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a b s t r a c t

The burgeoning growth of health care spending has become a major concern to policy
makers, making the modeling of health care expenditure valuable in their decision-
making processes. The challenges of health care expenditure analysis are two-fold: the
exceptional skewness of its distribution as the top 5% of the population accounted for
almost half of all spending and its heteroscedasticity. To address these concerns, the
quantile regression model with power transformation has been employed, but at a price
of the model complexity and analysis cost. In this article, we introduce a simpler quantile
approach to the analysis of expenditure data by employing the location–scale model with
an unknown link function to accommodate the heteroscedastic data with non-ignorable
outliers. Specifically, in our approach a link function does not depend on quantiles; yet, it
effectively fits the data as the slope coefficient depends on the quantiles. This parsimonious
feature of our model helps us conduct a more intuitive and easily understood analysis
for the whole distribution with fewer computational steps. Thus, it can be more widely
applicable in practice. Additionally, simulation studies are conducted to investigate the
model performance compared to other competing models. Analysis of the 2007 Medical
Expenditure Panel Survey data using our model shows that aging and self-rated health
tend to drive up costs. However, uninsured persons do not contribute to the high health
cost. These findings suggest that careful monitoring of elderly’s health status and a more
aggressive preventive medicare system may contribute to slow down the explosion of
medical costs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

More money is spent on health care than ever in the United States. According to the recent report of World Health
Statistics 2009, approximately 16%ofUSGDPwas attributed to health care expenditure in 2007. The government, employers,
and consumers alike are struggling to keep up with increasing health care costs. Therefore, many analysts have advocated
controlling health care costs as a key step to economic stability.

One of the interesting features of health care spending in the US is its concentration of few individuals
with extremely high spending. For instance, the 2007 Medical Expenditure Panel Survey (MEPS), available from
http://www.meps.ahrq.gov/mepsweb/, suggests that the top 1% of the expenses accounted for 22% of total expenditures,
the top 5% for almost 50% of all spending, but the bottom 50% of the population accounted for only 3% of total expenditures
(Fig. 1). Naturally, individuals with high spending have been a focus of the analysis as they contribute disproportionately
to total expenditure. In addition, some studies have reported that high expenses persist over time; individuals with high
expenditures in one year are more likely to have high expenditures in subsequent years (Monheit, 2003). For these reasons,
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Fig. 1. Percent of total health care expenses incurred by different percentiles.

Fig. 2. Distribution of health care expenditures for the US population, 2007 MEPS.

an emphasis is placed on cost containment efforts for these individuals. There are some key challenges associated with
analyzing health care expenditure data. They have a tendency to be skewed to the right due to a few cases requiring
exceptionally expensive procedures (Fig. 2). Other than skewness, heteroscedasticity is also a feature of the expenditure
data.

Quantile regression, first introduced by Koenker and Bassett (1978), can be an effective way to model such skewed
distributions with outliers as seen in medical expenditure data. By transforming the response variable, the linearity in the
quantile regression setting can be better approximated. The power transformed quantile regression (PQR), employing the
power transformed response variable originated from Box and Cox (1964), was proposed in this line and implemented
by Powell (1991), Chamberlain (1994), Buchinsky (1995), Machado and Mata (2000), and Mu and He (2007). The basic
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assumption of the PQR approach is that the transformation parameter and the regression coefficient depend on quantiles
and may change from quantile to quantile. From a modeling point of view, this may provide a great deal of flexibility to the
model, but the increased complexity also causes some implementation issues in practice. In contrast, Hong and He (2010)
considered the quantile approachwith a single transformation. However, strong assumptions associatedwith iid error terms
are needed for estimation consistency. In this paper, we introduce a simple power transformed location–scale model or the
power transformed heterogeneous regressionmodel (PHR) as an alternative approach to PQR. The location–scale model has
been one of the most popular classes of models in the statistics and econometrics literature (refer to discussion Ruppert
and Wand, 1994; Fan and Gijbels, 1996). In the location–scale model, the location part is of primary interest to the
econometrician while the scale part is considered as a nuisance. Although PQR may work well for heteroscedastic data
in general, the simpler structure of PHR can be preferable to PQR for the following reasons. (i) PHR employs a single
transformation, letting only a scale factor adjust different conditional quantiles of the distribution.While the transformation
parameter λ(τ) depends on the quantile for PQR, the common transformation parameter λ for all quantiles is sufficient
for PHR. When different transformations are used for different quantiles, it becomes much harder to interpret or compare
the transformed responses at the quantile of interest. In contrast, the single transformation brings a more straightforward
interpretation of the slope parameter. (ii) Multiple transformations and quantile-dependent slopes parameters increase the
chance of quantile crossing (Bassett and Koenker, 1982) for PQR. The crossing problem can be avoided by using PHR, which
naturally satisfies monotonicity (He, 1997). (iii) PHR does not require a large sample size compared to PQR. The intensive
simulation studies and the applications in our paper show that the performance of the proposed PHR model is on par with
that of the PQR. Further, the PHR enjoys its simplicity in structure and computation; also it does not entail the iid error
assumption, a large sample size, andmultiple transformations. Thus, PHR allows for a single transformation, while ensuring
the heteroscedasticity of the data can still be allowed. It is, therefore, a good alternative to the PQR approach.

The remainder of the article is organized as follows. In Section 2, we propose the model. In Section 3, the simulation
studies are illustrated. In Section 4, the health expenditure 2007 MEPS data will be analyzed. Section 5 makes some
concluding remarks. The main technical details of the approach are summarized in the Appendix.

2. Proposed model

We consider location–scale models with the transformed response:

Λλ(yi) = x′

iβ + (x′

iγ )ui, (1)

where the transformation Λλ(y) is a monotone and continuous function of R → R for each λ in an interval [a, b], yi is the
response for the ith subject, xi is its covariate, and ui ∼ Gu is independent of xi. In Model (1) we let the data determine
the exact transformation entailing a linear relationship between the dependent variable and the covariates. The common
example of this type of transformation is the Box–Cox transformation, and the idea is to find a parameter λ such that

Λλ(y) =


yλ

− 1
λ

if λ ≠ 0
log(y) if λ = 0.

This transformation requires that the values of y must be positive in order for the function to be defined everywhere.
The quantiles of Model (1) have the following form:

Qτ (Λλ(yi|xi)) = x′

iβ + (x′

iγ )G−1
ui (τ ), (2)

where G−1
ui (0.5) is assumed to be zero. We refer to Model (2) as the power transformed location–scale model or power

transformed heteroscedastic regression model (PHR). Using the well-known equivariance property of order statistics under
a monotone transformation, the conditional quantile of yi given xi can be easily derived instead of Λλ(yi) as

Qτ (yi|xi) = Λ−1
λ (x′

iβ + x′

iγG−1
ui (τ )) = [λx′

i(β + γG−1
ui (τ )) + 1]1/λ. (3)

As an alternative to PHR, we can consider the following models.
• The power transformed quantile regression model (PQR):

Qτ (Λλ(τ)(yi|xi)) = x′

iβ(τ). (4)

This is equivalent to Λλ(τ)(yi|xi) = x′

iβ(τ) + ui(τ ), where ui is the error term, whose τ th quantile is zero conditional on
xi. Thus the conditional quantile of yi given xi becomes

Qτ (yi|xi) = Λ−1
λ(τ)(x

′

iβ(τ)) = [λ(τ)x′

iβ(τ) + 1]1/λ(τ). (5)

• The power transformed location regression model (PLR):

Qτ (Λλ(yi|xi)) = x′

iβ + G−1
ui (τ ). (6)

The conditional quantile for yi at xi is then given by

Qτ (yi|xi) = Λ−1
λ (x′

iβ + G−1
ui (τ )) = [λ(x′

iβ + G−1
ui (τ )) + 1]1/λ.
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Model (4) is variant of Model (1), which considers the constant transformation parameter λ regardless of τ . This model
was proposed by Buchinsky (1995), and Mu and He (2007) among others. In Model (4), both the transformation parameter
λ(τ) and the regression coefficient β(τ) depend on τ and may change from quantile to quantile. Model (6), however,
assumes iid errors, and thus a single transformation suffices and the same slope coefficients can be used for different
quantiles. Therefore, the model complexity for PHR can be considered between PQR and PLR with PQR being the more
complex model.

2.1. Estimation of λ, β , and γ

The joint estimation of λ, β , and γ is not easy, but for a given λ, Model (2) reduces to a simplified location–scale model.
Step 1 (Estimating λ and β). Our approach to estimating λ is similar to Powell (1991) and Chamberlain (1994). The sample
estimator for λ can be obtained as a solution to

λ̂ = argmin
λ


n

i=1

Λλ(yi) − x′

ib̂(λ)

 , (7)

where

b̂(λ) = argmin
b

n
i=1

|Λλ(yi) − x′

ib|

is a median regression estimate of β for given λ. Clearly, λ̂ can be computed using a grid search.
Step 2 (Estimating γ ). In this step, we substitute λ̂ and β̂ = b̂(λ) into Model (2) and estimate γ . We define the residuals
ri = Λλ̂(yi) − x′

iβ̂ . Regress |ri|′s on x′

is to obtain the median regression coefficient γ̂ and the fitted values si = x′

iγ̂ . Note that
this median regression does not guarantee the fitted function s to be nonnegative. In this case, some ad hoc approaches such
as replacing si with max{si,minj{sj > 0}} would be used to exclude the negative s. A detailed discussion on the treatment
of such cases can be found in He (1997).
Step 3 (Estimating Qτ (yi|xi)). Choose η̂τ to minimize Σiρτ (ri − ηsi) over η, where ρτ (t) = t {τ − I(t < 0)} is the ‘‘check
function’’ (Koenker and Bassett, 1978), for I(A) denoting the indicator function of the event A (it takes the value one if A is
true, and is zero otherwise).

Finally, the τ th quantile of yi has the form of

[λ̂x′

i(β̂ + γ̂ η̂τ ) + 1]1/λ̂. (8)

2.2. Consistency

Weshall nowprove the consistency ofλ, β , andγ under the following assumptions.We assume the following conditions.
A1. u has a median of 0.
A2. x′

iγ > 0 for all x ∈ Do, where Do is the compact domain. i = 1, . . . , n.
A3. There exists a constant C > 0 such that inf∥δ∥=1 n−1n

i=1 |x′

iδ| > C for all n almost surely.
A4. β0 is the unique minimizer of E[ρτ (Λλ(yi) − x′

iβ) − ρτ (Λλ(yi))].

Theorem 2.1. Consider the location model from (6)

Λλ(y) = x′

iβ0 + ui.

Under conditions A1–A4 and a given consistent estimator λ̂ for λ,

λ̂ = argmin
λ


n

i=1

Λλ(yi) − x′

ib̂(λ)

 , (9)

where

b̂(λ) = argmin
b

n
i=1

|Λλ(yi) − x′

ib|

is a median regression estimate of β0 for given λ.
The consistent estimator of β0 is

β̂τ = argmin
β


ρτ (Λλ̂(yi) − x′

iβ).

The additional conditions are stated as B1–B4.
B1. The random vector xi is independently distributed across i.
B2. The parameter vector θ = (β, λ) is an element of a compact parameter space Θ .
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B3. For all i, the transformation Λλ(x′

iβ) is well defined for all θ ∈ Θ and is continuous in Θ .
B4. For θ ∈ Θ , there is some random variable L(xi) such that |Λλ(x′

iβ)| ≤ L(xi) with E[L(xi)]r ≤ L̄ < ∞, for some L̄ and
r < 1. Furthermore, the function

1
n

n
i=1

(Λλ(x′

iβ) − Λλ∗(x′

iβ
∗))2

is continuous in θ ∈ Θ for every θ∗
∈ Θ and uniformly for n.

The conditions imposed here are quite similar to those imposed by Powell (1991) and Oberhofer (1982), except to
the extent that the conditions are stated in terms of the Box–Cox transformation parameter λ rather than the general
transformation of y.

Theorem 2.2. ConsiderModel (2). Under conditions B1–B4 and the conditions of Theorem 2.1, as n goes to infinity, λ̂ → λ, β̂ →

β, γ̂ → γ , and the τ th quantile is consistent for the true conditional quantile function Λ−1
λ (x′

iβ + x′

iγG−1
ui (τ )), where G−1

u (τ ) is
the τ th quantile of the error distribution of u.

3. Simulation studies

Simulation studies are conducted to compare the numerical performance of the proposed estimator versus two
competing models, PQR and PLR. Throughout each simulation, bivariate observations (xi, yi) with sample sizes of n = 120
and n = 600 are generated according to the following model:

Study 1: y0.5 = 10 + 2x + u, u ∼ N(0, 1),
Study 2: log(10y) = 0.3x + u, u ∼ N(0, 1),
Study 3: y0.5 = 10 + 2x + (x/5)u, u ∼ N(0, 1),
Study 4: 10 log(10y) = 3x + (x/6)u, u ∼ U(−0.5, 0.5),
Study 5: y0.5 = 10 + 2x + 0.1(3 + log(x))u, u ∼ N(0, 1),
Study 6: y0.5 = 10 + 2x + 0.1(x2 + x + 1)u, u ∼ N(0, 1),

where the independent variable x takes the values xi = i/5 , i = 1, . . . , n. We repeat each scenario 400 times.
The performance of the threemodels, PQR, PLR, and PHR are compared using the coverage probabilities obtained for each

technique. Let CD(α0, α1) denote the simulated (empirical) coverage corresponding to the (α1 − α0)% nominal prediction
interval (PI) obtained within the domain of D . In Table 1, the simulation results for the coverage probability of the 90% PI
including the mean squared error (MSE) are presented. For Studies 1–6, all three models have satisfactory overall coverage
probabilities in the domain of S = S1 ∪ S2 ∪ S3, where S1 = {xi, 1 ≤ i ≤ n/3}, S2 = {xi, n/3 + 1 ≤ i ≤ 2n/3}, and
S3 = {xi, 2n/3 + 1 ≤ i ≤ n}. Thus, the subdomains of S, i.e., S1, S2, and S3, are three mutually exclusive sets with the same
number of data values.

Studies with the heteroscedastic errors (i.e., Studies 3–4) and Study 6 are designed to mimic the distribution of the
medical expenditure having greater variability at older ages; S1 would be representing the young–old and S3 for the
oldest–old group.

The results are reported in Tables 1–3 and include the average coverage probabilities of the simulated estimates and
1000×mean square error (mean(ω̂−ω0)

2), where ω̂ is the observed coverage probabilities andω0 is the targeted coverage
probability. Coverage probabilities are investigated on thewhole (S) and on the subdomains (S1, S2, and S3) for each study. A
number of observations can be made from Table 1. (i) Three models, PQR, PLR, and PHR, have satisfactory overall coverages,
but greater variability in coverage probabilities at the subdomains are observed. (ii) As expected PLR performswell when the
error distribution is homoscedastic compared to studieswith the heteroscedastic error.When the scale term is not equal to 1
(Studies 3–6), PLR’s coverage probabilities within the subdomains tend to be over/under-estimated. Figs. 3 and 4 shows the
data generated from Study 4with different sample sizes, alongwith the lower and upper quantiles, Q0.05(y|x) and Q0.95(y|x).
The 90% prediction interval (PI), (Q0.05(y|x),Q0.95(y|x)) for PLR is shown as the short dotted lines. At small x values (S1), PLR’s
PI covers the most samples, but at very high x values (S3) the coverage probabilities are far beyond the targeted coverage
probabilities of 0.90. Apparently, PLR fails to account for non-constant variability and tends to overestimate the coverage
probability at S1 and underestimate it at S2 compared to PQR and PHR. These latter models have more flexibility in fitting
the quantiles that can be adjusted for the heteroscedastic data characteristics. (iii) PQR performs reasonably well, but for
most studies the coverage probabilities of PHR are closer to 0.90 at each subdomain than PQR when the sample sizes are
small (n = 120).

Table 2 shows that with the larger sample size (n = 600) the performance of PQR is improved compared to the smaller
sample size. Particularly, when the scale term is non-linear (Study 6), the performance of PQR is best among the other
models. However, the results from Study 5 indicate that a nonlinear scale term can actually be favorable to PHR. The data
plots of Study 5 and Study 6 (not shown here) suggest a greater degree of non-constant error variances for Study 6 than
Study 5.

On another note, in the medical cost application it is often of interest to estimate high quantiles. For example, the 0.95th
quantile of the total medical spending (Q0.95(y|x)) consists of a considerable percentage of the total medical costs in the
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Table 1
Coverage of Monte Carlo: CD = CD (α0, α1) with (α0, α1) = (0.05, 0.95) with n = 120. In simulation, 400 replications have been carried out. The
coverage probabilities are investigated at the whole domain, S = {S1, S2, S3} as well as S1 = {xi, i = 1, . . . , 40}, S2 = {xi, i = 41, . . . , 80}, and
S3 = {xi, i = 81, . . . , 120}. The numbers in parentheses are 1000 × MSE.

CD Model Study 1 Study 2 Study 3 Study 4 Study 5 Study 6

CS PQR 0.905 0.902 0.903 0.902 0.904 0.908
(0.124) (0.091) (0.010) (0.087) (0.121) (0.131)

PLR 0.900 0.900 0.900 0.900 0.900 0.900
(0) (0) (0) (0) (0) (0)

PHR 0.898 0.898 0.885 0.886 0.901 0.838
(0.006) (0.121) (0.944) (0.979) (0.100) (0.552)

CS1 PQR 0.915 0.934 0.935 0.941 0.927 0.933
(0.848) (1.496) (1.434) (1.832) (1.242) (1.489)

PLR 0.902 0.946 1.000 0.999 0.954 1.000
(1.481) (3.226) (10) (9.846) (3.698) (9.967)

PHR 0.900 0.898 0.847 0.856 0.900 0.737
(2.453) (3.184) (10.490) (10.832) (3.071) (39.303)

CS2 PQR 0.888 0.865 0.868 0.852 0.871 0.920
(1.212) (1.696) (1.618) (2.757) (1.679) (1.643)

PLR 0.902 0.906 0.970 0.933 0.892 0.961
(1.468) (1.464) (5.654) (1.871) (1.625) (5.170)

PHR 0.901 0.903 0.902 0.911 0.890 0.905
(1.532) (1.465) (1.406) (1.268) (1.598) (1.965)

CS3 PQR 0.911 0.908 0.905 0.912 0.913 0.871
(0.748) (0.467) (0.364) (0.301) (0.614) (1.682)

PLR 0.896 0.848 0.730 0.768 0.854 0.739
(1.268) (4.521) (29.592) (18.215) (3.473) (27.356)

PHR 0.894 0.895 0.907 0.889 0.914 0.874
(2.475) (1.976) (0.667) (1.010) (1.632) (2.184)

Note: CD (α0, α1) denotes the coverage probability for prediction intervals for a response variable between α0- and α1-th quantile at the domain D .
The results for PLR at the whole CS are mostly 0.9 throughout all 400 repetitions. Thus the zero MSE are reported.
PHR seems to have a less satisfactory coverage at the entire domain compared to the competing models, but the coverage is more close to the targeted
coverage at the subdomains for the most studies.

Fig. 3. Plot of curves from the three models at lower and upper quantiles using Study 4 with n = 120. Note that the inverse transformation function in
Models (2), (4) and (6), Λ−1

λ(τ)(t) = (λ(τ )t + 1)1/λ(τ) (if PHR or PLR, τ = 0.5) is not well defined if λ(τ)t + 1 < 0. Therefore, we set Λ−1
λ(τ) to be zero if

λ(τ)t + 1 < 0. This event happens to PQR frequently at the lower quantile.

population. Failure to accurately predict this population whose medical spending costs are extremely high can cause large
economic losses. This highly skewed distribution motivates us to investigate coverage probability beyond Q0.95(y|x).
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Fig. 4. Plot of curves from the three models at lower and upper quantiles using Study 4 with n = 600. Note that the estimated quantile for PHR (solid
lines) and PQR (long dashed lines) were quite close particularly at the lower x values so that they appear to be a single line in this plot.

Table 2
Coverage of Monte Carlo: CD = CD (α0, α1) with (α0, α1) = (0.05, 0.95) with n = 600. In simulation, 400 replications have been carried out. The
coverage probabilities are investigated at the whole domain, S = {S1, S2, S3} as well as S1 = {xi, i = 1, . . . , 200}, S2 = {xi, i = 201, . . . , 400}, and
S3 = {xi, i = 401, . . . , 600}. The numbers in parentheses are 1000 × MSE.

CD Model Study 1 Study 2 Study 3 Study 4 Study 5 Study 6

CS PQR 0.901 0.901 0.900 0.900 0.901 0.901
(0.004) (0.003) (0.003) (0.003) (0.003) (0.004)

PLR 0.900 0.900 0.900 0.900 0.900 0.900
(0) (0) (0) (0) (0) (0)

PHR 0.901 0.899 0.893 0.898 0.901 0.888
(0.002) (0.055) (0.229) (0.106) (0.007) (0.234)

CS1 PQR 0.924 0.926 0.917 0.927 0.933 0.904
(0.708) (0.691) (0.434) (0.726) (1.189) (0.111)

PLR 0.899 1.000 1.000 1.000 0.946 0.997
(0.302) (9.982) (10.000) (10.000) (2.283) (9.510)

PHR 0.900 0.922 0.877 0.912 0.897 0.859
(0.420) (2.051) (2.527) (2.109) (0.560) (2.643)

CS2 PQR 0.859 0.855 0.881 0.858 0.841 0.898
(2.173) (2.013) (0.816) (1.786) (3.847) (0.253)

PLR 0.900 0.866 0.983 0.890 0.891 0.928
(0.292) (1.214) (6.946) (0.219) (0.377) (1.482)

PHR 0.902 0.860 0.901 0.877 0.889 0.882
(0.279) (1.649) (0.336) (0.657) (0.428) (0.862)

CS3 PQR 0.921 0.920 0.903 0.916 0.929 0.900
(0.611) (0.435) (0.193) (0.281) (0.994) (0.106)

PLR 0.901 0.834 0.717 0.810 0.864 0.774
(0.275) (4.482) (33.486) (8.302) (1.613) (16.669)

PHR 0.902 0.915 0.902 0.905 0.915 0.922
(0.401) (0.645) (0.157) (0.362) (0.534) (0.766)

Note: CD (α0, α1) denote the simulated (empirical) coverage corresponding to the (α1 − α0)% nominal prediction interval (PI) obtained within the domain
of D .
The results for PLR at CS aremostly 0.9 throughout all 400 repetitions. Thus the zeroMSE are reported. Also, PQR consistently estimates the overall coverage
with the larger sample size compared to Table 1.
The performance of PHR in terms of estimating the coverage probabilities at the subdomains are better than the competing models for the most studies
except Study 6.

Table 3 shows the coverage probability beyond Q0.95(y|x). If the coverage is higher (or lower) than 5%, it indicates that
Q0.95(y|x) is underestimated (or overestimated). Again, the three models give the successful coverage probabilities close
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Table 3
Coverage of Monte Carlo: CD (α1, 1) with α1 = 0.95. In simulation, the sample sizes of n = 120 and n = 600 are used, and 400 replications have been
carried out. The numbers in parentheses are 1000 × MSE.

n Model Study 1 Study 2 Study 3 Study 4 Study 5 Study 6

120 PQR 0.068 0.083 0.090 0.092 0.077 0.070
(0.629) (1.393) (1.757) (1.900) (0.976) (0.111)

PLR 0.053 0.085 0.134 0.145 0.074 0.132
(0.789) (2.176) (7.553) (9.125) (1.434) (9.510)

PHR 0.057 0.060 0.053 0.075 0.049 0.070
(1.095) (0.992) (1.098) (1.026) (0.701) (2.643)

600 PQR 0.060 0.076 0.068 0.077 0.062 0.058
(0.181) (0.688) (0.436) (0.732) (0.241) (0.118)

PLR 0.051 0.150 0.142 0.150 0.690 0.112
(0.168) (10.000) (8.476) (10.000) (0.527) (4.198)

PHR 0.052 0.076 0.051 0.074 0.045 0.041
(0.215) (1.061) (0.305) (0.777) (0.174) (0.336)

Note: CD (α0, α1) denote the simulated (empirical) coverage corresponding to the (α1 − α0)% nominal prediction interval (PI) obtained within the domain
of D .

to 5% on the whole S. However, our following investigation reveals that at different subsets the coverage probabilities are
not consistently 5% and tend to be under or overestimated. For example, at S3, a particularly interesting subset, only PHR is
able to consistently cover 5%. With heteroscedastic errors, PLR tends to underestimate Q0.95(y|x). Also, PQR requires a large
sample size for good performance due to its model complexity; however, PHR and PLR are less influenced by the sample
size.

4. Application to the health care expenditures

The Medical Expenditure Panel Survey (MEPS), sponsored by Agency for Healthcare Research and Quality (AHRQ), is a
longitudinal survey conducted to generate nationally representative estimates of health care use, health care expenditures,
sources of payment, health insurance coverage and health status for the U.S. civilian noninstitutionalized population. The
MEPS is unique in its ability to link data on individuals and households (including demographics, health status, health
conditions, health insurance, employment, and income) to detailed information on their use of and expenses for health care.
Medical expenditure quantifies the total annual medical spending (including insurance spending and annual out-of-pocket
spending), measured in dollars. Here we focus on the MEPS of the calendar year of 2007. The MEPS in Year 2007 provides
information on 30,964 subjects among a nationally representative sample of the civilian non-institutionalized population.
The expenditure data from the MEPS exhibit a marked positive skewness with a few high expenditure respondents and
many low and zero expenditure respondents. As a consequence of the departure from a normal distribution, the MEPS data
are often analyzed after transformation.

Zero medical expenditure is recorded for about 17% of people, and therefore it is not meaningful to estimate the lower
quantiles. Note that Model (2) is not well defined if y is not strictly positive. Therefore, wemake y strictly positive by adding
one to y. Since the proposed sampling method does not produce equal probability samples, in the estimation procedure for
parameters we account for the sampling weights.

Table 4 presents the characteristics of the MEPS data for the people in the top 5% spending and for the entire population.
There are disparities in the percentages of each covariate between the two groups. The analysis shows that people with high
health care expenses are likely to be older, insurance holders, and in a self-rated fair or poor physical health status. However,
note that the percentages in Table 4 are marginal values. To identify the socioeconomic factors associated with medical
spending and estimate their high conditional quantiles, we consider medical expenditure as a function of socioeconomic
factors, including age, sex, marital status, ethnicity/race, self-rated health (SRH), education, poverty status, and health
insurance type.

Having enough sample data for each covariate in the highest spending group is helpful to obtain more consistent results.
Thus, all variables except age, which is continuous, are categorized into two levels: male vs. female, married vs. non-
married (single, widowed, divorced/separated), black vs. non-black, good SRH (excellent/very good/good) vs. poor SRH
(poor/fair), < high school education vs. ≥ high school education, higher income (middle income/high income) vs. lower
income (negative or poor/ near poor/low income), and insured (private/public) vs. uninsured. In A vs. B, the category on B is
entered as a reference in the regression model. We limit our interest to adults as most selected predictors are inapplicable
to children. Among a total of 21,782 adults, 18,197 adults are used to avoid missing values. Then we divide the sample into
two parts, a training set (n = 10,000) and a testing set (n = 8,197) for corroborating the model performance.

First, in order to seewhether the single transformation is appropriate for ourMEPS data,we estimateλ(τ)usingModel (4)
on the set of τ ∈ {0.50, 0.55, . . . , 0.90, 0.95}. Fig. 5 suggests that it would not be necessary to have different transformation
parameters at different quantiles, and the PHRmodelwouldwork desirably. Therefore, we use a fixed λ̂ = λ̂(τ = 0.5) = 0.3
for all quantiles. Table 5 shows the parameter estimates from PHR.
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Table 4
Characteristics of the top 5% spending and the entire sample.

Top 5% Entire sample

MEPS sample size(n) 901 18 197
US weighted sample size 9 848 610 199 077 260
Mean age (years) 60.1 47.1
Female (%) 56.1 52.4
Race/ethnicity (%)

Hispanic 7.7 13.3
Black 11.6 11.1
Asian 3.3 4.3
Other 2.0 2.0
White 75.4 69.3

Marital status (%)
Married 57.9 55.7
Single 11.1 23.8
Widowed 14.8 6.5
Divorced/separted 16.2 14.1

Education (%)
Less than high school 19.0 15.3
High school graduate 47.3 49.2
Some college 33.7 35.6

Health insurance type (%)
Private 68.5 70.0
Public 30.0 15.2
Uninsured 1.5 14.8

Income (%)
Poor 12.6 10.4
Near poor 5.5 4.0
Low income 15.9 12.9
Middle income 26.7 30.8
High income 39.3 41.9

Self-rated health (SRH) (%)
Excellent 7.6 25.5
Very good 18.7 33.9
Good 32.4 27.9
Fair 23.7 9.6
Poor 17.6 3.1

Fig. 5. Estimated transformation λ(τ) vs τ .

Analysis of the results shows that (i) the small p-values for age, health status, poverty, and uninsured predictors of
γ coefficients in Table 5 indicate that heteroscedasticity is still present in the residuals. Therefore, it could potentially
undermine the accuracy of estimating the quantiles if we ignored the heteroscedasticity. (ii) Older age, female, poor
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Table 5
PHR parameter estimates of the location and scale parts using the 2007MEPS data.

Variables Estimates Pr(> |t|)

Location-part

(Intercept) 4.76 0.000
Age 0.11 0.000
Male −1.53 0.000
Married 0.01 0.881
Black −0.91 0.000
Poor SRH 3.48 0.000
< high school education −0.81 0.000
Lower income −0.30 0.024
Uninsured −3.72 0.000

Scale-part

(Intercept) 1.85 0.000
Age 0.01 0.000
Male −0.07 0.367
Married 0.02 0.765
Black 0.09 0.344
Poor SRH 0.80 0.000
< high school education 0.08 0.467
Lower income 0.25 0.013
Uninsured −0.26 0.008

Abbreviation; SRH, self rated health.
p-values of the median regression parameter are reported.

Fig. 6. The histogram of residuals after the Box–Cox transformation.

SRH, ≥ high school education, high income, and holding insurance are positively associated with medical expenditure.
Importantly, the predictors of poor SRH and holding insurance greatly impact the high quantiles of medical expenditure.
(iii) Black individuals and uninsured people from lower income families received significantly disparate care at high
expenditure levels.

There are numerous benefits with better prediction of high quantiles of medical expenditure. It could alleviate the risk
of catastrophic out-of-pocket medical care cost by focusing on patients with those high risk characteristics. Moreover, it can
help us develop improved access to quality care among minorities with critical health issues. In this regard, we investigate
the performance of the coverage probability at high quantiles, {y : y > Q̂0.95(y|x)} with three models.

In practice, the traditional Box–Cox transformation toward the normality assumption is widely used in many fields
when there is no prior information about an appropriate transformation. Although the density plot in Fig. 6 shows that
the Box–Cox transformation considerably corrects a skewness in the MEPS data, longer right tails in both the density plot
and the quantile–quantile (Q–Q) plot of residuals still question whether the normality assumption is appropriate.

Therefore, we introduce the new model based on the traditional Box–Cox transformation toward the normality
assumption, and refer to it as the power transformed normal regression (PNR). Then, its quantile can be computed as

Qτ (yi|xi) = [1 + λ(x′

iζ + σΦ−1(τ ))]1/λ,

where Φ is the cumulative distribution function for the Gaussian distribution with mean x′

iζ and standard deviation σ . This
PNR approach is compared with the previously introduced PQR and PLR as well as our proposed PHR model.

In Table 6 we estimate the coverage probability beyond the estimated 0.95th quantile of the expenditure for the four
models. The deviations from the 0.05 level can be interpreted as under/over-estimated quantiles. Basically, the idea of
Table 6 is that if the model is valid, it should give a consistent coverage probability at each level of the variables (e.g. male or
female). In this application with the MEPS data set, PNR and PLR fail to give a consistent probability, especially over health
status, income, and insured status, indicating that the data is not homoscedastic. As expected given the large sample size, we



60 H. Grace Hong / Computational Statistics and Data Analysis 63 (2013) 50–62

Table 6
The coverage probabilities beyond the 0.95th quantile by the four models: PQR, PLR, PHR, and PNR.

Variables Estimation Validation
PQR PLR PHR PNR PQR PLR PHR PNR

Sex
Female 0.050 0.052 0.051 0.049 0.045 0.045 0.047 0.045
Male 0.050 0.049 0.055 0.035 0.053 0.051 0.057 0.041
Marital status
Married 0.050 0.049 0.051 0.038 0.052 0.050 0.053 0.041
Widowed, divorced, never married 0.051 0.052 0.055 0.046 0.045 0.045 0.051 0.045
Race/ethnicity
Black 0.050 0.063 0.058 0.056 0.057 0.076 0.063 0.069
Non-black 0.051 0.049 0.052 0.039 0.048 0.044 0.051 0.040
SRH
Poor/fair health status 0.051 0.087 0.042 0.046 0.048 0.084 0.037 0.048
Good/excellent health status 0.050 0.045 0.055 0.041 0.049 0.043 0.054 0.042
Education level
< high school education 0.052 0.066 0.048 0.056 0.038 0.052 0.040 0.048
≥ high school education 0.050 0.048 0.054 0.039 0.051 0.047 0.054 0.042
Income level
Low income (1 ≤ poverty level ≤ 3) 0.050 0.070 0.056 0.058 0.050 0.059 0.055 0.060
High income (4 ≤ poverty level ≤ 5) 0.051 0.043 0.052 0.035 0.049 0.044 0.051 0.037
Insured status
Uninsured 0.052 0.039 0.051 0.056 0.053 0.040 0.061 0.072
Private/ public insurance holder 0.050 0.053 0.053 0.039 0.048 0.049 0.051 0.038

observe that PQR is slightly better than PHR. However, when it comes to estimating the probability at different quantiles,
say upper 0.99th quantile instead of 0.95th quantile, PQR needs to find different transformations and slope coefficients
according to the transformed response. Since only the scale factors are adjusted for the different quantile for PHR, Table 6
is sufficient to explain the whole distribution of health care spending.

5. Conclusion

An observation that a relatively small group of individuals accounts for a large fraction of spending in the healthcare
systemmotivates us to investigate the detailed causes for higher spending. The findings of our study reveal that aging tends
to drive up costs and poor self-rated health is a good indicator for the higher costs. However, uninsured persons do not
contribute to the high health cost. This result would suggest that careful monitoring of elderly’s health status is important
and a more aggressive preventive medicare system can reduce the high medical costs. Methodologically, estimating high
quantiles in the medical expenditure data that exhibit a highly skewed and strongly heteroscedastic distribution is one of
the key challenges in analyzing theMedical Expenditure Panel Survey (MEPS) data. In order to deal with these features of the
MEPS data, we have proposed a quantile approach to the power transformed location–scale model. When the errors are not
homoscedastic but the variability across the different range of quantiles is not evident, the power transformed location–scale
model (PHR) can be a useful alternative to the power transformed quantile regression model (PQR).

The MEPS data suggests that the transformation parameters are quite stable over a set of quantiles, and thus the
location–scale model using a single transformation performs well. The simulation studies demonstrate that our method
can effectively estimate high quantiles when a data set presents either homoscedasticity or heteroscedasticity even
with relatively small sample sizes, whereas the performance of PQR depends more on the sample size. In the aspect
of data analysis, unlike PQR, PHR provides more intuitive and easier interpretations when the multiple quantiles are
compared simultaneously since the different transformations on response variables are not required for different quantiles.
Furthermore, an embarrassing phenomenon of quantile crossingmay occur for PQR since each conditional quantile function
is independently estimated. This event does not satisfy our theoretical and empirical assumption that the lower quantile
level should not cross the higher quantile level. However, the proposed PHR model has the property of non-crossing
quantiles. As a result, PHR can be more useful in practice if there is no clear benefit to employing the more complex-
structured PQR model.

To note, our study has a few limitations. First, we assume the linear estimation of the scale parameter for the sake of
simplicity. Further investigation is required when a true scale parameter has a nonlinear form. Also, one of the interesting
features of the MEPS data is that medical expenditure is censored at zero. Therefore, taking into account the non-negative
values with a point mass at zero can potentially lead to a more precise analysis. In this article, we have not considered the
medical expenditure distribution in this way and are currently researching to accommodate these aspects of the model.
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Appendix. Technical proofs

Lemma A.1. Consider Model (4). Under conditions B1–B4,

(β̂(τ ), λ̂(τ )) = argmin
(β,λ)

n
i=1

ρτ (Λλ(τ)(yi) − x′

iβ(τ)), for τ = 0.5

is consistent.

The proof of Lemma A.1. A rigorous derivation can be found in Powell (1991) and Oberhofer (1982). Buchinsky (1995) also
develops the theory of the Box–Cox quantile regression for the case of discrete regressors where the estimation of (β̂, λ̂)
can be achieved by minimum distance methods. �

The proof of Theorem 2.1. First we show that β̂τ is bounded. Let ϵ0 = min{τ , 1 − τ }/2 for τ ∈ (0, 1). Then, the following
inequality holds.

n
i=1

ρτ (Λλ̂(yi) − x′

iβ) −

n
i=1

ρτ (Λλ̂(yi)) ≥ ϵ0

n
i=1

|x′

iβ| −

n
i=1

ρτ (Λλ̂(yi)).

Denote δ = β/∥β∥. For a constant C in the assumption C3, if ∥β∥ >
n

i=1 ρτ (Λλ̂(yi))C/ϵ0, then
n

i=1 ρτ (Λλ̂(yi) − x′

iβ) >n
i=1 ρτ (Λλ̂(yi)). However, by definition β̂τ is chosen to minimize the objective function, thus

n
i=1 ρτ (Λλ̂(yi) − x′

iβ̂τ ) <n
i=1 ρτ (Λλ̂(yi)) holds. This implies that ∥β̂τ∥ < M , for some positive constantM .
Now suppose that β̂τ does not converge to β0, i.e., ∥β̂τ − β0∥ ≥ ϵ0, along a subsequence of n, still denoted by n for

simplicity. Due to the boundedness of β̂τ , there exists a further subsequences, still called β̂τ , such that β̂τ → β∗
≠ β0. By

the continuity of Eρτ (·) and the uniqueness of β0, there exists k0 s.t.

E[ρτ (Λλ(y) − x′β∗) − ρτ (Λλ(y) − x′β0)] > k0 > 0. (A.1)

By the law of large numbers, n−1n
i=1 ρτ (Λλ(yi) − x′

iβ̂τ ) → E[ρτ (Λλ(y) − x′β∗)]. For sufficiently large n, (A.1) leads to
the following inequality,

1
n

n
i=1

ρτ (Λλ(yi) − x′

iβ0) <
1
n

n
i=1

ρτ (Λλ(yi) − x′

iβ̂τ ) −
k0
2

. (A.2)

Since λ̂ is consistent by Lemma A.1, we have, for sufficiently large n,

1
n

n
i=1

ρτ (Λλ̂(yi) − x′

iβ0) <
1
n

n
i=1

ρτ (Λλ(yi) − x′

iβ0) +
k0
4

(A.3)

and

1
n

n
i=1

ρτ (Λλ(yi) − x′

iβ̂τ ) −
k0
4

<
1
n

n
i=1

ρτ (Λλ̂(yi) − x′

iβ̂τ ). (A.4)

Putting (A.2)–(A.4) all together,

1
n

n
i=1

ρτ (Λλ̂(yi) − x′

iβ0) <
1
n

n
i=1

ρτ (Λλ̂(yi) − x′

iβ̂τ ).

This contradicts the definition of β̂τ that minimizes the objective function, meaning β̂τ converges to β0. Therefore, β̂τ is
consistent. �

The proof of Theorem 2.2. The proof of consistency of λ̂ follows immediately from Lemma A.1. Also, given λ̂ → λ as n goes
to infinity, particularly for τ = 0.5, Theorem 2.1 implies β̂ in Model (2) is the consistent estimator of β . Now we remain to
prove the consistency of γ̂ . Let û = Λλ̂(y) − x′

iβ̂ and u = Λλ(y) − x′β . By the law of large numbers,

1
n

n
i=1

ρτ (ui) → Eρτ (u). (A.5)

For sufficiently large n, since both λ̂ and β̂ are consistent, by continuity

1
n

n
i=1

(ρτ (ûi) − ρτ (ui)) → 0. (A.6)
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From (A.5)–(A.6), we obtain n−1n
i=1 ρτ (ûi) − Eρτ (u) → 0. By making use of similar arguments that we used for

Theorem 2.1, γ̂ which minimizes

1
n

n
i=1

|ûi − x′

iγ |

is consistent. Therefore, the τ th quantile is consistent for the true conditional quantile function Λ−1
λ (x′

iβ + x′

iγG−1
ui (τ )). �
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