficient of β0 to 1 for scale
normalization. A common alternative is to assume that β0 is a
unit vector. In either case, we must assume that β0 is a nonzero
vector in the model.

As we focus on the τ th conditional quantile of Ỹ given X = x,
we may extend Model (1) to

Qτ (�(Ỹ)|X) = ατ + XTβτ (2)

for some coefficients ατ ∈ R and βτ ∈ Rp, where τ ∈ (0,1),
and Qτ denotes the τ th quantile. The upper tail corresponds to
τ > 0.5 and the lower tail corresponds to τ < 0.5. It is easy to
show that

Qτ (Y|X) = ⌊
�−1(Qτ (�(Ỹ)|X)

)⌋
, (3)

where �·� denotes the integer part of any nonnegative number.
Under Model (1), the slope parameters βτ have to be the

same for all τ , so the quantiles can also be written as

Qτ (�(Ỹ)|X) = XTβ0 + F−1
ε (τ ). (4)

In this paper, two approaches to estimating the quantiles will
be used. We refer to the τ -specific estimator of Model (2) as
Method 1, and the common slope approach in (4) as Method 2
for estimating the conditional quantiles. It is clear that Method 2
relies more on the iid error assumption A0 in Model (1), but
Method 1 is more robust against deviations of this assumption.
We now describe the estimating procedures for the transformed
ordinal quantile regression model, to be called the TORQUE
model for short.

3.2 Method 1: TORQUE With Quantile Regression

This method consists of four steps.

Step 1. Start with an initial estimate bn of β0, taken to be the
least squares estimate of slope from regressing {Ỹi} on {Xi}.

Step 2. Obtain the estimate of � at each ỹ as

�̂n(ỹ) = arg max
�∈M�

{
�n(ỹ,�,bn) =

∑
i�=j

(
diỹ − djỹ0

)

× 1{XT
i bn − XT

j bn ≥ �}
}
, (5)

where M� is a prechosen compact set in R, diỹ = 1{Ỹi ≥ ỹ}
and djỹ0 = 1{Ỹj ≥ ỹ0} for some ỹ0 chosen by the user under the
location normalization assumption of �(ỹ0) = 0.

Step 3. Calculate a regression quantile estimate of (ατ ,βτ )

as

(α̂τ , β̂n,τ ) = arg min
α∈R,β∈Rp

n∑
i=1

ρτ (�̂n(Ỹi) − α − XT
i β), (6)

where ρτ (r) = (τ I(r > 0) + (1 − τ)I(r < 0))|r| is the quantile
loss function of Koenker and Bassett (1978).

Step 4. The τ th quantile of Y given X can then be estimated
from (2) and (3) with ατ ,βτ , and � substituted by their esti-
mates.

The scale normalization on β0 is unnecessary for computing
the quantile estimates based on (3). Step 2 uses the same esti-
mation method as in Chen (2002), so we refer to Chen (2002)
for more details on how the objective function �n(ỹ,�,bn) in
(5) can be evaluated with O(n) computations instead of O(n2).
The regression quantile estimate in Step 3 can be obtained by
the R package quantreg.

3.3 Method 2: TORQUE With Quantiles of Residuals

This method differs from Method 1 only in the use of (4)
instead of (2), where the parameter estimate is updated by

(α̂n, β̂n) = arg min
α∈R,β∈Rp

n∑
i=1

|�̂n(Ỹi) − α − XT
i β|, (7)

and �̂n is the same as in Method 1.
From the residuals εn

i = �̂n(Ỹi) − α̂n − XT
i β̂n, we estimate

the τ th quantile of �(Ỹ)|X using

XT β̂n + F̂−1
εn (τ ), (8)

where F̂−1
εn (τ ) is the τ th sample quantile of the residuals. The

quantile of Y given X can be obtained in the same way as in
Method 1.

The quantile estimates from Method 1 allow τ -specific coef-
ficients, but we use a single transformation � in both Method 1
and Method 2. The use of a τ -specific transformation as in Mu
and He (2007) would broaden the models but require much
more intensive computations. In our analysis of the LSOA II
data, we find that a single � function is adequate and is easier
for interpretation.

3.4 Averaging Over Jittered Data

One noticeable feature of the TORQUE approach is the use
of the jittered response Ỹ . We observe (Xi,Yi) but the values
of Ui are independently drawn from the uniform distribution. If
we had observed two samples from the same model, it would
be sensible to use both. Using the same logic, we take advan-
tage of multiple draws of Ui in reducing some variability of
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the estimates. More specifically, we follow an suggestion of
Machado and Santos Silva (2005) of averaging the estimates
over {Ỹ(l)

i ,Xi}n
i=1, Ỹ(l)

i = Yi + U(l)
i , l = 1, . . . ,m, where U(l)

i are
drawn independently from U [0,1).

Let β̂
(l)
n and �̂

(l)
n be the estimates of β0 and � based on the

lth jittered sample. Then, the τ th quantile of Y given X is esti-
mated by the integer part of

Q̂m
τ (Ỹi|Xi) = 1

m

m∑
l=1

�̂(l)−1

n

(
XT

i β̂
(l)
n

)
.

If the parameters β0 and � are of interest, we take the aver-
ages

β̂
m
n = 1

m

m∑
l=1

β̂
(l)
n and �̂m

n = 1

m

m∑
l=1

�̂(l)
n .

Averaging the estimates from jittered data can reduce vari-
ability, but most of the reduction comes from the first 10 draws
of Ui. In practice, we take m between 10 and 50 in our analysis.

4. PROPERTIES OF THE PROPOSED ESTIMATES

In this section, we discuss some of the basic properties of
our proposed model and the estimates, and report some empir-
ical performance measures from Monte Carlo studies. We also
elaborate on the conditions required for the statistical proper-
ties presented in this paper, aiming to illuminate the potential
as well as the limitations of the proposed method.

4.1 Connection to the Ordered Probit Model

The use of the jittering in Ỹ may make Model (1) seemingly
artificial, but it is simply a convenient device for model build-
ing. We now point out that the ordered probit and logit models,
commonly used for the analysis of ordinal responses, are spe-
cial cases of Model (1). To this end, we derive from Model (1)
that

P(Y ≥ j|X) = P(Ỹ ≥ j|X)

= P(�(Ỹ) ≥ �(j)|X)

= P(ε ≥ �(j) − XTβ|X)

= 1 − Fε|X(�(j) − XTβ),

where Fε|X is the conditional distribution of ε given X. Espe-
cially, if F is symmetric about 0, then

P(Y ≤ j|X) = Fε|X(�(j + 1) − XTβ). (9)

If �(j + 1) = αj and F(x) = �(x), then it reduces to the or-
dered probit model. The same can be said about the ordered
logit model. The derivation in this subsection does not rely on
any technical assumptions made elsewhere in the paper.

4.2 Large-Sample Consistency

The consistency of the proposed estimates, under either
Method 1 or Method 2, relies on consistency of the initial esti-
mate bn and the function estimate �̂n. Under appropriate con-
ditions, we have the following Theorem 1, which implies that
the proposed conditional quantile estimates at any τ ∈ (0,1) is
asymptotically consistent at the root-n rate. Additional techni-
cal conditions A2, A3, and B1–B5 are given in the Appendix
in their mathematical forms, but a heuristic description of those
conditions are listed here for easier understanding.

A2. The Xi’s are not concentrated in any proper sub-
space of Rp.

A3. ατ + XTβ0 is the unique τ th conditional quantile of
�(Y) given X, for some ατ ∈ R.

B1. At least one significant predictor is of interval scale.
B2. The predictor X has finite third moments.

B3–B5. The function �(·) is well behaved, and the predic-
tor distribution satisfies some mild regularity condi-
tions.

Theorem 1. Under Conditions A0–A3 and B1–B5, we have

sup
ỹa≤ỹ≤ỹb

|�̂n(ỹ) − �(ỹ)| = Op
(
n−1/2) (10)

and

β̂n,τ − β0 = Op
(
n−1/2), (11)

where ỹa and ỹb are specified in Condition B3.

The results of Theorem 1, especially the parametric rate of
convergence, depend critically on the conditions we have im-
posed. Conditions A0 and A1 described in Section 2 are ar-
guably the most stringent. The iid error assumption is necessary
to achieve the root-n rate of convergence when � is nonpara-
metric in nature. In this paper, A1 is also used to ensure that
the initial estimator bn of β0 in Step 1 of the TORQUE method
is consistent. Condition B1 is needed to get a consistent esti-
mate of �, and the proposed method might not do very well in
a purely factorial design.

Some further remarks on the conditions are in order. Con-
dition A1 places a rigid assumption on the design distribution
of X, often called a linearity condition on the design. Strictly
speaking, this condition amounts to requiring X to be ellipti-
cally symmetric. However, it has been well discussed in the
dimension reduction literature that this is a convenient condi-
tion to use to find a consistent estimate of β0, and more impor-
tantly, many authors, including Hall and Li (1993) and Cook
(1998), have noted that this condition may hold to a reason-
able approximation in many regressions, especially when X is
high dimensional. Furthermore, the basic conditions used in this
paper can be relaxed to include certain heteroscedastic errors
if � is parametric (e.g., Mu and He 2007), or if a lower rate
of convergence is asked for. In such extensions, we need β to
be τ -specific in A3, and the proposed TORQUE with quantile
regression (“Method 1” in Section 3.2) follows this direction,
making the results more robust against the deviations from the
iid assumption.

4.3 Simulation Studies

To understand the finite sample performance of the proposed
estimator, we use Monte Carlo studies to compare the proposed
estimator with the ordered probit model (OPM). The simulation
results show that our proposed approach does well in a variety
of cases and outperforms the OPM when ε is not normally dis-
tributed.

Data are generated from Model (1) with four case studies
specified below. Study 1 is chosen as a favorable case for OPM,
because the OPM model assumption holds exactly in this case.
Studies 2 and 3 are chosen to represent non-Gaussian error dis-
tributions. Study 4 is motivated by a robustness consideration,
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as it includes a binary predictor and heteroscedastic error in the
model. Clearly, conditions A0 and A1 are violated in this study,
but the scenario in Study 4 is quite realistic.

The sample size is fixed at n = 1000 for each dataset, and a
total of 100 datasets are generated in each study. After Ỹ is gen-
erated, we obtain the ordinal counts Y = 1,2,3,4 as the great-
est integer function Y = �Ỹ� for 1 ≤ Ỹ < 5. In addition, we let
Y = 4 when Ỹ ≥ 5 and Y = 1 when Ỹ < 1.

Study 1. 2ỹ = x1 + x2 + 5 + ε, where x1 ∼ N(0.5,0.5), x2 ∼
N(0.5,0.5), and ε ∼ N(0,1) are independent random variables.

Study 2. 5ỹ = x1 + x2 + ε, where x1 ∼ U (3,8), x2 ∼ U (3,8),
and ε ∼ χ2(3) are independent random variables.

Study 3. 7 log(ỹ) = x1 + x2 + ε, where x1 ∼ U (0,5), x2 ∼
U (0,5), and ε ∼ LN(0,0.75) are independent random vari-
ables.

Study 4. 7 log(ỹ) = x1 + 2x2 + (1 + x2)ε, where x1 ∼
Bernoulli(0.5), x2 ∼ U (0,4), and ε ∼ χ2(1) are independent
random variables.

For each study, we report the following two performance
measures for comparing TORQUE (Method 1) and OPM:

• MAE(y), the mean absolute error (or distance) between the
predicted responses and the observed responses; The con-
ditional median from the estimated model is taken as the
predicted response, but MAE(y) is averaged over 500 test-
ing datasets generated from the same model as the training
datasets.

• MAE(p), the mean absolute error (or distance) between p̂i

and pi over i, where pi = (pi1, . . . ,pi4), with pij = P(yij =
j) based on the true model, and p̂i = (p̂i4, . . . , p̂ij), with p̂ij

obtained from the estimated model.

Note that MAE(y) focuses on the error of point prediction,
but MAE(p) measures how well the model predicts the true
probability distribution of Y given X. The simulation results
are summarized in Table 2.

From Table 2, we see small differences between TORQUE
and OPM in terms of point prediction, but the differences in
MAE(p) are more telling. In Study 1, where the OPM is ex-
actly the right parametric model, MAE(p) of the OPM does
indeed exhibit smaller values. When the OPM is a misspeci-
fied model (Studies 2–3), the TORQUE becomes more favor-
able. In Study 4 where Conditions A0 and A1 are not satis-
fied, TORQUE continues to outperform in all 100 datasets in
our study. Overall, the gain from TORQUE is often substantial,
making it more than worthwhile to pay the price in Study 1.
When the two methods are similar in the accuracy of point pre-
diction, a difference in MAE(p) indicates differential perfor-

mance in other aspects. In our analysis of LSOA II data, we
shall see that a major advantage of TORQUE is that it produces
more informative prediction intervals.

5. APPLICATION TO THE LSOA II DATA

We now return to the LSOA II data described in Section 2
and use the proposed TORQUE approach for constructing the
prediction intervals for functional status. We shall show that
the TORQUE approach gives more informative predictions than
does the OPM, and also discuss some of our findings.

5.1 Preliminary Analysis

Since the LSOA II was designed for multiple aims, we need
to consider several issues as to how the data can be best used.
A predictive model can be estimated using the data from the
first followup or the second followup. Although the longitudi-
nal aspect of the study is useful in a number of ways, a pre-
dictive model for the functional status over a two-year period
may not be estimated from both followups by treating them as
repeated measurements. The subjects in the first followup are a
(weighted) random sample from a well-defined population, but
the second followup is no longer a random subsample from the
same population because only those who have survived for the
first few years are included in the second followup. This dif-
ference is also noted by Dellapasqua, Colleoni, and Goldhirsch
(2006), where it is reported that cancer survivors without other
chronic diseases were significantly more likely to report poor
FS than individuals without a history of cancer. The analysis
presented in this paper will be based on data from the first fol-
lowup, where we believe we have a random sample from the
general population.

Figure 2 shows the change in the functional status from the
baseline to the first followup about two years later. In this sec-
tion, we use BFS for the baseline functional status and FS for
the functional status two years later. For example, it is clear
from Figure 2 that more than 60% of the elderly with BFS = 1
stay with FS = 1 two years later, and that the functional status
does not always get worse over a two-year period.

The QQ plot of the residuals from the TORQUE model
(Method 1) is shown in Figure 3, which clearly indicates that
the residuals deviate quite substantially from a normal distribu-
tion, making the OPM hard to defend.

5.2 Model Estimation

Here, we consider the quartiles at τ = 0.25,0.50, and 0.75.
Roughly 25% of the subjects in the survey died after the first

Table 2. Mean absolute error comparison of two methods in four studies

Study 1 Study 2 Study 3 Study 4

TORQUE OPM TORQUE OPM TORQUE OPM TORQUE OPM

MAE(y) 0.39 0.39 0.35 0.36 0.30 0.32 0.56 0.59
MAE(p) 0.08 0.04 0.06 0.18 0.05 0.28 0.18 0.29

(5) (95) (100) (0) (100) (0) (100) (0)

NOTE: Each number in parenthesis in the last row represents the number of datasets (out of 100) for which the method
outperforms the competitor in terms of MAE(p).
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Figure 2. The vertical axis represents the proportion of subjects at
different FS levels within each BFS subgroup. The values on top of
the bars are the number of subjects within each subgroup. The online
version of this figure is in color.

Table 3. 95% confidence interval for γk at each subgroup

BFS γ2 γ3 γ4

1 (0.29,0.56) (0.34,0.64) (0.38,0.69)

2 (0.21,0.70) (0.68,0.82) (0.83,0.93)

3 (0.00,0.38) (0.36,0.67) (0.81,0.94)

4 (0.01,0.53) (0.26,0.89) (0.52,0.94)

followup, so the prediction of the upper quantiles beyond the
third quartile is not challenging.

In our analysis of the LSOA II data, the TORQUE models
are fit to each subgroup of subjects with the same BFS values.
To decide whether a single link function � fits all subgroups
well, we show in Table 3 the bootstrap-based 95% confidence
intervals for

γk = (�(k) − �(1))/(�(5) − �(1)), k = 2,3,4,

for each subgroup. The parameters γk describe the growth rates
of � at different levels. There is significant statistical evidence
that the link functions are different for subgroups with BFS = 1,
2, and 3 (or 4).

The estimated � functions are shown in Figure 4. The most
interesting is the estimated � function for the subgroup with
BSF = 1, because it is quite flat between 2 and 4 but has steep
slopes before 2 and after 4. This � function indicates that there
is not really much information in the TORQUE model that can
distinguish the severities 2, 3, and 4 for functional status in

Figure 3. Q–Q plot for the Pearson residuals from the TORQUE model in the LSOA II data. The online version of this figure is in color.
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Figure 4. Estimation results for � of the group at each BFS.

the prediction, and the predictors are most helpful in separat-
ing the two extremes (1 and 5) from the others. The estimated
� functions for other subgroups are closer to linear functions,
so the resulting fits are approximately linear models with non-
Gaussian errors.

For the most interesting subgroup with BFS = 1, Table 4
gives the scale-normalized estimates of β0 from TORQUE
(Method 1) for the quartiles as well as those from the OPM.
We note from the OPM results that on average self-rated health
(x1), marital status (x4), age (x5), education (x6), and MSD
(x10) are important factors in predicting FS. However, the coef-
ficients from TORQUE suggest that their relative contributions
may vary slightly in two tails of the FS distribution. For exam-
ple, relative to self-rated health, age and education have greater
contributions at the lower quartiles, but MSD has a greater con-
tribution at the higher quartiles. The different impacts of those
predictors at different quartiles might not be statistically signif-
icant, so our analysis is exploratory rather than confirmatory.
Detailed results for the other subgroups are not provided in the
paper but are available from either author upon request.

5.3 Evaluation of Predictive Performance

To allow a fair assessment of the predictions based on
TORQUE and the OPM, we used a random split of the data
to form an estimation sample and a validation sample. To high-
light the main point, we only discuss the results for the largest
subgroup of 6620 subjects with BFS = 1.

We start with the investigation of the coverage and length of
the 50% prediction intervals of the response variable, Y , based
on Methods 1 and 2 of TORQUE, as well as the OPM for the
comparison purpose. We use the interval between Q̂0.25(Y|X)

and Q̂0.75(Y|X) as the 50% prediction interval under all meth-
ods.

Table 4. β estimation for BFS = 1

OPM TORQUE

Variables β̂ SE t-value β̂n,τ=0.25 β̂n,τ=0.50 β̂n,τ=0.75

x1 1.00 8.61∗ 1.00 1.00 1.00
x2 0.43 0.06 2.19 −0.40 0.37 0.69
x3 −0.18 0.03 −1.90 −0.15 −0.13 −0.26
x4 −0.22 0.02 −3.67 −0.15 −0.10 −0.18
x5 0.13 0.00 12.47 0.30 0.17 0.12
x6 −0.12 0.00 −7.09 −0.20 −0.17 −0.11
x7 0.17 0.02 2.87 0.15 0.10 0.23
x8 0.85 0.09 2.81 0.85 1.30 1.23
x9 0.20 0.04 1.59 −0.10 0.07 0.18
x10 −0.45 0.03 −3.62 −0.30 −0.33 −0.57
x11 0.24 0.03 2.13 0.00 0.23 0.28
x12 0.50 0.05 2.75 0.45 0.60 0.54
x13 0.17 0.04 1.05 1.15 0.43 −0.14
x14 0.31 0.06 1.40 1.30 0.60 0.26

NOTE: ∗The first coefficient of β is set to 1 in all cases. The t-value for this coefficient
under OPM is obtained prior to scaling.
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Table 5. Frequency of the prediction intervals of different lengths when BFS = 1

L

Model 0 1 2 3 4 Total

OPM Est 903 (23%) 1325 (33%) 461 (12%) 201 (5%) 1082 (27%) 3972
Val 636 (24%) 870 (33%) 308 (12%) 125 (5%) 709 (27%) 2648

M1 Est 611 (15%) 1033 (26%) 1848 (47%) 360 (9%) 120 (3%) 3972
Val 434 (16%) 677 (26%) 1226 (46%) 225 (8%) 86 (3%) 2648

M2 Est 302 (8%) 1692 (43%) 1944 (49%) 33 (1%) 1 (0%) 3972
Val 218 (8%) 1136 (43%) 1264 (48%) 29 (1%) 1 (0%) 2648

NOTE: Abbreviations: M1, Method 1; M2; Method 2, Est, Estimation Data; Val, Validation Data. Without the rounding-off
errors, the percentages provided in each entry should add up to 100 in each row.

Table 5 reports the frequency of the nominal 50% prediction
intervals of different length (L). The length L ranges from 0 to
4 because FS ranges from 1 to 5. From Table 5, we see that
the length 4 appears much less frequently under the TORQUE
model than under the OPM. Since L = 4 means that the pre-
diction interval covers all possible values of FS, we say that
the OPM is less informative in prediction. If we compute the
coverage probabilities of those prediction intervals, they are all
around 80%, well exceeding the nominal level, due to the dis-
creteness of FS.

5.4 Mortality Rates

Lee et al. (2006) developed a prognostic index for predicting
mortality risk in community-dwelling older adults employing
data from 11,701 of the study participants in the United States.
It was based on a one-page questionnaire with 12 questions to
predict the mortality risk of the elderly (see Table 6). The index
weighed different mortality risk factors according to a simple
point system by means of the predictors such as age, comorbidi-
ties, and (baseline) functional difficulties. The weights were de-
termined by the odds ratio estimates from the logit model. This
method is currently a standard in medical and public health lit-
erature.

We can adopt the same approach (i.e., the logit modeling)
to predict the two-year mortality rates from the LSOA II data
and ask how the results compare with the proposed TORQUE
estimates. Note that TORQUE is applied to the five-level ordi-
nal variable FS, but we can easily compute the probability that
FS = 5 (death) based on the estimated TORQUE model. Using
the same set of predictors discussed in Section 2, we assess the
performance of three mortality estimates based on the following
measure:

MAE(p̃) =
N∑
i

|p̂i − I(FSi = 5)|/N,

where p̂i is an estimator of P(FSi = 5), I(FSi = 5) is the ob-
served indicator of death for the ith subject, and N is the total
number of subjects in the estimation or validation data (after
adjusting for the sampling weights in the LSOA II data). This
measure of MAE(p̃) is a variant of MAE(p) in Section 4.3, but
specialized to binary responses. For the real data, we have no
knowledge about the true probability of Y ; therefore, we cannot
evaluate MAE(p) directly. Instead, MAE(p̃) measures how well

our model fits the observed response [I(FSi = 5)] on the train-
ing and, perhaps more sensibly, on the validation data. Table 7
shows that TORQUE outperforms both the logit and the probit
models applied to the binary response for predicting mortality
rates with 20% or more reductions in MAE(p̃).

Lee et al. (2006)’s prognostic index, constructed based on the
odds ratio of a logistic regression model, is a useful and handy
tool in the prediction of mortality. However, its simplistic struc-
ture hinders its prediction accuracy. The proposed TORQUE

Table 6. Prognostic index to predict four-year mortality risk in
community-dwelling elders

Patient characteristic Points

Age (years)
60–64 1
65–69 2
70–74 3
75–79 4
80–84 5
≥85 7

Male sex 2
Diabetes 1
Cancer (not including minor skin cancer) 2
Chronic lung disease (limits activities or

individual requires aided oxygen) 2
Heart failure 2
Body mass index < 25 kg/m2 1
Current smoker 2

Functional difficulties caused by health or
memory problems

Bathing 2
Managing money or finances 2
Walking several blocks 2
Pulling or pushing large objects

(e.g., living room chair) 1

Total:
Predicted four-year

Point total mortality risk (%)

0 to 5 <4
6 to 9 15
10 to 13 42
≥14 64

NOTE: Adapted from Lee et al. Development and validation of a prognostic index for
four-year mortality in older adults (Lee et al. 2006, p. 805).
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Table 7. Performance measure MAE(p̃) for the prediction of
mortality when BFS = 1

Method TORQUE Probit Logit OPM

Data sets Est Val Est Val Est Val Est Val

MAE(p̃) 0.24 0.25 0.31 0.32 0.31 0.32 0.31 0.31

approach has been shown to improve on the logit and probit
models based on the same set of predictors. To see whether this
improvement was due to the use of 5-level ordinal scales, we
also included the results from the OPM based on the same ordi-
nal scales. It is clear from the comparison that the improvement
was due to the flexibility of the TORQUE model.

5.5 Challenges in the Analysis

Our proposed TORQUE model is able to provide a useful
predictive model for the functional status of the elderly based
on the LSOA II data, but a number of challenges remain for
further studies.

In our analysis of the LSOA II data, we have restricted at-
tention to an additive index of the predictors, and no interaction
terms have been used. Variable selection and model building for
the TORQUE model remain an open topic for research.

Missing information occurred for more than 10% of the par-
ticipants in the first followup. We have implicitly assumed in
our analysis that they were missing at random. A more care-
ful study of the participants with partially observed data would
be helpful. If the functional status variable is not missing, we
may model the binary predictors and the continuous predictors
by log-linear models and then multivariate normal (conditional
on the binary predictors) to perform multiple imputation as de-
scribed in Schafer (1997).

The LSOA II data, and future LSOA studies of similar na-
ture, allow us to update the prediction of the functional sta-
tus every two years. The TORQUE model can be fitted to the
first and second followups simultaneously to predict FS in two
consecutive two-year windows. If a number of followups were
available, an appropriate Markovian model might prove to be
more useful to model the transition between the levels of FS.
A Markovian model would allow better handling of missing
data and eliminate the need to consider subgroups. The main
challenge is finding good specifications of the conditional tran-
sition probabilities.

Another potentially useful modification is to account for the
varying time lags between two consecutive measurements. In
reality, the time lags between baseline and the first followup
are not constant. The exact times of measurements per subject
are not available in the published LSOA II data, but the time
stamps can easily be made available in any future studies of
this type. When the time stamps are available, the TORQUE
model can include time differences between two measurements
as a predictor similar to the approach of Wei and He (2006).

6. CONCLUSION

In this article we have provided a new approach for analyz-
ing the functional status for the elderly from the LSOA II data
where the functional status is treated naturally as an ordinal re-
sponse. The proposed model generalizes the ordered probit or

logit model, and features jittering, a nonparametric link func-
tion, and semiparametric quantile estimation. However, it uses
a linear index of the predictors to control the model complex-
ity. We demonstrated through simulation experiments that the
proposed method works well for data fitting and prediction in
a variety of settings, and a comparison with the ordered probit
model showed that the method led to more informative predic-
tion of the functional status, as well as the mortality rates from
the LSOA II data.

The large-sample properties of the proposed method given in
this article rely on two basic conditions, the iid error structure
and the linearity condition of the design X in Model (1). We
do not expect these conditions to hold exactly in applications.
We suggested TORQUE with quantile regression as a robust
procedure against heteroscedasticity. The linearity condition is
assumed to enable us to use a simple initial estimate of β0. We
have some empirical evidence, consistent with the findings in
the dimension reduction literature, that violations of the linear-
ity condition on X are often quite benign in how they affect
the proposed method. Concerned users of the TORQUE model
may seek other preliminary estimators of β0 that are consistent
at given quantile levels without the linearity condition used in
this paper.

There are at least two ways that our work can help clinicians
and policy makers for the care of the elderly. First, TORQUE
enables clinicians and policy makers to construct a better prog-
nostic index for the mortality rates than do conventional meth-
ods like the logit model. Second, the prediction intervals given
by TORQUE for the levels of the functional status are more in-
formative than any point prediction. For example, the ability to
say with sufficient confidence that an individual with given pre-
dictors will have a functional status at least as good (or poor)
as its current level in two years can mean a lot to a clinician
who needs to communicate with caretakers of the elderly. The
prediction intervals obtained from TORQUE are much less sen-
sitive to model misspecification than the ordered probit or logit
models.

Finally, we note that the analysis of the LSOA II data in this
paper uses existing studies in the aging research literature for
selecting predictors. Generalization to multi-index models and
the issue of variable selection within the semiparametric models
require future research.

APPENDIX A: TECHNICAL CONDITIONS

The consistency result given in Section 4.2 is established under a
series of conditions on the model. We refer to Section 2 for the ba-
sic conditions A0 and A1. The rest of the conditions are listed in this
section.

A2. There exists a constant C > 0 such that

inf‖γ ‖=1

1

n

n∑
i=1

|XT
i γ | > C for all n almost surely.

A3. β0 is the unique minimizer of E[ρτ (�(Ỹi) − XT
i β) −

ρτ (�(Ỹi))].
B1. By scale normalization, we assume that the first coefficient

of β0 is 1, and the distribution of x1 conditional on X−1 =
(x2, . . . , xp) has an everywhere positive density with respect to
the Lebesgue measure. Also, the support of X is not contained
in any proper linear subspace of Rp.
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B2. X has finite third moments.
B3. The function �(·) is strictly increasing on [ỹa, ỹb], the support

of Ỹ , and �(ỹ0) = 0 by location normalization. Furthermore,
there exists a positive number ε∗ and a compact interval M�

such that [�(ỹa − ε∗),�(ỹb + ε∗)] ⊂ M�.

B4. The conditional density of Z = XTβ given X−1 = t ∈ Rp−1

for any t and the density of ε, pt(s|t) and f (s), are twice con-
tinuously differentiable in s, and the derivatives are uniformly
bounded.

B5. V(ỹ) = − ∫
f (−z)p(z + �(ỹ0))p(z + �(ỹ))dz is negative for

each ỹ ∈ [ỹa, ỹb], and uniformly bounded away from zero.

Condition A1 enables us to use the results of Li and Duan (1989)
to verify that the initial estimate bn is consistent (in direction). Con-
ditions B1–B5 are sufficient to verify the uniform consistency of �̂n
using the results of Chen (2002). Conditions A2 and A3 ensure that
the quantile estimates β̂n,τ are consistent. For an explanation of Con-
ditions B1–B5, we refer to Chen (2002).

APPENDIX B: SKETCH OF PROOF FOR THEOREM 1

By Li and Duan (1989, theorem 5.1), the initial estimate bn con-
verges at the root-n rate to β0 in direction due to Condition A1. By
Chen (2002, theorem 1, p. 1687), we have a Bahadur representation
of n1/2(�̂n(ỹ) − �(ỹ)), which implies (10). It remains to show (11).
First, we show consistency.

Let ε0 = min{τ,1 − τ }/2. By the definition of ρτ ,

ρτ (�̂n(Ỹi) − XT
i β) ≥ (1 − τ )|�̂(Ỹi) − XT

i β| ≥ ε0|XT
i β|,

when |XTβ| is sufficiently large. Let γ = β/‖β‖. Then

n∑
i=1

ρτ (�̂n(Ỹi) − XT
i β) −

n∑
i=1

ρτ (�̂n(Ỹi))

≥ ε0

n∑
i=1

|XT
i β| −

n∑
i=1

ρτ (�̂n(Ỹi))

= ‖β‖ε0

n∑
i=1

|XT
i γ | −

n∑
i=1

ρτ (�̂n(Ỹi)).

By the assumption A2, if ‖β‖ >
∑n

i=1 ρτ (�̂n(Ỹi))C/ε0, then the

above quantity will be positive, which means
∑n

i=1 ρτ (�̂n(Ỹ) −
XTβ) >

∑n
i=1 ρτ (�̂n(Ỹ)). However, β̂n,τ is chosen to minimize the

objective function, thus

n∑
i=1

ρτ (�̂n(Ỹ) − XT β̂n,τ ) <

n∑
i=1

ρτ (�̂n(Ỹ)).

This conversely implies ‖β̂n,τ ‖ < M, for some positive constant M.

Suppose that ‖β̂n,τ − β0‖ ≥ ε0, along a subsequent of n, still de-

noted by n for simplicity. If β̂n,τ does not converge to β0, due to the

boundedness of β̂n,τ , there exists a further subsequence, still called

β̂n,τ , such that β̂n,τ → β1 �= β0. By the continuity of Eρτ (·) and the
uniqueness of β0, we have

E
[
ρτ (�(Ỹ) − XTβ1) − ρτ (�(Ỹ) − XTβ0)

]
> η0 > 0. (B.1)

By the law of large numbers, n−1 ∑n
i=1 ρτ (�(Ỹ) − XTβ0) →

Eρτ (�(Ỹ) − XTβ0), and

n−1
n∑

i=1

ρτ (�(Ỹ) − XT β̂n,τ ) → Eρτ (�(Ỹ) − XTβ1).

Then we obtain from (B.1), for sufficiently large n,

1

n

n∑
i=1

ρτ (�(Ỹ) − XTβ0) <
1

n

n∑
i=1

ρτ (�(Ỹ) − XT β̂n,τ ) − η0

2
. (B.2)

By (10), we have, for sufficiently large n,

1

n

n∑
i=1

ρτ (�̂n(Ỹ) − XTβ0) <
1

n

n∑
i=1

ρτ (�(Ỹ) − XTβ0) + η0

4
(B.3)

and

1

n

n∑
i=1

ρτ (�(Ỹ) − XT β̂n,τ ) − η0

4
<

1

n

n∑
i=1

ρτ (�̂n(Ỹ) − XT β̂n,τ ).

(B.4)

Combining (B.2)–(B.4) implies that if β̂n,τ does not converge to
β0, then

1

n

n∑
i=1

ρτ (�̂n(Ỹ) − XTβ0) <
1

n

n∑
i=1

ρτ (�̂n(Ỹ) − XT β̂n,τ ).

This contradicts the definition of β̂n,τ . Therefore β̂n,τ is consistent.
Now making use of (10) and following He and Shao (1996), we arrive
at (11). In fact, a Bahadur representation of β̂n,τ can also be obtained,
but the influence function involved in the representation is complicated
in form and its asymptotic variance is difficult to estimate. We forgo
the details in this paper.

[Received November 2008. Revised November 2009.]
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