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In this paper, we propose a quantile approach to the multi-index semiparametric model for an ordinal
response variable. Permitting non-parametric transformation of the response, the proposed method achieves
a root-n rate of convergence and has attractive robustness properties. Further, the proposed model allows
additional indices to model the remaining correlations between covariates and the residuals from the single-
index, considerably reducing the error variance and thus leading to more efficient prediction intervals (PIs).
The utility of the model is demonstrated by estimating PIs for functional status of the elderly based on
data from the second longitudinal study of aging. It is shown that the proposed multi-index model provides
significantly narrower PIs than competing models. Our approach can be applied to other areas in which
the distribution of future observations must be predicted from ordinal response data.

Keywords: dimension reduction; health economics; multi-index model; ordinal response; quantile
regression

1. Introduction

Aging population is becoming an increasingly urgent issue in many developed countries. In 2008,
people aged 65 and over consisted of more than 13% of the total US population and are projected
to amount to nearly 20% by 2030 [29]. The incredible gain in life expectancy, however, may not
always come with healthy later life. Despite some controversy, declining trends in disability of
the elderly were generally observed from the 1980s and 1990s [5,7]. Now these positive trends
may be reversing since the new cohorts, mainly from baby boomers, exhibit worse health status
and more disability [28]. The increased morbidity and disability in the rapidly growing elderly
population would exert enormous strain on available human and financial resources. Therefore,
an accurate assessment of the distribution of true health status of the elderly provides a crucial
step toward gauging the economics of aging, including the ability of the elderly to remain in the
work force and the health care expenditures as well as individual well-being [21].
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1232 H.G. Hong and J. Zhou

Functional status (FS) is one of the most commonly used measures of health status [6,31]
and has been extensively utilized to assess a senior’s capacity to perform self-care and physical
activities [3] and to predict survival and quality of life in the elderly [26,27]. Derived from self-
reports on activities of daily living (ADL) and instrumental activities of daily living (IADL), FS
is often classified into an ordinal scale according to the severity ratings of disability [2,13]. Even
though numerous attempts have been made to estimate the effect of covariates on FS of the elderly
[2,14,22], little work has been reported on predicting future FS via statistically valid prediction
intervals (PIs). Furthermore, existing approaches to FS prediction are generally based on popular
ordinal models such as ordered probit or ordered logit. As such, their prediction accuracy is
likely to be seriously undermined when the assumption of a homoscedastic error distribution is
violated.

In an effort to increase the flexibility and improve the predictive power of traditional approaches,
Hong and He [9] developed the transformed ordinal regression quantile estimator, or TORQUE,
a semiparametric ordinal model that includes the ordered logit and ordered probit models as
special cases. Where these traditional models focus attention on estimating mean changes in the
dependent variable, TORQUE produces estimates of conditional quantiles, thus providing a more
complete picture of the covariate risk factors’ effects. Moreover, the quantile-based TORQUE
model was shown to be useful in building PIs, consistently producing narrower PIs than those
based on parametric models for data with non-Gaussian error distributions. On the other hand,
as a single-index model, the assumption that the residuals are uncorrelated to that single-index
somewhat limits the model’s applicability.

This work differs from the previous approaches as it incorporates a multi-index model in
the quantile regression framework for the prediction of (ordinal) FS of the elderly. Moreover,
we employ modern modeling techniques in the TORQUE setup in that the proposed model (1)
accounts explicitly for remaining correlations between the covariates and the residuals from the
single-index model, (2) utilizes the canonical correlation (CANCOR) method to decide the number
of dimensions needed for the multi-index model, and (3) assumes that the link functions in the
multi-index model are unknown and can be estimated via non-parametric methods.

Our new method significantly reduces the error variance, thus leading to more efficient PIs
compared with the TORQUE model, and enjoys a root-n rate of convergence. By estimating PIs
for the FS of the elderly, we will present that the proposed multi-index model indeed provides
significantly shorter PIs than the ordered probit or single-index TORQUE model. Since ordinal
responses appear not only in aging research but also in other health-related sciences, social stud-
ies, and business and economics, the proposed method is potentially useful for a wide class of
applications.

2. Statistical models

2.1 Predecessor models

Consider the following single-index model.

�(Ỹ) = XTβ0 + ε, (1)

where � is a monotone function and Ỹ is a jittered response variable. That is, Ỹi = Yi + Ui,
where Yi is the ordinal response variable taking values in {1, 2, 3, . . .} and Ui ∼ Unif[0, 1) are
independent random samples. The vector X = (x1, . . . , xp) ∈ Rp is a p-dimensional predictor, β0
is a p × 1 parameter vector, and ε represents a random error whose cumulative distribution F is
not specified.
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Then, the τ th conditional quantile of Ỹ given X = X is written as

Qτ (�(Ỹ) | X) = ατ + XTβτ , (2)

for some coefficients ατ ∈ R and βτ ∈ Rp, where τ ∈ (0, 1), and Qτ denotes the τ th quantile.
Model (2) is the TORQUE model of Hong and He [9], which generalizes existing ordinal

response models such as ordered probit and ordered logit. The TORQUE model has a cou-
ple of advantages compared with its counterparts. It is more robust against deviations from the
assumptions on a specific error distribution and the parametric transformation of the response.
Furthermore, the PI for the outcome variable using the TORQUE model gives more efficient
prediction.

However, we note that Model (1) assumes that the random errors are independent of the
single-index XTβ0. When this assumption is violated, the model can be improved by introducing
additional indices as in

Y = g(XTβ1, . . . , XTβk , ε), (3)

where k is the number of indices, ε is a random error independent of X, and g is a unknown link
function. Model (3) is called a multi-index model and many popular models are special cases of
Equation (3). For example, for k = 1 if g is a linear function, it is a linear regression model; if
g is a nonlinear function, it is a single-index model; if Y is binary and g is a certain parametric
choice, it can produce the logit and probit models. The multi-index model has been applied
in areas such as marketing and epidemiology (see [1,19,23]). The multi-index model assumes
that all the relevant information provided by X for predicting Y is contained in the k linear
combinations of X. In the current literature on multi-index models, including Ichimura and Lee
[10], Poirier [25], Picone and Butler [24], Wang et al. [30], among others, the number of indices
usually needs to be specified in advance.

Dimension reduction methods focus on the estimation of k and then βj, j = 1, 2, . . . , k̂, in
Model (3) without estimating the link function g. Many methods have been proposed to execute
dimension reduction, including sliced inverse regression [17], sliced average variance estima-
tion [4], principal Hessian directions [18], directional regression [15], contour regression [16],
minimum average variance estimation [32], CANCOR method [8], and others.

2.2 Proposed model

In applications of Model (3), the required number of indices k is generally unknown a priori. In
this paper, we use the method of CANCOR to determine k. CANCOR is an appealing dimension
reduction method due to its transparent interpretation of the estimates. It enables us to obtain the
estimate of the dimension k̂, and a set of the effective dimension reduction directions, βj, j =
1, 2, . . . , k̂, by finding the significant CANCORs between X and a set of B-spline basis functions
of Y , π(Y). The CANCORs are a sequence of maximized constrained correlations between XTβj

and αT
j π(Y) subject to βj and αj. The procedure can be carried out conveniently with existing

functions in most statistical packages, such as SAS and R. The canonical direction estimates of X
are the estimates of βj, j = 1, 2, . . . , k̂, where k̂ is the number of significant CANCORs selected by
the following sequential χ2 test. Denoting the estimated CANCORs by γ̂i in a decreasing order,
the χ2 test statistic is −{n − (p + H + m + 2)/2} ∑p

i=s+1 log(1 − γ̂ 2
i ), where n is the sample size,

p is the dimension of X, H and m are the number of internal knots and the spline order, respectively,
for generating the basis function, π(Y). Under the null hypothesis of γ 2

s > γ 2
s+1 = 0, i.e. there

are s significant CANCORs, the above test statistic has a χ2 distribution with (p − s)(H + m −
s − 1) degrees of freedom. The sequential χ2 test is performed using the above test statistic

D
ow

nl
oa

de
d 

by
 [

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
] 

at
 1

0:
32

 0
9 

Se
pt

em
be

r 
20

13
 



1234 H.G. Hong and J. Zhou

for s = 0, 1, . . ., and the dimension k̂ is selected as the smallest value of s that makes the null
hypothesis accepted. For detail on CANCOR and the sequential χ2 test, see Fung et al. [8].

Provided that the CANCOR method selects k = 2 in our application to the longitudinal study
of aging (LSOA) II data, we explore a double-index transformed ordinal regression model

Y = g(XTβ1, XTβ2, ε). (4)

Among many possible structures for Model (4), we consider the following additive structure
for the two indices as a simple tool to demonstrate the construction process for the double-indexed
quantile model,

�1(Ỹ) = XTβ1 + ε1 (5)

and

�2(ε1) = XTβ2 + ε2, (6)

for some unknown monotone transformations �1 and �2. The jittering in Ỹ is used as a convenient
tool for converting discrete data into continuous data. Machado and Santos Silva [20] also applied
this jittering technique to the discrete response data. See Koenker [11] for further discussion on
jittering of discrete data.

We now present a set of conditions that can be used as basic building blocks for the root-n rate
of convergence in our proposed estimator.

(C0) ε2 are i.i.d. and independent of X.
(C1) XTβ1 and XTβ2 are independent.
(C2) Conditions A1–A5 in Fung et al. [8].
(C3) Linearity condition of Li [17], i.e. for any given b ∈ Rp, E(XTb | XTβ1, XTβ2) = c0 +∑2

i=1 ciXTβi for some constants ci.

Conditions (C0) and (C1) together imply that ε1 is i.i.d. given XTβ1, which leads to the root-n
rate of convergence in our proposed estimate. Conditions (C2) and (C3) are needed to ensure the
root-n rate of the initial estimates of β1 and β2 by CANCOR.

Combining Equations (5) and (6), we obtain

�2(�1(Ỹ) − XTβ1) = XTβ2 + ε2. (7)

Assume that the function �1(·) and �2(·) are strictly increasing on [ỹa, ỹb] and [ε1,a, ε1,b], the
support of ỹ and ε1, respectively. The τ th conditional quantile of Ỹ can then be expressed as

Qτ (�2(�1(Ỹ) − XTβ1) | X) = XTβ2,τ (8)

or

Qτ (Ỹ | X) = �−1
1 (XTβ1 + �−1

2 (XTβ2,τ )). (9)

The transition from Equation (8) to Equation (9) is justified by the monotone equivariance property
of quantile regression, Qτ (h(Y) | x) = h(Qτ (Y | x)) for any monotone transformation h.

Finally, as shown in Hong and He [9] the conditional quantile of the ordinal response Y is
obtained from the jittered Y by

Qτ (Y | X) = ��−1
1 (XTβ1 + �−1

2 (XTβ2,τ ))�, (10)

where �·� denotes the greatest integer function.
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2.3 Estimation method

Given the jittered observations {Ỹi, Xi}n
i=1, the estimation of the proposed double-index trans-

formed ordinal quantile regression model proceeds in the following steps.

• Step 1: Estimation of the initial estimates of β1 and β2.
Obtain the initial estimates of β1 and β2 by applying CANCOR to {Ỹi, Xi}. By Fung et al. [8],

the initial estimates β̂
0

1 and β̂
0

2 of CANCOR are root-n consistent to β1 and β2, respectively.
• Step 2: Estimation of �1 and β1.

(a) Obtain the estimate of �1 at each given ỹ as

�̂1(ỹ) = arg max
�1∈M	1

{	1(ỹ, �1, β̂
0

1)}, (11)

where 	1(ỹ, �1, β̂
0

1) = ∑
i �=j(diỹ − djỹ0)1{XT

i β̂
0

1 − XT
j β̂

0

1 ≥ �1}, M	1 is a pre-specified compact

set in R1, diỹ = 1{Ỹi ≥ ỹ}, and djỹ0 = 1{Ỹj ≥ ỹ0} for some ỹ0 chosen by the user under the
location normalization assumption of �1(ỹ0) = 0. For details on estimation of �1, see Hong
and He [9].
(b) Obtain β̂1, the median absolute deviation estimate of β1, by regressing {�̂1(Ỹi)} on {Xi}.

• Step 3: Estimation of �2 and β2,τ .

Calculate residuals, e1,i = �̂1(Ỹi) − XT
i β̂1, for i = 1, 2, . . . , n.

(a) Obtain the estimate of �2 at each given e1,i as

�̂2(e1,i) = arg max
�2∈M	2

{	2(e1,i, �2, β̂
0

2)}, (12)

where 	2(e1,i, �2, β̂
0

2) = ∑
j �=k(de,ij − d̃e,k)1{XT

j β̂
0

2 − XT
k β̂

0

2 ≥ �2}, M	2 is a pre-specified com-

pact set in R1, de,ij = 1{e1,j ≥ e1,i}, and d̃e,k = 1{e1,k ≥ e1,0} for some e1,0 which satisfies
�2(e1,0) = 0.
(b) Estimate β2,τ in the quantile regression of Koenker and Bassett [12] as

β̂2,τ = arg min
β2∈Rp

n∑

i=1

ρτ (�̂2(e1,i) − XT
i β2), (13)

where ρτ (r) = τ r − r1{r < 0} is the quantile loss function.

Finally, the τ th quantile of Y given X can be estimated by substituting (β1, β2,τ , �1, �2) in

Equation (10) with their estimates (β̂1, β̂2,τ , �̂1, �̂2) obtained above.
Note that the estimated canonical covariate αT

1 π(Ỹ) in CANCOR gives an initial estimate of
�1(Ỹ) in the B-spline space. We update �1(Ỹ) in Step 2 based on the rank transformation method
providing a monotone function estimate, which is essential for the jittered Ỹ and for identifying
the conditional quantiles Qτ (Y | X) in our method. The relationship between αT

2 π(Ỹ) and �2(ε) is
however unknown due to the assumed model structure in Equation (7) and the internal optimization
constraints in the CANCOR procedure. Both of the proposed additive Models (5) and (6) and
the developed algorithm can be generalized to the model with k (k > 2) indices. For the model
generalization, we can recursively regress the residuals from the previous index on the current
index. Accordingly, for the algorithm generalization, we should repeat Step 2 to estimate �i and
βi for i = 1, . . . , k − 1, and estimate βk,τ as in Step 3.2. The conditional quantile of Y can then

be estimated as in Equation (10) using the estimates (β̂1, . . . , β̂k−1, β̂k,τ , �̂1, . . . , �̂k−1, �̂k).
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1236 H.G. Hong and J. Zhou

2.4 Consistency

The consistency of the proposed estimator relies on the consistency of the initial estimate β1 and
β2 and the function estimate �̂k , k = 1, 2. Under appropriate conditions, we have the following
Proposition 2.2, which implies that the proposed conditional quantile estimates at any value of
τ in (0,1) are asymptotically consistent at the root-n rate. We impose the following regularity
conditions in addition to (C0)–(C3) to facilitate the proofs.

(C4)
∫

f1(−z1)p1(z1 + �1(ỹ0))p1(z1 + �1(ỹ)) dz1 is negative for each ỹ ∈ [ỹa, ỹb], and uniformly
bounded away from zero.

(C5)
∫

f2(−z2)p2(z2 + �2(ε1,0))p2(z2 + �2(ε1)) dz2 is negative for each ε1 ∈ [ε1,a, ε1,b] and
uniformly bounded away from zero.

(C6) Let zk = XTβk for k = 1, 2. The conditional density of zk given X = t ∈ Rp for any t,
pk(sk | t), and the density of εk , fk(sk) for k = 1, 2, are twice continuously differentiable in
sk , and the derivatives are uniformly bounded.

(C7) By scale normalization, we assume that the first element in βk (k = 1, 2) is 1, and the
distribution of x1 conditional on X has an everywhere positive density with respect to
Lebesgue measure. Also, the support of X is not contained in any proper linear subspace of
Rp.

(C8) There exists a constant C > 0 such that

inf‖φ‖=1

1

n

n∑

i=1

|XT
i φ| > C for all n almost surely.

(C9) β1 is the unique minimizer of E[ρτ (�1(Ỹ) − XT
i β) − ρτ (�1(Ỹ))], and β2 is the unique

minimizer of E[ρτ (�2(ε1) − XTβ) − ρτ (�2(ε1))].

For explanations of conditions (C4)–(C9), we refer to Hong and He [9].

Lemma 2.1 Assume conditions (C2) and (C3), the initial estimates β̂0
1 and β̂0

2 are root-n
consistent to β1 and β2 in direction.

Proof of Lemma 2.1 This proof is ascribed to Theorem 1 of Fung et al. [8]. �

Proposition 2.2 Under conditions (C0)–(C9),

sup
ỹa≤ỹ≤ỹb

|�̂1(ỹ) − �1(ỹ)| = Op(n
−1/2),

sup
ε1,a≤ε1≤ε1,b

|�̂2(ε1) − �2(ε1)| = Op(n
−1/2),

β̂1 − β1 = Op(n
−1/2),

β̂2,τ − β2,τ = Op(n
−1/2).

Proof of Proposition 2.2 Lemma 2.1 implies that β̂0 and β̂1 are consistent estimators of β0 and
β1, respectively. Conditions (C0) and (C1) imply that ε1 is i.i.d. given XTβ1 and ε2 is i.i.d. Thus,
the conclusion of the proposition holds by sequentially applying Theorem 1 of Hong and He [9]
to (�1, β1) and (�2, β2,τ ). �

The conditions (C0) and (C1) we imposed on Proposition 2.2 are needed to achieve the root-n
rate of convergence when � is non-parametric. These conditions can be relaxed to accommodate
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heteroscedastic errors if � is parametric. Also note that our proposed τ -specific quantile estimator
does not heavily rely on the i.i.d. error assumption, and thus is robust against the class of more
general error distributions.

Similar to the proof of Proposition 2.2, given the consistency of the initial estimators for the
general multi-index model (3) by Fung et al. [8], the root-n consistency for β̂i, i = 1, 2, . . . , k,
by the proposed method can be established for the general multi-index model with k > 2, by
iteratively applying Theorem 1 of Hong and He [9].

3. Monte Carlo studies

We carry out simulation studies to investigate the performance of the proposed multi-index Torque
model (to be denoted by M-TORQUE). We consider two criteria for evaluating the performance.
The first criterion is the mean coverage probability (denoted by C̄), that is, the average coverage
probability of the estimated (τ2 − τ1) · 100% PI, which is estimated by (Q̂τ1(Y | X), Q̂τ2(Y | X)),
where Q̂τ (Y | X) is computed as in Equation (10) by substituting the estimates (β̂1, β̂2,τ , �̂1, �̂2).

The second criterion is the mean length of PI, denoted by L̄ = ∑n
i=1 Li/n, where n is the

sample size. Here the length of a PI is simply L = Q̂τ2(Y | X) − Q̂τ1(Y | X). Thus if the response
takes values y = 1, 2, 3, 4, 5, the possible values of L would be 0, 1, 2, 3, 4. An effective method is
expected to have a smaller L̄ while maintaining the targeted coverage probability, i.e. (τ2 − τ1) ·
100%. We considered τ1 = 0.25 and τ2 = 0.75 for a 50% PI, and τ1 = 0.1 and τ2 = 0.9 for an
80% PI.

We consider the double-index designs and compare the performance of M-TORQUE with
the TORQUE for the single-index model of Hong and He [9] and the ordinal probit regression
model (OPM).

For each example, the sample size is fixed at n = 400 for each data set, and a total of 100 data sets
are generated in each study. After Ỹ is generated, we obtain the ordinal counts Y = 1, 2, 3, 4, 5
by the greatest integer function Y = �Ỹ� for 1 ≤ Ỹ < 6, with Y = 5 when Ỹ ≥ 5 and Y = 1
when Ỹ < 1.

Example 1
√

2ỹ = x1 + x2 + ε1, ln(10ε1) = x1 + 2x2 + ε2, x1 ∼ Unif(0.5, 1), x2 ∼ Unif(0.5, 1),
and ε2 ∼ t(1).

Example 2 ỹ2 = 10x1 + x2 + ε1, ln(ε1) = x1x2 + ε2, x1 ∼ Ber(0.5), x2 ∼ Unif(0, 1), and
ε2 ∼ t(1).

The simulation results are reported in Table 1. Due to the discrete nature of the response
variables, the coverage probability tends to be higher or lower than the targeted probability.

Table 1. Results for Examples 1 and 2. The numbers reported are the mean of C̄ and L̄ over
100 generated data sets.

50% PI 80% PI

Example Method C̄ L̄ C̄ L̄

Example 1 OPM 0.88 3.29 1.00 4.00
TORQUE 0.84 3.22 1.00 4.00
M-TORQUE 0.70 2.62 0.75 2.85

Example 2 OPM 0.91 1.44 0.97 3.82
TORQUE 0.79 0.15 0.95 3.51
M-TORQUE 0.64 0.14 0.79 2.50
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1238 H.G. Hong and J. Zhou

Figure 1. Example 2, boxplot of the length of the PI (L) for 100 generated data sets.

Example 1 is a double-index model with additive structure, which is considered in our paper. The
result shows that the proposed M-TORQUE is successful to reduce the mean length, L̄, compared
with the single-index models OPM and TORQUE. For 80% PI, the mean coverage for both OPM
and TORQUE is almost 100%, indicating the PI is too wide. However, M-TORQUE gives the
coverage probability which is close to the targeted coverage probability while maintaining the
shortest L̄.

Example 2 is also a double-index model, but it takes a more complicated structure than the
additive one considered in this paper, since �2(ε1) is a non-additive function of x1 and x2.
Although the design we considered in Example 2 is a more general form than Model (7), the
performance of M-TORQUE is quite efficient compared with OPM, whose L̄ is more than 10
times larger than that of M-TORQUE for the 50% PI. For the 50% PI, TORQUE also per-
forms well; however, as shown in Figure 1, M-TORQUE has the highest percentage of cases
with L = 0 or L = 1. And the merits of M-TORQUE are even better illustrated when we con-
sider the 80% PI, where the coverage probability of M-TORQUE is very close to the targeted
probability.

Overall, M-TORQUE reduces the length of the PI while it achieves closer coverage probabilities
to the targeted ones compared with other competitors by reducing the error variance when the
true model is the double-index model.
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4. Application to the functional status of the elderly

4.1 Data description: the second longitudinal study of aging

The data are from the second LSOA II study. The LSOA II is a collaborative project of the National
Center for Health Statistics and the National Institute on Aging, which represents the national
elderly population in the USA. In the baseline survey in 1994–1996 there were 9447 nationally
representative, non-institutionalized United States civilian persons of age 70 years or older. Partic-
ipants completed a baseline questionnaire in 1994–1996 (Wave 1) and completed two follow-up
questionnaires about two years apart in 1997–1998 (Wave 2) and 1999–2000 (Wave 3). The com-
plete set of LSOA II data is available on the LSOA website http://www.cdc.gov/nchs/lsoa.htm.
Our response variable Y is the FS of the elderly from Wave 2, and we use 14 covariates from Wave
1. The FS is defined in terms of ADL and IADL. The ADL is a measure of simple functions, such
as bathing, dressing, eating, getting in/out of bed or chairs, and toileting. On the other hand, the
IADL requires more complexity and interaction with the external environment, such as preparing
meals, managing money, performing light housework, use of telephone, use of transportation, and
taking medications. In this paper, we formulate the FS as follows: FS = 1 for independent with-
out disability; FS = 2 for IADL disabled only; FS = 3 for moderately ADL disabled (1–2 ADLs
impaired); FS = 4 for severely ADL disabled (≥ 3 ADLs impaired); and FS = 5 for deceased.

Initially, 9447 people participated in the survey of Wave 1. After removing 1147 subjects for
missing information or drop-out, 8300 subjects were available. Among them, 6620 participants
had independent FS at the baseline in the survey 1994–1996 of Wave 1. Even though other
participants with different baseline functional status (BFS) would also be important, we focus
on those 6620 subjects with BFS = 1 who were healthy at the survey of Wave 1, and represent
a majority of participants. A brief summary of the FS distributions at each wave is shown in
Figure 2. The 14 covariates used in our analysis are described in Table 2.

Figure 2. Flowchart of participants at Wave 1 and Wave 2 in LSOA II study. BFS, baseline functional status;
FS, functional status.
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Table 2. Variables used in the analysis.

Variable Description

SRH 0 if excellent/very good; 1 if good/fair/poor
Diabetes 0 if absent; 1 if present
Race 1 if white; −1 if non-white
Marital status 1 if married; −1 if not marrieda

Age Years
Education Years ranged from 0 to 18
Sex 1 if male; −1 if female
Cancers 0 if absent; 1 if present
CVD 0 if absent; 1 if present
MSD 0 if absent; 1 if present
BMI 0 if BMI ≥ 25; 1 if BMI < 25
Smoking 0 if non-smoking; 1 if smoking
Condition 0 if the total number of self-reported chronic health conditions ≤2;

1 if number of conditions ≥3
Lung disease 0 if absent; 1 if present

Notes: SRH, self-rated health; CVD, cardio vascular diseases; MSD, muscular skeletal diseases; BMI,
body mass index.
aNot married includes respondents who were widowed, divorced, separated, or never married.

4.2 Results

In this section, we apply the proposed prediction method in Section 3 to the LSOA II data as we
construct the PI for the FS of the elderly over a two-year period (Wave 1 to Wave 2 in Figure 2).
The sampling weights from the survey are used in the weighted CANCOR and all other estimation
procedures in this section. The prediction results from the proposed method are also compared
with the results from the other existing methods.

We focus our attention on the quantile levels of τ = 0.25 and τ = 0.75, and generate the 50%
PI accordingly. Since roughly 25% of the subjects in the survey died after the first follow-up, the
prediction of the upper quantiles beyond the third quartile is not useful. To validate our model
performance, we divided the data randomly to form an estimation sample (n = 3972) and a
validation sample (n = 2648). The estimation sample was utilized to estimate coefficients in the
model, and subsequently, the FS in the validation sample was predicted using those coefficient
estimates obtained from the estimation sample. For the 6620 subjects with BFS = 1, CANCOR
selects two indices, suggesting that two indices are needed to thoroughly convey the predictive
information contained in the original 14 covariates of the LSOA II data.

The plots of the estimated monotone transformations �1 and �2 in the proposed model are
shown in Figures 3 and 4. The plot of estimated �1 against FS on x axis shows a steep increase in
slope between FS = 1 and FS = 2. However, in the interval [FS = 2, FS = 5] the slope becomes
flatter. This behavior in �1 function suggests a lack of information in the prediction to distinguish
the severities among FS being 2, 3, 4, and 5, and the predictors are most helpful in separating
independent FS (FS = 1) from the poorer FS (2 ≤ FS ≤ 5). The plot of estimated �2 depicts that
residuals ε1 from Equation (12) are transformed to have a s-shaped curve, which separates the
lower and higher residuals.

Table 3 shows the estimated coefficients based on OPM,TORQUE, and M-TORQUE at different
quantiles. The first coefficient (SRH) is set to 1 for identification. The direction β̂2 of M-TORUQE
indicates the second most informative index since the estimated direction β̂2 has the highest
correlation with the transformed residuals, among all linear combinations that are uncorrelated to
the first estimated combination. Most notably, cancer has a highly significant value at the second
index, implying that cancer is the most important factor (after adjusting for the most important
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Figure 3. Plot of estimated �1(Ỹ).

Figure 4. Plot of estimated �2(ε1).

index of covariates) in predicting FS. Thus this additional information contributes to the accurate
prediction of FS of the elderly. Furthermore, smoking is not significant in the single-index, but
in the second index of M-TORQUE smoking shows consistently higher coefficients than other
covariates throughout all quantiles.

As shown in Table 4, M-TORQUE did not give an outstanding performance in predicting median
FS compared with the other competing models, since other models were on par with M-TORQUE
at predicting the ordinal FS.

However, Table 5, which reports the frequency of the number of subjects in each PI length,
clearly shows the benefits of M-TORQUE. First, we define the length L of the 50% PI of Yi as
|Q0.75(Yi) − Q0.25(Yi)|. The possible values of L are 0, 1, 2, 3, and 4 in our application since the
FS is an integer value ranging from 1 to 5. As shown in Table 5, more than half of the subjects
(58%) in the estimation data have L = 0, i.e. Q0.25(Yi) = Q0.75(Yi), and only 2% have L = 4 when
M-TORQUE is used. The reduced error variance from the double-index model helps to estimate
the upper and lower quartiles more efficiently, thus resulting in the most informative (shortest) PI
for the FS among three models.
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Table 3. OPM, TORQUE, and M-TORQUE coefficients for predictors at τ = 0.25, 0.5, 0.75.

TORQUE M-TORQUE

j = 1 j = 2

OPM τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.5 τ = 0.25 τ = 0.5 τ = 0.75

SRH 1.00(0.17∗) 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Diabetes 0.56(0.30) 0.84 0.48 0.52 0.73 −0.67 2.77 0.71
Race −0.23(0.14) −0.19 −0.15 −0.25 −0.15 0.12 1.11 −0.32
Married −0.25(0.09∗) −0.30 −0.27 −0.17 −0.19 2.66 1.01 −0.17
Education 0.15(0.02∗) 0.26 0.19 0.11 0.17 0.74 −0.15 −0.02
Age −0.14(0.02∗) −0.17 −0.14 −0.11 −0.12 −0.55 0.08 0.06
Sex 0.15(0.09) 0.16 0.15 0.18 0.15 −1.02 0.83 0.11
Cancer 1.16(0.45∗) 1.88 1.07 1.27 0.95 2.09 3.43 > 3 × 102

CVD 0.44(0.19∗) 0.29 0.36 0.38 0.62 −1.25 1.95 2.05
MSD −0.63(0.18∗) −0.25 −0.29 −0.67 −0.20 0.37 −1.00 −0.62
BMI 0.36(0.17∗) 0.41 0.38 0.40 0.38 0.37 2.55 0.63
Smoke 0.50(0.27) 0.31 0.52 0.42 0.83 3.74 3.01 2.47
Condition 0.03(0.24) 0.28 0.15 −0.29 −0.10 1.35 −3.02 −0.50
Lung disease 0.49(0.33) 0.91 0.50 0.26 0.58 −0.81 −0.53 −0.62

Notes: For OPM the numbers in parentheses are standard errors. A |t|-value greater than 2 is marked with a ‘*’.
The slope of the first coefficient (SRH) for the three models is set to 1 for identification.
For M-TORQUE, j denotes the first and second indices in our double-index model.

Table 4. Mean absolute error comparison of three models.

Model

OPM TORQUE M-TORQUE

Estimation 1.00 0.99 0.99
Validation 1.02 1.01 1.01

Table 5. Frequencies (percentage in parentheses) of PI lengths L = 0, 1, 2, 3, 4.

L

Method 0 1 2 3 4

OPM
Estimation(n1=3972) 903(23%) 1325(33%) 461(12%) 201(5%) 1082(27%)

Validation(n2=2648) 636(24%) 870(33%) 308(12%) 125(5%) 709(27%)

TORQUE
Estimation(n1=3972) 630(16%) 812(20%) 1896(48%) 520(13%) 114(3%)

Validation(n2=2648) 449(17%) 538(20%) 1264(48%) 308(12%) 89(3%)

M-TORQUE
Estimation(n1=3972) 2293(58%) 1374(35%) 178(4%) 42(1%) 85(2%)

Validation(n2=2648) 1625(61%) 829(31%) 105(4%) 36(1%) 53(2%)

It is important to note that a shorter PI length inevitably means a lower coverage probability, and
thus the coverage percentage for M-TORQUE will necessarily be lower than those of TORQUE
and OPM. Therefore, we wish to investigate the agreement of the observed M-TORQUE coverage
rate with the targeted coverage probability of 50%. Table 6 shows that indeed OPM outperforms
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Table 6. Coverage probabilities for 50% PIs by PI length L.

OPM TORQUE M-TORQUE

L Estimation Validation Estimation Validation Estimation Validation

0 0.83 0.81 0.84 0.82 0.75 0.73
1 0.78 0.78 0.81 0.79 0.67 0.68
2 0.77 0.75 0.76 0.75 0.71 0.52
3 0.80 0.75 0.66 0.64 0.70 0.66
4 1.00 1.00 1.00 1.00 1.00 1.00
C̄ 0.85 0.84 0.76 0.77 0.73 0.71
L̄ 1.77 1.73 1.56 1.54 0.54 0.50

Note: C̄ is the weighted mean coverage probability; L̄ is the weighted mean PI length.

M-TORQUE in terms of coverage. However, as long as actual coverage is 50% or greater, the
precise value is not of great interest with an ordinal response variable. Coverage probabilities
of PIs for ordinal responses tend to exceed the nominal rate, and therefore a more meaningful
evaluation of competing methods is given by comparing interval lengths (provided the desired
coverage probability is met). From Tables 5 and 6 it is clear that M-TORQUE has the lowest mean
PI length, with no sacrifice in coverage performance.

The shorter PI is particularly important in predicting the FS of the elderly as we have only
five levels of functional outcome. For example, if the FS of an old individual was predicted to
be ‘healthy’ but with a PI of length L = 4, then his/her FS could range from ‘healthy’ to ‘dead’,
which is not useful in practice.

Despite the increased complexity, the new analysis provides a safeguard against the potential
effects of the remaining correlation between covariates and the residuals in the single-index
TORQUE model. These findings indicate that the proposed double-index transformed ordinal
quantile regression model significantly improves the prediction of the FS for the elderly in the
LSOA II data set.

5. Conclusion

Data with ordinal responses, such as FS in aging studies, are commonly used in many fields.
We introduced a flexible multi-index model for transformed ordinal quantile regression, which
generalizes the ordered probit or logit model, and incorporates jittering, a non-parametric link
function, semiparametric quantile estimation, and dimension reduction. The application of the
proposed method to the LSOA II data showed that the prediction of FS for the elderly can be
meaningfully improved, compared with that based on single-index models in Hong and He [9].
Specifically, PIs for FS estimated by the proposed method achieve a shorter length while keeping
almost the same coverage as the ordered probit and TORQUE models.

The models proposed here have wide applications to a variety of fields. The benefit of more
efficient prediction is considerable, since a shorter PI can substantially reduce time and cost
through more optimal use of existing data. For example, suppose a company is conducting a
survey of consumer intention to buy certain goods by an ordinal scale: strongly disagree, disagree,
neutral, agree, and strongly agree. If we can efficiently predict a range containing the true outcome
(here purchasing or not purchasing goods) for a person with specified characteristics, the company
can formulate a more effective marketing plan.

Undoubtedly, the gain of using multiple indices depends on how a multi-index model is struc-
tured. In this paper, we adopted an additive structure for the two indices for the sake of simplicity
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1244 H.G. Hong and J. Zhou

although it is certainly not the only way to construct the multi-index model. Prediction of the FS
based on more complicated structures of the multi-index model is a subject for future study.
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