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SUMMARY

In many biomedical studies independent variables may affect the conditional distribution of the response
differently in the middle as opposed to the upper or lower tail. Quantile regression evaluates diverse covari-
ate effects on the conditional distribution of the response with quantile-specific regression coefficients. In
this paper, we develop an empirical likelihood inference procedure for longitudinal data that accommodates
both the within-subject correlations and informative dropouts under missing at random mechanisms. We
borrow the matrix expansion idea of the quadratic inference function and incorporate the within-subject
correlations under an informative working correlation structure. The proposed procedure does not assume
the exact knowledge of the true correlation structure nor does it estimate the parameters of the correlation
structure. Theoretical results show that the resulting estimator is asymptotically normal and more efficient
than one attained under a working independence correlation structure. We expand the proposed approach
to account for informative dropouts under missing at random mechanisms. The methodology is illustrated
by empirical studies and a real-life example of HIV data analysis.

Keywords: Empirical likelihood; Longitudinal data; Missing at random; Quadratic inference function; Quantile
regression.

1. INTRODUCTION

Longitudinal data arise frequently in epidemiology, medical science and socioeconomic panel studies,
where repeated measurements within the same subject are likely to be correlated. The Gaussian paradigm
dominates the analysis of longitudinal data, whereas in many cases the correlated responses follow a non-
normal distribution. Moreover, the assumption that the independent variables uniformly affect the different
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H. CHO AND OTHERS

parts of the conditional distribution of the response may make little sense in biomedical application. For
example, in a clinical trial of HIV disease which evaluates effects of different treatments on CD4 cell
counts longitudinally, the treatment effects on study subjects with high CD4 cell counts may differ from
the treatment effects on study subjects with low CD4 counts who are much sicker. As exhibited in the
motivating example of this paper, the distribution of CD4 cell counts is also highly skewed.

Quantile regression provides a viable alternative; it estimates diverse effects of independent vari-
ables with quantile-specific regression coefficients without imposing any distributional assumption on the
responses. Recent developments in quantile regression approaches for longitudinal data include a quasi-
likelihood approach to median regression (Jung, 1996), Bayesian modeling (Dunson and others, 2003),
a penalized least squares approach (Koenker, 2004), inference via a random intercept through the asym-
metric Laplace density (Geraci and Bottai, 2007), weighted quantile regression using a stationary auto-
correlation structure (Lu and Fan, 2015), and references therein. Most of the work, however, falls short
from readily accommodating two common features of the longitudinal data, correlations between repeated
measurements and dropouts.

Unbalanced longitudinal data are quite common due to dropouts, and observed data often provide infor-
mation on them. In the motivating HIV study example, a proportion of the participants were lost to follow-
up. As Volberding and others (1990) suggested, it might be due to selective withdrawal of patients with low
or declining CD4 cell counts. Missing data caused by such dropouts are missing at random and are chal-
lenging with quantile regression. The majority of existing methods take the framework of generalized esti-
mating equations (Liang and Zeger, 1986), which only naturally accommodates missing data completely
at random. Alternatively Lipsitz and others (1997) and Robins and others (1995) employed a weighted
generalized estimating equation for monotone missing data assuming that measurements within the same
subject are independent.

In this paper, we develop an empirical likelihood-based inference procedure for the marginal quantile
regression which accommodates both the within-subject correlations and dropouts under missing at ran-
dom mechanisms. We use the matrix expansion idea of quadratic inference function (Qu and others, 2000)
and construct constraints of the empirical likelihood procedure that incorporates the within-subject cor-
relations under an informative working correlation structure. This feature contrasts with those of existing
empirical likelihood approaches to the marginal quantile regression, most of which takes the framework of
generalized estimating equations under a working independence correlation and forgoes the opportunity of
utilizing the within-subject correlations (e.g. Wang and Zhu, 2011; Whang, 2006). We further expand the
procedure in order to account for dropouts that are missing at random. We model the dropout process and
incorporate the missing data information as weights for the constraints of the empirical likelihood. With
the weighted constraints hence defined, the proposed empirical likelihood inference procedure is readily
implemented by existing R packages emplik and optim.

If missing data are not considered, Tang and Leng (2011) also used the empirical likelihood and the
matrix expansion ideas of the quadratic inference function, and proposed a two-step approach to the quan-
tile marginal regression. In the first step they constructed the empirical likelihood for the conditional mean
regression and identified the maximizing weights of the empirical likelihood that carry the correlation
information induced via the matrix expansion ideas of the quadratic inference function. In the second step
they incorporated the weights in the quantile marginal regression to increase efficiency. This indirect two-
step approach, however, ignores the fact that the correlation structure involved in the quantile regression
is the sign correlation, whereas it is the standard Pearson correlation that is involved with the conditional
mean regression. Therefore, the correlation information incorporated as weights stays the same regardless
of the conditional regression quantile of interest. The proposed approach induces the correlation informa-
tion specific to the regression quantile of interest directly. The matrix expansion ideas of the quadratic
inference function alone was considered by Leng and Zhang (2014) without accounting for dropouts.
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Quantile regression for longitudinal data

As far as the treatment of dropouts is concerned, the proposed procedure is similar to those of
Lipsitz and others (1997), Robins and others (1995), and Yi and He (2009). The proposed procedure
differs in that it accommodates the correlated nature of the longitudinal data using an informative working
correlation structure without requiring the exact knowledge of the true correlation structure nor estimating
the informative working correlation structure. The existing methods either ignore the within-subject cor-
relation structure (Robins and others, 1995; Lipsitz and others, 1997) or require the correlation structure
to be estimated (Yi and He, 2009).

The remainder of this paper proceeds as follows: in Section 2, we first propose the new marginal quantile
regression procedure for longitudinal data, and then expand it to account for dropouts that are missing at
random. In Section 3, we illustrate the methodology using both simulation studies and a real-life data
analysis of an HIV study. We conclude the paper with some final remarks in Section 4.

2. METHODOLOGY

2.1 Quantile marginal regression with an informative working correlation structure

Let yi = (yi1, . . . , yim)T be the i th subject’s responses for i = 1, . . . , n, where n is the sample size and
m is the number of longitudinal measurements taken on each subject over time. Given τ ∈ (0, 1), the
τ th quantile marginal regression model for the longitudinal data is formulated as yi = xiβτ + εi , where
xi = (xi1, . . . , xim)T is an (m × p)-dimensional matrix of covariate, βτ is a true parameter vector, and
εi = (εi1, . . . , εim)T is the random error vector satisfying P(εi j < 0 | xi j ) = τ for any i and j . If repeated
measurements of each subject are assumed independent, an estimator of βτ is obtained by minimizing the
following objective function:

S(β) =
n∑

i=1

m∑
j=1

ρτ (yi j − xi jβ), (2.1)

where ρτ (u) = u{τ − 1(u < 0)} is the so-called check function and 1(·) is the indicator function. We let
ϕτ (u) = ρ ′

τ (u) for u |= 0 and ϕτ (u) = 0 otherwise. From (2.1), estimating equations can be derived by
differentiating S(β) with respect to β as follows:

n∑
i=1

xT
i ϕτ (yi − xiβ) = 0. (2.2)

Due to the discontinuity of ϕτ (yi − xiβ) = {ϕτ (yi1 − xi1β), . . . , ϕτ (yim − ximβ)}T, an estimator of βτ

may only satisfy the equations approximately. This modeling ignores the correlated nature of longitudinal
data and may cause a loss of efficiency.

In order to incorporate the within-subject correlation information, we extend the estimating equations as

n∑
i=1

xT
i V−1

i ϕτ (yi − xiβ) = 0, (2.3)

where Vi is the covariance matrix of ϕτ (yi − xiβτ ). The inverse of the covariance matrix V−1
i can be

decomposed as A−1/2
i �−1

i A−1/2
i , with Ai = diag(ai1, . . . , aim) being a (m × m)-dimensional diagonal

marginal variance matrix of ϕτ (yi − xiβτ ) and �i being an (m × m)-dimensional true correlation matrix.
In practice, �i is unknown and we utilize a working correlation structure (denoted by Ri ). The j th element

563

 at M
ichigan State U

niversity on A
ugust 29, 2016

http://biostatistics.oxfordjournals.org/
D

ow
nloaded from

 

http://biostatistics.oxfordjournals.org/


H. CHO AND OTHERS

of Ai is ai j = var{ϕτ (yi j − xi jβτ )} = τ(1 − τ) for all j . Thus, given Ri , equation (2.3) can be simplified as

n∑
i=1

xT
i R−1

i ϕτ (yi − xiβ) = 0. (2.4)

Motivated by Qu and others (2000), we represent the inverse of the working correlation R−1
i in (2.4) by

a linear combination of basis matrices, R−1
i = ∑q

j=1 b j Bi j , where Bi1, . . . , Biq are (m × m)-dimensional
basis matrices depending on the particular choice of R and b1, . . . , bq are unknown coefficients. For exam-
ple, if a working correlation structure is the compound symmetry, then R−1

i = b1Bi1 + b2Bi2, where Bi1

is an identity matrix and Bi2 is a symmetric matrix with 0 on the diagonal and 1 elsewhere. The coeffi-
cients b0 and b1 are associated with the compound symmetry correlation parameter. If Ri corresponds to
AR(1), R−1

i = b1Bi1 + b2Bi2 + b3Bi3, where Bi1 is an identity matrix, Bi2 is a symmetric matrix with 1
on the sub-diagonal entries and 0 elsewhere, and Bi3 is a symmetric matrix with 1 in elements (1, 1) and
(m, m), and 0 elsewhere with corresponding coefficients b1, b2, and b3, respectively. In general, Bi3 is a
minor boundary correction and can be omitted. More details are also provided in Qu and others (2000)
and Cho and Qu (2015).

Consequently, equation (2.4) can be approximated as a linear combination of the elements, gi (β) for
i = 1, . . . , n, where

gi (β) =

⎛⎜⎝xT
i Bi1ϕτ (yi − xiβ)

...

xT
i Biqϕτ (yi − xiβ)

⎞⎟⎠ . (2.5)

If E{gi (βτ )} = 0, the following empirical likelihood function can be constructed for the inference of
βτ :

L(β) = max

{
n∏

i=1

pi

∣∣∣∣∣
n∑

i=1

pi gi (β) = 0,

n∑
i=1

pi = 1, 0 � pi � 1

}
, (2.6)

where pi denotes a point mass assigned to the i th data point (xi , yi ). We consider a set of weights { p̂i }n
i=1

that maximizes the empirical likelihood in equation (2.6). Following Qin and Lawless (1994), we define
the maximum empirical likelihood estimator β̂τ as a solution to the equation

∑n
i=1 p̂i gi (β) = 0, or alter-

natively as the maximizer of L(β):

β̂τ = argmax
β

L(β). (2.7)

Note that estimation of the parameters b1, . . . , bq is not required, since the function gi (β) does
not involve the parameters. Also note that gi (β) is a p × q variate function, and hence the constraint∑n

i=1 pi gi (β) = 0 is an overdetermined system. The maximization in (2.7) can be conducted by the exist-
ing R package optim with the empirical likelihood (2.6) as the objective function. Given β, the empir-
ical likelihood is evaluated by the R package emplik. We defer discussion of computational details to
Section 3.2.

We assume the following conditions to study the asymptotic properties of β̂τ :

CONDITION 1 E{gi (βτ )} = 0 and E[gi (βτ ){gi (βτ )}T] are positive definite.

CONDITION 2 Let Fi j (· | xi j ) denote the cumulative distribution function of ei j given xi j . We see that Fi j

is twice continuously differentiable with derivatives bounded in the neighborhood of zeros uniformly in
xi j for all i and j .
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Quantile regression for longitudinal data

CONDITION 3 The random vectors xi j are bounded in probability for all i and j .

These are standard conditions commonly assumed for quantile regression. We define BT
i j xi = Zi( j)

and fi j (· | xi j ) = F ′
i j (· | xi j ). Given τ , we simplify the notations by letting ϕi (β) = ϕτ (yi − xiβ). Then,

gT
i (β) = (ϕT

i (β)Zi(1), . . . ,ϕ
T
i (β)Zi(q)). We further define

�i = diag{ fi1(0 | xi1), . . . , fini (0 | xini )}, D̃1 = E(xT
i �i xi ), D̃0 = E(xT

i �i xi ),

DT
1 = E(xT

i �i Zi(1), . . . xT
i �i Zi(q)), D0 = E{gi (βτ )g

T
i (βτ )}.

We note that D̃0, D̃1, and D0 are positive definite and the rank of D1 is p under conditions 1–3. We
adopt the notation M1 � M2 for square matrices M1 and M2 of the same order, when M2 − M1 is positive
semidefinite.

THEOREM 2.1 Assume conditions 1–3 hold. Given Ri ,

√
n(β̂τ − βτ ) −→ N (0, τ (1 − τ)V)

as n → ∞, where V = {DT
1 D−1

0 D1}−1. Furthermore, V � Ṽ for Ṽ = {D̃T
1 D̃

−1
0 D̃1}−1 with the equality hold-

ing if Ri is an (ni × ni )-dimensional identity matrix I.

As shown in He and others (2003), τ(1 − τ)Ṽ is the asymptotic variance if Ri = I, i.e. under the work-
ing independence assumption. As V � Ṽ, the asymptotic variance under Ri |= I is no greater than the

asymptotic variance obtained under working independence. We see that Ṽ − V accounts for the efficiency
gain from incorporating the within-subject dependency commonly existing in the longitudinal data. Impor-
tantly, the efficiency gain does not require that the assumed working correlation structure be correctly
specified.

2.2 Weighted quantile marginal regression with dropouts

In longitudinal studies, subjects may drop out of the study before the end of the follow-up, and the number
of observed within-subject measurements (denoted by mi ) may vary. If the missingness is not associated
with the data, we may ignore missing responses and apply the empirical likelihood procedure developed
in Section 2.1 to analyze the observed data. However, if the missingness is related to the covariates or
observed responses, ignoring missing responses often results in bias. In this section, we extend the empir-
ical likelihood procedure to accommodate missing responses that depends on the observed data.

We denote νi j as the observed data for the i th subject at time j , which potentially could include covari-
ates xi and observed responses yik up to time j (k < j). Let Mi j be a missing indicator variable being 0 if
missing and 1 otherwise, and assume that all individuals are observed at the first assessment, i.e. Mi1 = 1
for all i = 1, . . . , n. We assume that the responses are missing at random conditioning on the observed
data νi j , so the probability of not dropping out at time j is given by πi j = P(Mi j = 1 | νi j ). We propose the
following weighted estimating equation:

n∑
i=1

xT
i R−1

i Wiϕτ (yi − xiβτ ) = 0, (2.8)
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where Wi = diag(Mi1/πi1, . . . , Mimi /πimi ). Based on the weighted estimating equation (2.8), the estimat-
ing function in (2.5) is accordingly modified as

gw
i (β) =

⎛⎜⎝xT
i Bi1Wiϕτ (yi − xiβ)

...

xT
i BiqWiϕτ (yi − xiβ)

⎞⎟⎠ . (2.9)

Since πi j is often unknown in practice, πi j should be estimated and substituted in (2.9). We
consider consistent estimators of πi j and obtain ĝw

i (β) by replacing Wi in (2.9) with Ŵi =
diag(Mi1/π̂i1, . . . , Mimi /π̂imi ). We have the following empirical likelihood for the inference of βτ under
some regularity conditions:

Lw(β) = max

{
n∏

i=1

pi

∣∣∣∣∣
n∑

i=1

pi ĝ
w
i (β) = 0,

n∑
i=1

pi = 1, 0 � pi � 1

}
. (2.10)

Similarly, following Qin and Lawless (1994), we consider a set of weights { p̂w
i }n

i=1 that maximizes

(2.10) and define the maximum empirical likelihood estimator β̂
w

τ as a solution to the equation,∑n
i=1 p̂w

i ĝw
i (β)= 0, or alternatively as the maximizer

β̂
w

τ = argmax
β

Lw(β). (2.11)

For the estimation of πi j , we assume a parametric model and denote the unknown vector of the parameter
model by α. We let α0 denote the true value of α and Si (α) the score function. An estimator is obtained
from solving

∑n
i=1 Si (α) = 0 and we denote it by α̂. Details of modeling and computation are provided in

Sections 3.1 and 3.2 when logistic regression is assumed. We denote ∂Si (α)/∂α evaluated at α = α0 by
∂Si (α0)/∂α and adopt this convention throughout the paper. As Wi = Wi (α), we have gw

i (β) = gw
i (α,β).

We define

DwT
1 = E{∂gw

i (α0,βτ )/∂β}, Dw
0 = E[gw

i (α0,βτ ){gw
i (α0,βτ )}T],

Ds = E[{∂gw
i (α0,βτ )}/∂α], Ui = gw

i (α0,βτ ) − Ds E{∂Si (α0)/∂α}−1Si (α0).

THEOREM 2.2 Assume conditions 1–3. Suppose that Si (α) is a continuous function and πi j are bounded
below from zero uniformly in νi j for all i and j . We also suppose the random vectors νi j are bounded in
probability for all i and j . Given a working correlation matrix Ri , as n → ∞,

√
n(β̂

w

τ − βτ ) −→ N (0, τ (1 − τ)Vw),

where Vw = {Dw T
1 (Dw

0 )−1Dw
1 }−1DwT

1 (Dw
0 )−1{E(Ui UT

i )}(Dw
0 )−1Dw

1 {DwT
1 (Dw

0 )−1Dw
1 }−1.

If πi j were known, Vw would be reduced to {DwT
1 (Dw

0 )−1Dw
1 }−1, which is similar to the corresponding

quantity V in the complete case with no missingness. Therefore, we note that unknown πi j would add to
the complexity in the form of Vw.
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Quantile regression for longitudinal data

With Ri = I the asymptotic variance becomes τ(1 − τ)Ṽ
w

, where

Ṽ
w = {D̃w T

1 (D̃
w

0 )−1D̃
w

1 }−1D̃
w T
1 (D̃

w

0 )−1{E(Ũi Ũ
T
i )}(D̃w

0 )−1D̃
w

1 {D̃w T
1 (D̃

w

0 )−1D̃
w

1 }−1 with

D̃
w

1 = E{xT
i Wi (α0)�i xi }, D̃

w

0 = E{xT
i wi (α0)�i Wi (α0)xi },

D̃s = E[{∂xT
i Wi (α0)ϕi (βτ )}/∂α], Ũi = xT

i Wi (α0)ϕi (βτ ) − D̃s E{∂Si (α0)/∂α}−1Si (α0).

For known πi j , Ṽ
w =

{
D̃

wT
1 (D̃

w

0 )−1D̃
w

1

}−1
and it can be easily shown that Vw � Ṽ

w
. This suggests that

incorporating the within-subject correlation results in efficiency gain as in the no-dropout case. With the
estimated πi j , it is not straightforward to obtain analytic results; however, empirical studies in Section 3
show that choosing proper working correlation structures is still beneficial.

3. EMPIRICAL STUDIES

In this section, we evaluate performance of the proposed method using simulation studies and a real-life
data analysis example. The simulation setups reflect the real-life data example in order to provide estimates
of the operating characteristics of the proposed methods in the real-life example. We include various cases
of error distributions; however, and the simulation results are generalizable.

3.1 Simulation studies

We generate data from the following regression model:

yi j = β0 + β1xi1 + β2xi2 j + β3xi1xi2 j + εi j , for i = 1, . . . , 200 and j = 1, . . . , mi ,

where (β0, β1, β2, β3)
T = (6,−1,−1, 0.5)T, xi1 are treatment indicators generated from a Bernoulli dis-

tribution with P(xi1 = 1) = 0.5 that reflects 1 : 1 randomization, xi2 j indicate the follow-up measurement
times j , and xi1xi2 j are the interaction terms between treatment and time effect. We explore the following
three distributions for the random error εi = (εi1, . . . , εimi )

T:

Case 1. Normal errors: εi ∼ N (0,�), where � is an AR(1) correlation structure with correlation coeffi-
cients of 0.7.
Case 2. Asymmetric errors: εi = exp(ζ i ) − 1, where ζ i ∼ N (0,�) where � is defined in Case 1.
Case 3. Heteroskedastic errors: εi = (1 + xi2/10)ζ i , where ζ i is specified in Case 2.

We assess the regression quantile at τ = 0.25, 0.5, and 0.75 from 500 simulated datasets, and explore
three common working correlation choices: independence, AR(1), and compound symmetry. The within-
subject correlations involved with the quantile regression are sign correlations, i.e. cor{τ − 1(εi j < 0), τ −
1(εik < 0)} for j, k = 1, . . . , mi . Hence the true correlation structure is a toeplitz with (mi − 1) number of
parameters ρ| j−k| = cor{τ − 1(εi j < 0), τ − 1(εik < 0)} for j |= k. Among the three common working cor-
relation choices (i.e. AR(1), compound symmetry, exchangeable), the AR(1) structure best approximates
the true correlation structure.

To generate longitudinal data with dropouts, we assumed that each subject is repeatedly measured five
times with equally spaced time, and then indicated dropouts as Mi j with Mi j = 0 if missing and Mi j ′ = 0 for
all j ′ > j . Let λi j = P(Mi j = 1 | Mi, j−1 = 1, νi j ) with νi j = (xi2 j , yi, j−1). To model the dropout process,
we adapt the commonly used logistic regression models as follows:

logit λi j = α1xi2 j + α2 yi, j−1, (3.1)
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Table 1. Mean squared error, bias, and coverage probabilities of the proposed approach in case of data
with dropouts under different assumptions on the dropouts (missing at random (MAR) and missing com-
pletely at random (MCAR)) with three working correlation structures (AR(1), compound symmetry (CS)

and independence (IND)) at τ = 0.5

Bias Coverage

MSE β0 β1 β2 β3 β0 (%) β1 (%) β2 (%) β3(%)

Case 1
MAR

AR(1) 0.012 −0.002 0.016 0.004 −0.013 94 93 93 94
CS 0.015 0.001 0.024 0.004 −0.017 94 92 94 93
IND 0.017 −0.001 0.027 0.007 −0.018 92 91 93 93

MCAR
AR(1) 0.017 −0.070 0.021 0.069 −0.014 84 90 56 94
CS 0.019 −0.097 0.027 0.080 −0.021 85 90 58 94
IND 0.021 −0.101 0.019 0.081 −0.018 83 92 53 94

Case 2
MAR

AR(1) 0.013 0.009 0.001 −0.003 −0.002 94 93 93 97
CS 0.016 0.011 0.005 0.002 −0.004 94 93 98 96
IND 0.017 0.024 0.002 0.002 −0.002 92 91 94 93

MCAR
AR(1) 0.017 −0.025 −0.058 0.057 0.016 94 89 84 94
CS 0.020 −0.067 −0.047 0.071 0.018 92 94 79 96
IND 0.022 −0.086 −0.046 0.078 0.021 94 96 78 96

Case 3
MAR

AR(1) 0.018 −0.012 0.021 0.018 −0.015 94 94 93 95
CS 0.029 −0.024 0.031 0.020 −0.018 92 92 91 94
IND 0.032 −0.030 0.022 0.022 −0.016 91 91 90 92

MCAR
AR(1) 0.028 −0.116 0.019 0.118 −0.010 83 88 49 90
CS 0.036 −0.152 0.019 0.136 −0.012 81 91 46 92
IND 0.038 −0.181 0.012 0.145 −0.009 78 91 35 92

where α = (α1, α2)
T = (−0.6, 1)T. The negative value of α1 indicates that a subject is more likely to

drop out from the study over time. The positive coefficient of α2 implies that the larger the previ-
ously measured response values are, the less likely subjects are to dropout. Note that the probability
πi j = P(Mi j = 1 | νi j ) can be expressed as πi j = ∏ j

t=2 λi t . Consequently, the estimate of λi j is obtained
as λ̂i j = 1/(1 + e−α̂1xi2 j −α̂2 yi, j−1). In this setup, the percentage of patients dropping out increases gradually
from 4.3% on average after the first visit and the total percentage of dropouts at the last visit reaches
74.0% on average when the normal error distribution was considered (Case 1). Dropouts patterns and
the percentages of dropouts are similar with the asymmetric errors (Case 2) and heteroskedastic errors
(Case 3).

With Ŵi = diag(Mi1/π̂i1, . . . , Mimi /π̂imi ) given by π̂i1 = 1 and π̂i j = ∏ j
t=2 λ̂i t for j > 1, we imple-

mented the weighted empirical likelihood approach in (2.10). We also considered the unweighted approach.
This corresponds to the case in which missingness is assumed completely at random, whereas the missing
mechanism described in (3.1) is missing at random. Table 1 presents the mean square error estimates of
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Quantile regression for longitudinal data

Table 2. Mean squared error estimates in case of no dropouts using methods by
Tang and Leng (2011) and Yi and He (2009), and the proposed approach. Work-
ing correlation structures denoted by AR(1) and CS correspond to autoregres-
sive correlation structure of order 1 and compound symmetry and independence

structure, respectively

Proposed method Tang and Leng

Case Quantile AR(1) CS AR(1) CS Yi and He

1 0.25 0.010 0.012 0.020 0.021 0.013
0.5 0.009 0.010 0.018 0.018 0.013
0.75 0.010 0.013 0.020 0.020 0.017

2 0.25 0.004 0.004 0.006 0.006 0.004
0.5 0.012 0.014 0.018 0.020 0.016
0.75 0.044 0.058 0.094 0.096 0.088

3 0.25 0.013 0.014 0.028 0.028 0.018
0.5 0.012 0.014 0.022 0.023 0.018
0.75 0.015 0.019 0.026 0.026 0.024

β̂
w

τ=0.5 and the average of bias estimates of each coefficient. The coverage probability of bootstrap confi-
dence intervals at the nominal 95% level was also reported. The confidence intervals were obtained from
200 reputations.

Among the results obtained under the missing at random assumption, the mean square errors were
smallest under the AR(1) working correlation structure and the largest under the independent working
correlation structure for all cases. This confirms that we obtained a more efficient estimator by assuming
an informative working correlation structure when compared with ignoring the correlation structure, even
though the specified correlation structure may not be correct. Moreover, bias was smaller and the coverage
probabilities were closer to the nominal 95% level with the informative working correlation structures. On
the other hand, when missingness was erroneously assumed completely at random, the estimators were no
longer unbiased and most coverage probabilities were below the nominal level. The coverage probabilities
of β2 in Case 3 were even smaller than 50%. Results at τ = 0.25 and 0.75 were similar and provided in
supplementary materials (available at Biostatistics online).

Furthermore, we assumed no dropouts (mi = 5 for all subjects) and compared the proposed method
in (2.6) with those of Yi and He (2009) and Tang and Leng (2011). Although all yielding asymptotically
unbiased estimators, Table 2 reports that the proposed empirical likelihood method yielded a more efficient
estimator in all the finite sample cases under consideration.

3.2 Real-life data application

The motivating dataset comes from ACTG116 study by Dolin and others (1995). This is a longitudinal
controlled trial of HIV disease in patients with advanced HIV Type 1 infection. It measured CD4 cell
counts repeatedly in each patient at weeks 0, 16, 32, 48, and 64, and aimed to assess treatment effects on
CD4 cell counts with possible time effects. CD4 cell counts are a biomarker for AIDS or AIDS-related
complex diseases. They generally decrease as the HIV patient’s immune system deteriorates. We analyzed
CD4 cell counts data on 408 patients who were randomly assigned to the following two treatment groups:
zidovudine (211 subjects) and didanosine (197 subjects).

Figure 1 indicates that the distribution of CD4 cell counts are skewed. The mean regression may not
appropriately assess the longitudinal change in the CD4 cell count. As an alternative, we postulated the
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Fig. 1. Boxplots of CD4 cell counts for didanosine (DDI) and zidovudine (ZDV) groups at weeks 0, 16, 32, 48, and 64.

Table 3. Estimated coefficients with the standard errors: a coefficient whose bootstrap confidence
interval does not include zero is marked with ∗ and the generalized estimating equation approach

is denoted by GEE

Conditional regression Method Interceptse Treatmentse Timese Interactionse

Mean GEE-AR(1) 154.037.17∗ 1.7710.26 −5.872.57∗ −6.563.29∗
GEE-independence 151.117.95∗ 5.1311.12 0.263.23 −10.324.21∗

Median Proposed 140.635.85∗ 9.296.90 −15.542.54∗ −5.833.24

Naive 1 136.076.02∗ 12.397.78 −8.865.15 −11.834.81∗
Naive 2 137.928.97∗ 11.2112.14 −5.965.09 −12.775.86∗

0.25th quantile Proposed 76.182.61∗ −3.543.72 −10.910.95∗ −1.041.07

Naive 1 78.044.50∗ 0.124.66 −8.581.22∗ −2.021.48

Naive 2 77.005.87∗ −2.006.69 −9.001.59∗ −3.001.83

0.75th quantile Proposed 217.377.25∗ 29.268.45∗ −2.433.60 −15.385.48∗
Naive 1 207.647.66∗ 21.419.37∗ 5.624.96 −19.836.82∗
Naive 2 215.0210.72∗ 12.2413.81 5.094.46 −13.757.11

following quantile regression model:

Qτ (xi j ) = β0,τ + β1,τ xi1 j + β2,τ xi2 j + β3,τ xi1xi2 j , for i = 1, . . . , 408 and j = 1, . . . , mi ,

where Qτ (xi j ) denotes the τ th conditional quantile of the CD4 cell count given the covariates xi j measured
in subject i at the j th assessment time and xi j = (xi1 j , xi2 j ), with xi1 j = 1 if subject i received zidovudine
and 0 otherwise for all j , and xi2 j being the index of time j for the subject i . We considered the model at
τ = 0.25, 0.5, and 0.75 to assess the relative effect of zidovudine when compared with that of didanosine,
over time in the middle of the patient population, and at the 25th and 75th percentiles. We see that β1,τ
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Fig. 2. Fitted CD4 cell counts based on the proposed approaches using an AR(1) working correlation under missing
at random mechanism (Proposed, solid lines), an AR(1) working correlation under missing completely at random
mechanism (Naive 1, dashed lines), and an independent working correlation under missing completely at random
mechanism (Naive 2, dotted lines).

corresponds to the overall relative effect and β3,τ indicates a time-related change in the relative effect, i.e.
time by treatment interaction.

In the HIV study, a proportion of participants was lost to follow-up and dropout rate increased over
time: in the zidovudine treatment group, 24.6% of the study subjects dropped out after the first visit
and overall 60.7% dropped out after the fifth visit. In the didanosine treatment group, 15.7% of the
study subjects dropped out after the first visit and overall 60.0% dropped out over the five study visits.
Volberding and others (1990) suggested that the main reason for dropouts are the selective withdrawal
from the study of subjects with low or declining CD4 cell counts. In this study, there are more patients
with smaller CD4 cell counts (<100) for the zidovudine group than didanosine at the baseline. This sug-
gests that the assumption of missing completely at random might not be valid in the study.

We postulated that the dropout process was dependent on the last measured CD4 cell counts, the type
of treatments, and the measurement time. Following Lipsitz and others (1997), we applied the logistic
regression to evaluate the probability of being observed at the j th occasion of the i th subject, logit λi j =
α0 + α1xi1 + α2xi2 j + α3 yi, j−1, where λi j = P(Mi j = 1 | Mi, j−1 = 1, xi1, xi2, yi, j−1) and Mi j = 1 indi-
cates yi j is observed. The coefficient of the previous CD4 cell count α3 is statistically significant with
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Fig. 3. Fitted quantile coefficients of a covariate “Time” with τ ∈ (0.25, 0.75) for the proposed approach (the solid
line), Naive1 (the dashed line), and Naive2 (the dotted line). The solid horizontal gray line indicates the estimated
coefficient for the mean model.

a positive estimate (α̂3 = 0.003 with a small standard error 0.001). This indicates that patients with lower
CD4 cell counts are more likely to drop out of the study. Negative estimates of α1 and α2 (α̂1 = −0.031
and α̂2 = −0.005) imply that a patient who received didanosine treatment is less likely to withdraw from
the study, and more patients tend to be lost to follow-up as time goes on, although these trends are not
statistically significant.

The equispaced measurement times and the nature of the CD4 cell counts measure suggest auto-
correlative dependence among the repeatedly measured CD4 cell count data within subjects. This is
translated to a toeplitz dependence structure of sign correlations for the quantile marginal regression. An
AR(1) correlation structure well approximates the toeplitz structure and was used as a working correlation
structure. We applied the weighted empirical likelihood procedure approach with the estimated λi j under
the missing at random assumption. As the constraint equations

∑n
i=1 pi ĝ

w
i (β) = 0 are overdetermined,

the maximization in (2.11) was conducted by the existing R package optim with the empirical likelihood
(2.10) as the objective function. Given β, the empirical likelihood is evaluated by the R package emplik.
We first computed the standard quantile regression estimator ignoring the dependency structure and using
the observed data, and used the estimate as the starting value for the maximization computation by the
R package optim. We provide R codes used for this real-life data application as supplementary material
(available at Biostatistics online).

We compared this approach with two naive approaches. The first naive approach used the same working
correlation structure, an AR(1) structure, for the within-subject correlation, but assumed that the missing-
ness were completely at random (Naive 1). The second naive approach also assumed completely random-
ness for the missing mechanism but assumed working independence for the within-subject correlation
(Naive 2).

Table 3 reports the estimates of the coefficients with the standard errors estimated by bootstrapping. We
evaluated β̂

w

τ in 1000 bootstrap samples and estimated the sample standard errors. Based on the asymptotic
normality results, we constructed 95% confidence intervals and assessed the statistical significance of the
coefficient estimates at the significance level of 0.05. In Table 3, statistically significant coefficients are
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marked with ∗. Alternatively, we considered bootstrap percentile-based confidence intervals and obtained
similar significance results.

Figures 2 and 3 show that the naive approaches tend to overestimate, when compared with the proposed
approach. The bias can be explained as the naive approaches ignored the dropout process in that patients
who had lower CD4 cell counts were more likely to withdraw from the study. Furthermore, Figure 3 clearly
suggests negative time effects for overall quantiles by the proposed approach, while the naive approaches
yielded positive estimates for higher quantiles than the median. Positive time effects not only disagree
with the sample but also contradict the general knowledge that CD4 cell counts tend to decrease over
time. We observe that the estimated coefficients vary across quantiles, which indicates the heterogeneity
of the data. For example, the proposed approach reports that the treatment and the interaction effects were
statistically significant with positive and negative estimates at the 0.75th quantile, while only the effect of
time is negatively associated with the CD4 cell counts at the median and the 0.75th quantile. The mean
regression model using the generalized estimating equations provides quite different results. This might
be due to the fact that the distribution of the data is skewed and the missing mechanism is far from the
missing completely at random mechanism. Therefore, it would not be desirable to apply the generalized
estimating equations based on an assumed normal distribution to the HIV dataset.

4. DISCUSSION

Various methodologies have been developed for the conditional mean analysis that readily accommodate
the correlations between repeated measurements; see Huang and others (2006, 2007), El Karoui (2008),
Fan and others (2008), and Zhou and Qu (2012). For the quantile marginal regression, however, most
existing methodologies have overlooked the within-subject correlations with a few exceptions. Yi and He
(2009) proposed incorporating the within-subject correlations for the median regression by assuming an
unstructured correlation structure and jointly estimating the correlation matrix. This approach may not be
generally applicable, when low or high quantiles are of interest or the number of repeated measurements
is relatively large because the correlation matrix cannot be reliably estimated. Other approaches requiring
the estimation of the correlation structure may be subject to similar limitations. The proposed empirical
likelihood inference procedure accommodates the correlation information, while it avoids estimating the
correlation matrix by using the matrix expansion idea of the quadratic information function. It yields a more
efficient estimator without knowing the true correlation structure nor estimating the parameters involved
in the informative working correlation structure. In addition, the proposed approach readily accounts for
dropouts arising from a missing at random mechanism. With dropouts, the proposed procedure can be
seen as an inverse probability weighted (IPW) estimation method. In general, IPW methods are known to
be sensitive to misspecification of the probability model, particularly when some estimated probabilities
are small (Kang and Schafer, 2007). In practice, incomplete longitudinal data may include non-monotone
missingness. The proposed method can be expanded in such cases by transforming the unbalanced data to
artificially balanced data as in Zhou and Qu (2012).

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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