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Bayesian Tobit quantile regression model for medical
expenditure panel survey data
Yu Ryan Yue1 and Hyokyoung Grace Hong1

1Zicklin School of Business, Baruch College, The City University of New York, New York.

Abstract: High expenditure on healthcare is an important segment of the U.S. economy, making
healthcare cost modelling valuable in decision-making processes over a wide array of domains. In this
paper, we analyze medical expenditure panel survey (MEPS) data. Tobit regression model has been
popularly used for the medical expenditures. However, it is no longer sufficient for the MEPS data
because: (i) the distribution of the expenditures shows skewness, heavy tails and heterogeneity; (ii)
most predictors are categorical, including binary, nominal and ordinal variables; (iii) there are a few
predictors which may be nonlinearly related to the response. We therefore propose a Bayesian Tobit
quantile regression model to describe a complete distributional view on how the medical expenditures
depend on the various predictors. Specifically, we assume an asymmetric Laplace error distribution
to adapt the quantile regression to a Bayesian setting. Then, we propose a modified group Lasso for
categorical factor selection, and a smoothing Gaussian prior for modelling the nonlinear effects. The
estimates and their uncertainties are obtained using an efficient Monte Carlo Markov Chain sampling
method. The effectiveness of our approach is demonstrated by modelling 2007 MEPS data.

Key words: asymmetric Laplace distribution; group lasso; MCMC; medical expenditure panel survey;
nonlinear effect; Tobit quantile regression

Received November 2011; revised December 2011; accepted December 2011

1 Introduction

1.1 Medical expenditure panel survey data

The Medical Expenditure Panel Survey (MEPS), which began in 1996, is a set of large-
scale surveys of families and individuals, their medical providers (doctors, hospitals,
pharmacies, etc.), and employers across the United States. The MEPS collects data
on the specific health services that Americans use, how frequently they use them, the
cost of these services and how they are paid for, as well as data on the cost, scope and
breadth of health insurance held by and available to U.S. workers. It intended to pro-
vide nationally representative estimates of health expenditure, utilization, payment
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sources, income, employment, health status and health insurance coverage among
the non-institutionalized, nonmilitary population of the United States. This series
of government-produced datasets can be used to examine how individuals interact
with the medical care system in the United States. The current publicly available
MEPS component is the Household Component, consisting of six data files which
describe the demographics and characteristics of the survey population and eight
event-level files which capture all interactions with the U.S. medical system. The
file of our interest is the Full-Year Consolidated Data file, which includes all demo-
graphic and medical characteristics, as well as patient-reported responses to the main
survey questions. More information about MEPS can be found at its official website:
http://www.meps.ahrq.gov/mepsweb/.

In this paper, we examine 2007 MEPS data using regression-based approach. The
response variable is the total healthcare expenditure (the MEPS variable is totexp07),
including insurance spending and annual out-of-pocket spending, measured in dol-
lars. Summary statistics are reported in Table 1. For many econometric explorations,
the following prominent features of these expenditure data are typically important
to accommodate. First, the expenditures are, for most practical purposes, nonnega-
tive. Second, a sizable fraction of observations (approximately 17% in the MEPS) are
measured as zero. As a result, the distribution is a mixture of a point mass in zero and
a continuous distribution truncated at zero. Third, the data exhibit a ‘heavy’ upper
tail: in the MEPS data, almost 10% of the expenditures exceed $10 000. Fourth, with
a small probability, households face extremely large medical expenditure, resulting in
a right-skewed distribution; note that skewness per se does not imply a heavy upper
tail. These features are clearly shown in Figure 1. As for explanatory variables, there
are socioeconomic factors such as the number of years of education, poverty level,
region, etc., and personal characteristics such as self-rated health, general-risk-taking
attitude, seat-belt use, etc. Since conventional survey items only allow a limited num-
ber of response options, most explanatory variables are categorical, including binary,
nominal and ordinal variables.

The MEPS data have been extensively used for the econometrical analysis of the
healthcare expenditures (e.g., Cameron and Trivedi, 2010; Clements and Hendry,
2011). The high expenditures on healthcare have been an important segment of the
U.S. economy, accounting for about 16% of GDP in 2007, highest among all the
developed countries. The effective healthcare cost modelling has fundamentally or

Table 1 Summary statistics of total
healthcare expenditure in 2007

Observations 15 890
0.25 Percentile 164
0.50 Percentile 1152
0.75 Percentile 3997
0.95 Percentile 18 808
Mean 4498
Standard deviation 12 728
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Figure 1 Histogram of the medical expenditures in 2007 MEPS data

peripherally informed decision making over a wide array of domains: risk-adjusted
provider payments; provider utilization review/profiling; cost-of-illness assessment;
cost aspects of evaluation studies and future projections of disease-specific healthcare
cost burdens (Mullahy, 2009).

1.2 Statistical modelling of medical expenditure data

The medical expenditure variable is a so-called limited dependent variable whose
distribution is mostly continuous but has a point mass at one or more specific values,
such as zero. There are a multitude of statistical approaches to modelling of a limited
dependent variable, e.g., the two-part model, the Tobit model, the sample selection
model (SSM), hurdle models and finite mixture models. For an excellent comprehen-
sive survey of this literature, see Jones (2000). Here, we only briefly review the Tobit
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model because it is closely related to the method that we are going to propose in this
article.

The standard ‘Tobit’ (Tobin, 1958) regression model can be easily described using
the concept of a latent desired level of expenditure, denoted by y∗i . The classic linear
regression model is then used for the latent variable:

y∗i = x′
iβ + εi , εi

i id∼ N(0, σ 2),

where xi contains predictors of interest and error εi follows an identically independent
normal distribution with mean zero and variance σ 2. The observed expenditure is
assumed to be related to the latent value by the following:

yi =
{

y∗i , if y∗i > 0,

0, otherwise.

Econometrically speaking, the Tobit model assumes a so-called single decision-
making process. The individual chooses the level of medical expenditure that max-
imizes his or her welfare. Positive expenditures correspond to desired expenditures.
Zero expenditure represents a corner solution, in which income and/or preferences
for health are so low that spending nothing on healthcare is best for the individ-
ual (O’Donnell et al., 2008). The regression coefficients β in the Tobit model are
ususally estimated by maximum likelihood approach and the resulting estimates are
consistent.

Unfortunately, the classic Tobit model is not appropriate for the 2007 MEPS data.
First, the distribution of the expenditures is highly skewed to the right with a heavy
upper tail, making the conditional mean not appropriate to summarize the relation-
ship between the expenditures and the predictors. Using logarithmic transformations
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Figure 2 Violation of homoscedastic assumption: plots of logarithm of healthcare expenditure against Age
(left) and Education (right)
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may relieve the skewness, but this raises the problem of retransforming to the orig-
inal scale (e.g., dollars rather than log-dollars), in order to make inferences that are
relevant for policy (Duan, 1983). Second, the assumption of homoscedasticity is vio-
lated since the variability of errors changes across the subjects (see Figure 2). As a
result, different parts of the distribution may depend on the predictors in different
ways. Third, most predictors in the MEPS data are categorical variables, including
both ordinal and nominal variables. It is well known that the ordinary regression
models are not efficient especially when lots of such variables are used as predictors.
Fourth, previous empirical research showed that the healthcare costs strongly depend
on some predictors, e.g., age, in a nonlinear way (see Alemayehu and Warner, 2004;
Jung and Tran, 2010; Bell et al., 2011).

1.3 Tobit quantile regression

We adopt the idea of Tobit quantile regression, which turns out to be an ideal tool to
analyse MEPS data. Again, we describe the model in the latent variable framework,
where the observed response variable can then be written as yi = max{0, y∗i }. Given
a sample of independent observations y = (y1, . . . , yn) and associated m covariates
X = (x1, . . . , xm), the latent variable y∗i is modelled as follows:

y∗i = ητ (xi | θ) + ετ i , ετ i ∼ Fτ i subject to Fτ i (0|xi ) = τ, (1.1)

where ητ (· | θ) is a function with the parameters θ ∈ #, and the random error ετ i
follows a cumulative distribution function Fτ i whose τ th quantile conditional on xi
equals zero. It is easy to see that model (1.1) defines ητ to be the τ th conditional
quantile function of y∗i given xi . The error distribution Fτ is often left unspecified
in the classical literature. Assuming linear model ητ (xi | θ) = x′

iβτ (βτ ∈ IRp), an
intuitive estimator for the Tobit model under the above quantile restriction solves

arg min
βτ

n∑

i=1

ρτ (yi − max{0, x′
iβτ}), where ρτ (u) =

{
uτ, u ≥ 0,

u(τ − 1), u < 0,
(1.2)

is the so-called ‘check function’ of Koenker and Bassett (1978).
Initiated by Chib’s (1992) work in standard Tobit model, Yu and Stander (2007)

pioneered the Bayesian approach of Tobit quantile regression. Their method is based
on assuming an asymmetric Laplace (AL) distribution for the error term ετ i in model
(1.1) and using Monte Carlo Markov Chain (MCMC) technique to simulate sam-
ples from the model’s posterior distribution. Estimates and their uncertainties can
be easily calculated using the posterior samples. However, Yu and Stander used
Metropolis-Hastings method in their MCMC algorithm rather than took advantage
of the mixture representation of AL density to create a more efficient Gibbs sampler.
Their approach is thus limited to the simple linear quantile functions only. Taddy
and Kottas (2010) proposed a nonparametric method of Tobit quantile regression

Statistical Modelling 2012; 12(4): 323–346
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using Dirichlet process mixture models for the joint distribution of the response and
the covariates.

In this paper, we extend Yu and Stander’s (2007) work by developing a general
Bayesian framework for flexible Tobit quantile regression models. The proposed
method offers following advantages. First, it describes a distributional view of the
medical expenditures dependent on the predictors by examining various conditional
quantiles. Second, it takes into account for the point mass at zero of the distrib-
ution without lack of convexity problem. Third, appropriate regularization priors
are taken on the categorical predictors, yielding accurate estimation and efficient
variable selection. Fourth, it allows us to consider a possible nonlinear relationship
between the medical expenditure and certain predictors. Fifth, it easily provides the
Bayesian credible intervals for taking into account the uncertainty of estimation.
This, however, would be a much harder task for the frequentists who might consider
our model setting. Finally, it has an efficient MCMC algorithm to implement the
Bayesian inference.

The remainder of the paper is organized as follows. In Section 2, we present the
proposed method, introducing observation model and different kinds of priors. The
MCMC simulation method is shown in Section 3. Results are summarized in Section
4, followed by a conclusion in Section 5.

2 Bayesian Tobit quantile regression

2.1 Observation model

In order to make Bayesian quantile inference, we need to specify a distribution on
latent variable y∗i . Following Yu and Stander (2007), we use AL distribution, denoted
by AL(η, δ0, τ ), whose probability density function is given by

p(y∗ | η, δ0, τ ) = τ (1 − τ )δ0 exp {−δ0ρτ (y∗ − η)} , (2.1)

where η ∈ IR is a location parameter, δ0 > 0 is a scale parameter and 0 < τ < 1
is a skewness parameter. Since the check function ρτ assigns weight τ or 1 − τ to
the observations greater than or less than η, respectively, the τ th quantile of y∗ is η
despite of the value of δ0. Another attractive feature about this skewed distribution
is that it can be represented as a scale mixture of normals (e.g., Kotz et al., 2001):

Y∗ D= η + ξW + σ Z
√

δ−1
0 W, where ξ =

1 − 2τ

τ (1 − τ )
, σ 2 =

2
τ (1 − τ )

(2.2)

are two scalars depending on τ . The independent random variables W > 0 and Z
follow exponential distribution with mean δ−1

0 and standard normal distribution,

Statistical Modelling 2012; 12(4): 323–346
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respectively. This mixture representation makes it easy to sample from AL distrib-
ution, leading to its extensive use in Bayesian quantile regression; see, e.g., Yu and
Moyeed (2001), Tsionas (2003), Kozumi and Kobayashi (2011) and Yue and Rue
(2011).

We now define quantile function ητ in model (1.1). For the general representation
of categorical predictors xj , we use dummy coding. That means, with Kj +1 denoting
the number of factor levels of xj , for each xj we have dummy variables xj0, . . . , xj K j ,
i.e., xjk = 1 when xj = k and xjk = 0 otherwise. We model the continuous variables,
which appear to have nonlinear relationships with medical expenditures, as unknown
smooth functions. As a result, a semiparametric additive model is assumed as follows:

ητ = α +
p∑

j=1

K j∑

k=0

β jkxjk +
q∑

*=1

f*(t*). (2.3)

Note that the α, β jk and f* depend on the τ th quantile. Since the quantiles are
estimated separately in our approach, we will not show τ in those notations. For
identifiability, we specify reference category k = 0, so that β j0 = 0 for all j . We also
add sum-to-zero constraint to f* for all * to make them identifiable from α. In matrix
notation, y∗ = (y∗1, . . . , y∗n)′ denotes the vector of latent response values; X j is the
design matrix containing observed (non-redundant) dummy variables xj1, . . . , xj K j ;
f* denotes the vector of the function values and P* is the corresponding incidence
matrix. Letting β j = (β j1, . . . , β j K j )

′, the model has the following matrix form:

y∗ = α1 +
p∑

j=1

X jβ j +
q∑

*=1

P* f* + ετ , (2.4)

where 1 = (1, . . . , 1)′, ετ = (ετ1, . . . , ετn)′ and ετ i
i id∼ AL(0, δ0, τ ). To implement

Bayesian inference, we need to specify prior distributions on scale parameter δ0,
coefficients β and unknown functions f*. Following Park and Casella (2008), we
take the non-informative scale-invariant prior p(δ0) ∝ 1/δ0 on δ0. Moreover, a
vague normal prior N(0, δ−1

α ) with small precision δα is assigned for α. The priors
taken on β j and f* are described in the following sections.

2.2 Group Lasso prior for categorical covariates

In the MEPS data, most variables are categorical, including ordinal, nominal and
binary factors. For example, the poverty status is given as an ordinal predictor with
five levels, and census region as a nominal with four values. Usually, such data are
analysed via standard linear regression modelling, with dummy coded categorial
explanatory variables. In the present situation, such modelling is possible, since the
number of observations (n = 15 890) is quite high compared to the number of dummy

Statistical Modelling 2012; 12(4): 323–346
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variables (
∑p

j=1 Kj = 28). Nevertheless, from the viewpoint of interpretation, model
selection is often desired with the focus on reducing model complexity.

The group Lasso (Yuan and Lin, 2006) is a modification of the original Lasso
(Tibshirani, 1996) which is designed for the selection of grouped variables, as dummy
coded factors. It elegantly combines penalization within groups of variables and
groupwise selection by using a Lasso penalty at the factor level, and a ridge-type
penalty within groups of (e.g., dummy) coefficients. For demonstration purposes
only, we here consider the regularized quantile regression model (without nonlinear
terms) as in Li et al. (2010):

min
β

n∑

i=1

ρτ (y∗i − x′
iβ) + λJ (β), (2.5)

with smoothing parameter λ and penalty

J (β) =
p∑

j=1

√
β ′

j% jβ j , (2.6)

where % j is some positive definite matrix. Via the L1-norm penalty imposed by the
square root, the group Lasso encourages sparsity at the factor level. Typically, a
(scaled) identity matrix is used for the penalty matrices % j ; see Yuan and Lin (2006)
for details.

The identity matrix, which has been used for the group Lasso to date, is applica-
ble to categorical predictors in general. Ordinal covariates, however, provide more
information than nominal covariates since the labels’ ordering is meaningful. In
Gertheiss and Tutz (2009) and Gertheiss et al. (2011), a difference penalty for ordi-
nal predictors is proposed, where the differences between coefficients of adjacent
levels of predictor xj are penalized. They showed that this penalty led to a dis-
tinct improvement in accuracy of parameter estimation and prediction over simple
ridge estimation, pure dummy coding or linear regression on the group labels. How-
ever, the response is forced to change slowly between two adjacent categories of
xj . In other words, they tried to avoid high jumps and prefer smoother coefficient
subvectors β j . Such smoothness restriction may not be desirable in practice. We
thus propose an extended version of this penalty as follows: let J (β) =

∑p
j=1 J j (β j )

with

J j (β j ) =

{
Kj

K j∑

k=1

v jk(β jk − β j,k−1)2

}1/2

, (2.7)

Statistical Modelling 2012; 12(4): 323–346
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with β j0 = 0 for all j . That means for % j in equation (2.6) we use % j = Kj (U ′
j Vj U j )

with

U j =





1 0 · · · 0
−1 1 · · · 0

0 . . . . . . 0
0 · · · −1 1




and Vj =





v j1 0 · · · 0
0 v j2 · · · 0

0 0 . . . 0
0 · · · 0 v j K j





are both Kj × Kj matrices. The parameters v jk allow us to locally smooth the
differences between coefficients of adjacent levels. The amount of smoothing for
each difference may vary within or between factors according to the data. As a
result, the proposed penalty has more flexibility on smoothing levels within β j , e.g.,
the jumps are allowed if necessary. For nominal predictors, we simply let % j = Kj Vj
since no ordering information needs to be taken into account. Using local smoothing
parameters, v jk allows our group Lasso penalty to not only select the categorical
predictors but also distinguish the levels within one predictor.

We now consider a Bayesian interpretation of model (2.5). Li et al. (2010) showed
that the group Lasso quantile estimates can be interpreted as posterior mode estimates
when the regression parameters have independent and identical Laplace priors. Moti-
vated by this connection, we consider a fully Bayesian analysis using a conditional
Laplace prior specification of the form

p(β j | δ0, λ) = Cj

√
|% j |(δ0λ)K j exp

(
−δ0λ

√
β ′

j% jβ j

)
, (2.8)

where Cj is the normalizing constant depending on Kj . Following the equality in
Andrews and Mallows (1974), the prior in (2.8) can be written as

p(β j | δ0, λ) =
∫ ∞

0

√
δ0|% j |
2πs j

exp
(
− δ0

2s j
β ′

j% jβ j

)

× (λ2/2)(K j +1)/2

-
(

K j +1
2

) s(K j−1)/2
j exp

(
−λ2

2
s j

)
ds j . (2.9)

Consequently, our group Lasso prior is a scale mixture of normals:

β j | s j , v jk, δ0 ∼ N
(
0, s jδ

−1
0 %−1

j

)
, s j | λ2 ∼ Gamma

(
Kj + 1

2
,
λ2

2

)
. (2.10)

This result allows us to efficiently implement group Lasso prior in our Tobit quantile
regression model as shown in Section 3.
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 at BARUCH COLLEGE LIBRARY on October 23, 2012smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


July 12, 2012 15:57 02-SMJ-12-4

332 Yu Ryan Yue and Hyokyoung Grace Hong

The λ2 is the so-called Lasso parameter, which can be chosen by, e.g., cross-
validation, from a frequentist point of view (Tibshirani, 1996). For fully Bayesian
inference, we need to take a prior on λ2. The improper scale-invariant prior 1/λ2 is
tempting, but it leads to an improper posterior (Park and Casella, 2008). We thus use
a conjugate gamma prior on λ2, i.e., λ2 ∼ Gamma(aλ, bλ). The prior density should
approach 0 sufficiently fast as λ2 → ∞ (to avoid mixing problems) but should be
relatively flat as well. For the MEPS data, we let aλ = bλ = 1, yielding prior mean of λ2

to be 1. Since the data information dominates in our case, the results are fairly robust
to the choice of the prior for λ2. Regarding the adaptive smoothing parameters, we
take v jk ∼ Gamma(0.5, 0.5), which is a common prior used in dynamic modelling;
see, e.g., Carter and Kohn (1996).

2.3 Smoothness priors for nonlinear terms

We model timescale covariates age and edu nonparametrically, assuming their rela-
tionships with medical expenditure can be explained by some smooth functions. Prior
taken on the function space is the second-order random walk (RW2) model, which is
much used in basic tasks, such as smoothing data and modelling response functions,
where semiparametric regression, smoothing and penalized likelihood are methods
used (Green and Silverman, 1994; Fahrmeir and Lang, 2001; Fahrmeir and Tutz,
2001).

Let us consider a smooth function f (·), which is observed on a sequence of equally
spaced locations t1 < t2 < · · · < tm. Denoting fk = f (tk) for k = 3, . . . , m, the RW2
model has the density

p( f | δ) ∝ exp
(
− δ

2
( fk−1 − 2 fk + fk+1)2

)
, (2.11)

where f = ( f1, . . . , fm)′ and δ is the precision parameter. The density is invariant
under addition of a + bk to xk for any constants a and b, and is therefore improper
with rank m − 2. The term fk−1 − 2 fk + fk+1 can be interpreted as an estimate of
the second-order derivative of a continuous function f (t) at t = k. Hence, the RW2
model is appropriate for representing ‘smooth curves’ with small squared second
derivative. Furthermore, Yue et al. (2011) showed that the RW2 model can actually
be derived by discretizing a cubic smoothing spline estimator (Wahba, 1990).

The RW2 model (2.11) can be written in matrix notation as

p( f | δ) ∝ δ(m−2)/2 exp
(
− δ

2
f ′ Qf

)
, (2.12)

Statistical Modelling 2012; 12(4): 323–346
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where Q = R′R is a semi-definite matrix and

R =





1 −2 1 0 · · · · · · 0

0 1 −2 1 0 . . . ...
... . . . . . . . . . . . . . . . ...
... . . . 0 1 −2 1 0
0 · · · · · · 0 1 −2 1





(m−2)×m

.

The sparse structure of matrix R indicates the Markov property, allowing for fast cal-
culations of the related full conditionals in MCMC algorithms. Since it is the density
of a singular normal distribution, we write (2.12) as N(0, δ−1 Q−), where Q− denotes
the generalized inverse of Q. Note that the RW2 model can be easily extended to the
irregularly spaced observations (Lindgren and Rue, 2008). To estimate parameter
δ, we take a diffuse but proper gamma prior for δ, i.e., δ ∼ Gamma(aδ, bδ), where
aδ = 1 and bδ = 0.001, e.g. It is a common prior used for the smoothing parameter
in nonlinear regression models (Fahrmeir and Lang, 2001; Yue and Rue, 2011; Yue
et al., 2011).

The RW2 model is also a Gaussian Markov random field (GMRF). The GMRF is
a quite flexible class that can be used to model, for instance, nonlinear effects, time
trends, seasonal effects, interactions and spatial effects (Rue and Held, 2005). The
various GMRFs share the same form as in (2.12), but with different Q. As a result,
a variety of effects can be taken into account by the GMRFs in the proposed Tobit
quantile regression model without changing the estimation procedure as described in
Section 3.

3 Posterior inference

Using identity (2.2) with model (2.4) and the priors specified in Section 2, the hier-
archical structure of our Tobit quantile regression model is given by

y =
{

y∗, if y∗ > 0,

0, if y∗ ≤ 0,

y∗ | ητ , w, δ0 ∼ N(ητ + ξw, σ 2δ−1
0 Dw),

wi | δ0 ∼ Exp(δ0), δ0 ∼ 1/δ0,

ητ = α1 +
p∑

j=1

X jβ j +
q∑

*=1

P* f*,

α ∼ N(0, δ−1
α ), β j | s j , v jk, δ0 ∼ N(0, s jδ

−1
0 %−1

j ),
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s j | λ2 ∼ Gamma
(

Kj + 1
2

,
λ2

2

)
, λ2 ∼ Gamma(aλ, bλ),

v jk ∼ Gamma(0.5, 0.5), j = 1, . . . , p, k = 1, . . . , Kj ,

f* ∼ N(0, δ−1
* Q−

* ), δ* ∼ Gamma(a*, b*), * = 1, . . . , q, (3.1)

where Dw = diag(w1, . . . , wn) and Exp(x) denotes the exponential density function
with mean x−1.

To make Bayesian inference, we employ Gibbs sampling method to obtain the
joint posterior distribution of model (3.1). More specifically, we derive the full con-
ditional distributions and simulate samples from those distributions in turn until the
Markov chain becomes stationary and enough samples are available. The algorithm
is tractable and efficient, which works as follows:

1. Simulate

y∗i | · ∼ yi I(yi > 0) + TN(−∞,0](ηi + ξwi , σ 2δ−1
0 wi )I(yi = 0),

where TN(a,b](µ, σ 2) denotes a normal distribution with mean µ and variance
σ 2 truncated on the interval (a, b].

2. Simulate w−1
i | · ∼ Inverse Gaussian(µ′, λ′) for i = 1, . . . , n, where

µ′ =

√
ξ2 + 2σ 2

(y∗i − ητ i )2 and λ′ =
δ0(ξ2 + 2σ 2)

σ 2 ,

in the parameterization of the inverse Gaussian density given by

f (x) =

√
λ′

2π
x−3/2 exp

{
− λ′(x − µ′)2

2(µ′)2x

}
, x > 0;

see, e.g., Chhikara and Folks (1989).
3. Instead to sample α and β j separately, we reparameterize these parameters

and sample the ‘new’ parameters as a block to speed up MCMC conver-
gency. To be specific, we let β̃ j = U jβ j and have the prior β̃ j | s j , v jk, δ0 ∼
N(0, s jδ

−1
0 %̃−1

j ), where %̃ j = Kj Vj . Note that the transformation only applies
to the β j of ordinal variables. With X̃ j = X j U−1

j , X̃ = (1, X̃1, . . . , X̃ p) and
β̃ = (α, β̃ ′

1, . . . , β̃ ′
p)′, the model (2.3) becomes

ητ = X̃β̃ +
q∑

*=1

P* f*,

Statistical Modelling 2012; 12(4): 323–346

 at BARUCH COLLEGE LIBRARY on October 23, 2012smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


July 12, 2012 15:57 02-SMJ-12-4

Bayesian Tobit quantile regression model for medical expenditure 335

and the prior on β̃ is N(0, δ−1
0 %̃−1), where

%̃ = diag
(

δα

δ0
,
%̃1

s1
, . . . ,

%̃p

sp

)
.

We then simulate β̃ | · ∼ N(µβ, σ 2δ−1
0 'β), where

µβ = 'β X̃ ′ D−1
w

(
y∗ − ητ + X̃β̃ − ξw

)
, 'β =

(
X̃ ′ D−1

w X̃ + σ 2%̃
)−1

.

Note that X̃ is a sparse matrix, and Dw and %̃ are diagonal matrices. Mak-
ing use of those sparsity features, it is fairly efficient to sample β̃ from its
full conditional. Finally, we obtain the original dummy coefficients by back-
transformation β j = U−1

j β̃ j .
4. Simulate for j = 1, . . . , p,

s−1
j | · ∼ Inverse Gaussian

(√
λ2

δ0β
′
j% jβ j

, λ2

)
.

5. Simulate for j = 1, . . . , p and k = 1, . . . , Kj

v jk | · ∼ Gamma
(

1,
δ0Kj

2s j
(β jk − β j,k−1)2 +

1
2

)
,

if xj is an ordinal predictor and

v jk | · ∼ Gamma
(

1,
δ0Kj

2s j
β2

jk +
1
2

)
,

if xj is a nominal predictor.
6. Simulate

λ2 | · ∼ Gamma



1
2

p∑

j=1

Kj −
p
2

+ aλ,
1
2

p∑

j=1

s j + bλ



.

7. Simulate f* | · ∼ N(µ*, σ 2δ−1
0 '*) for * = 1, . . . , q, where

µ* = '* P ′
* D−1

w (y∗ − ητ + f* − ξw), '* = (P ′
* D−1

w P* + σ 2φ* Q*)−1

and φ* = δ*/δ0. For identifiability, we add sum-to-zero constraint to f* by
computing f ∗

* = f* − '*1(1′'*1)−11′ f* (see Rue and Held, 2005, Section
2.3.3). Since '* is a banded matrix, we can efficiently sample f* using banded
Cholesky decomposition algorithm (see e.g., Rue and Held, 2005, Section
2.4).
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8. Simulate for * = 1, . . . , q,

δ* | · ∼ Gamma
(

a* +
m* − 2

2
, b* +

1
2

f ′
* Q* f*

)
.

9. Simulate

δ0 | · ∼ Gamma



3n
2

+
1
2

p∑

j=1

Kj ,

1
2σ 2

n∑

i=1

w−1
i (y∗i − ητ i − ξwi )2 +

p∑

j=1

β ′
j% jβ j

2s j
+

n∑

i=1

wi



.

Note that all the full conditionals above are the regular distributions (e.g., trun-
cated normal and gamma distributions), and can be simulated easily using R software
package. Repeat the above steps until the Markov chains converge for a few thou-
sands iterations. The Bayesian inference can then be made based on the samples of
the posterior distributions. For instance, the posterior means are often used to obtain
point estimates and the posterior quantiles are used to build credible intervals to
count for uncertainties.

4 Results

In the 2007 MEPS data, we limit the subjects whose age are at least 19 years old since
many covariates used in our model are inapplicable for children. Participants with
missing values are also excluded from the study. Finally, among 30 964 subjects in the
original survey, 15 890 participants are considered in the analysis. As for explanatory
variables, we use socioeconomic factors, e.g., education, poverty level and region and
personal characteristics/conditions, e.g., self-rated health and seat-belt use. Table 1
shows a complete list of the 11 categorical variables and two continuous variables in
use and their descriptions. These predictors are often selected in econometrical analy-
sis of healthcare costs (e.g., Dominici and Zeger, 2005; Mullahy, 2009). Note that
our method can generously include many categorical predictors because it performs
a variable selection using the group Lasso prior.

We apply the proposed Tobit quantile regression model to the MEPS data. We here
only present the results from median to upper quantiles because our primary interest
lies in the empirical implications of high costs. Moreover, 17% of individuals did not
have any medical expenditure, making it meaningless to consider lower quantiles.
The Bayesian estimates are obtained based on 20 000 MCMC iterations with 5 000
burn-in and three thining. We implement our model in R software interface and
use spam package (Furrer and Sain, 2010) to take advantage of the sparse matrices
in the full conditionals. Figures 3–6 show the fitted coefficients at 0.50th, 0.75th
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Figure 3 Dummy coefficients with 95% credible intervals at τ = 0.50. First row: poverty status, self-rated health
and risk attitude; second row: over illness without medicine attitude, seat-belt use and region; third row: marital
status, race and insurance type (from the left to the right direction). The reference levels are summarized in
Table 2.
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Table 2 Background of variables in MEPS

Variable Description Reference level

Expenditure $ spent (continuous)
Age Age of the respondent (continuous)
Region 1 = NE, 2 = MW, 3 = S, 4 = W NE
Education Completed years of education (continuous)
Sex 0 = male, 1 = female male
Medicine Over illness without medicine attitude:

1 = disagree strongly, 2 = disagree somewhat,
3 = uncertain, 4 = agree somewhat/agree strongly disagree strongly

Insurance 1 = private, 2 = public, 3 = uninsured private
Marital status 1 = married, 2 = widowed, 3 = separated,

4 = never married married
Poverty 1 = poor/negative, 2 = near poor,

3 = low income, 4 = middle income, 5 = high income poor/negative
Race 1 = non-Hispanic white, 2 = non-Hispanic black,

3 = Hispanic non-Hispanic white
Risk General risk taking attitude:

1 = disagree strongly, 2 = disagree somewhat,
3 = uncertain, 4 = agree somewhat, 5 = agree strongly disagree strongly

Seat-belt use Reported seat-belt use:
1 = always, 2 = nearly always,
3 = sometimes/seldom/never always

Self-rated health 4-point self-rating of health status:
1 = excellent, 2 = very good, 3 = good, 4 = fair/poor excellent

Smoking 0 = smoker, 1 = non-smoker smoker

and 0.95th quantiles along with their 95% credible intervals for ordinal and nominal
predictors. Figure 7 presents the fitted functions for continuous explanatory variables
age and education, together with 95% pointwise credible intervals.

There are several interesting findings. First of all, self-rated health, medicine,
insurance, marital status, smoking and sex are consistently significant through all
three quantiles. More specifically, individuals with poor self-rated health status and
the attitude that one should heavily depend on medicine to overcome illness clearly
show higher level of medical costs than others. Also, individuals with public insurance
spend a little more on healthcare than those with private insurance, and the insurance
holders have much higher expenditure than non-insurance holders. Furthermore,
individuals who have never been married tend to have lower medical expenditure
than those with other marital status. Additionally, females and smokers are likely to
spend more on medical expenditure than males and non-smokers.

Secondly, the regression coefficients of race, poverty, region and risk change sig-
nificantly over the quantiles. The disparities in medical costs between (non-Hispanic)
black and (non-Hispanic) white and between Hispanic and (non-Hispanic) white
diminish as the quantile increases, but expenditures for Hispanics remain signifi-
cantly lower than for whites and blacks throughout all quantiles. At median, higher
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Figure 4 Dummy coefficients with 95% credible intervals at τ = 0.75. First row: poverty status, self-rated health
and risk attitude; second row: over illness without medicine attitude, seat-belt use and region; third row: marital
status, race and insurance type (from the left to the right direction). The reference levels are summarized in
Table 2.
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Figure 5 Dummy coefficients with 95% credible intervals at τ = 0.95. First row: poverty status, self-rated health
and risk attitude; second row: over illness without medicine attitude, seat-belt use and region; third row: marital
status, race and insurance type (from the left to the right direction). The reference levels are summarized in
Table 2.

Statistical Modelling 2012; 12(4): 323–346

 at BARUCH COLLEGE LIBRARY on October 23, 2012smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


July 12, 2012 15:57 02-SMJ-12-4

Bayesian Tobit quantile regression model for medical expenditure 341

Sex
1 2

0.
0

0.
2

0.
4

0.
6

Smoking
1 2

-0
.3

0
-0

.2
0

-0
.1

0
0.

00

Sex
1 2

0.
0

0.
2

0.
4

0.
6

Smoking
1 2

-0
.3

0
-0

.2
0

-0
.1

0
0.

00

Sex
1 2

0.
0

0.
2

0.
4

0.
6

Smoking
1 2

-0
.3

0
-0

.2
0

-0
.1

0
0.

00

Figure 6 Dummy coefficients of gender (left) and smoking status (right) with 95% credible intervals at τ = 0.50
(top), 0.75 (middle) and 0.95 (bottom). The reference levels are summarized in Table 2.
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Figure 7 Quantile curves and 95% bands of age and education years: from the first to the third row: τ =
{0.50, 0.75, 0.95}.
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incomes bring higher medical costs, but this income effect is not observed at higher
quantiles. A slight regional effect appears for median and third quartiles: people from
northeast and midwest tend to spend more on healthcare than those from south and
west, but the effect disappears at 95% quantile. Unlike poverty status and region,
the risk attitude is only significant at 95% quantile, so that people who go strongly
against risk have lower medical costs than those who do not.

Finally, variable age has an apparent nonlinear relationship with the medical
expenditure. The costs slightly increase from 20 to 30, followed by a little drop from
30 to 40, and then increase dramatically between 40 and 60, and finally turn flat
after 60. Such pattern, however, becomes less clear as the quantiles go up, indicating
that age might be no longer an important factor for very high expenditures. The
nonlinear effect of education is significant at median: people who received more edu-
cation, especially between 10 and 15 years, tend to spend more money on healthcare.
Beyond median, the education level does not seem to be associated with the medical
expenditure.

5 Conclusion

In this paper, we proposed a Bayesian Tobit quantile regression approach to analyze
the MEPS data. Not only does the method accommodate the messy attributes of the
medical expenditure response but also provides a complete picture of the covariate
effects on the distribution of the expenditures. Moreover, it successfully selects the
important categorical predictors and models the nonlinear relationships. Here is
a summary of our findings. First, while confirming with earlier reports that the
uninsured, poor health, and old people spend more on healthcare, the age seems
not to be an important factor claimed for very high medical costs. Second, the low
income and educational attainment make people less likely to afford the out-of-
pocket costs of care, even if the costs of care is not very high. These factors have
become the barriers for some groups of people in the United States to receiving
healthcare services. For instance, it is not so surprising that Hispanics have obstacles
to receiving the timely and appropriate services due to their low average income
and education (e.g., Escarce and Kapur, 2006). This indicates that future changes in
healthcare policy or system for uninsured, illegal immigrants, lower income people
can create a whole new distribution of medical expenditures. Third, an attitude to
overcome the illness without medicine appears to be a very important indicator of
medical costs. It is even comparable to the indicator of being uninsured, which is
known to discourage people greatly from receiving a quality healthcare service.

As mentioned, the Tobit model assumes a single decision-making process, which is
a strong assumption. It requires that before making contact with the health services,
the individual has full information on the costs of alternative courses of treatment.
It also rules out the possibility that the initial decision to seek treatment is made
solely by the individual, while both the patient and the doctor influence the decision
about the amount of treatment. An alternative approach is to use SSM, which allows
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for two interdependent decisions. The decision to seek medical care and the choice
of how much to spend can be influenced by distinct but correlated observable and
unobservable factors. Chib et al. (2009) and van Hasselt (2011) have considered
methods of Bayesian inference in an SSM. It would be interesting to generalize their
methods to quantile regression context.
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