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Marginal screening is a widely applied technique to handily reduce the dimensionality of the data when the number
of potential features overwhelms the sample size. Because of the nature of the marginal screening procedures,
they are also known for their difficulty in identifying the so-called hidden variables that are jointly important but
have weak marginal associations with the response variable. Failing to include a hidden variable in the screening
stage has two undesirable consequences: (1) important features are missed out in model selection, and (2) biased
inference is likely to occur in the subsequent analysis. Motivated by some recent work in conditional screening, we
propose a data-driven conditional screening algorithm, which is computationally efficient, enjoys the sure screening
property under weaker assumptions on the model and works robustly in a variety of settings to reduce false negatives
of hidden variables. Numerical comparison with alternatives screening procedures is also made to shed light on the
relative merit of the proposed method. We illustrate the proposed methodology using a leukaemia microarray data
example. Copyright © 2016 John Wiley & Sons, Ltd.
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1 Introduction
1.1 Background
A popular approach for analyzing big data is to first apply a computationally expedient screening procedure to reduce
the dimensionality to a moderate size. More sophisticated but often more computationally intensive statistical meth-
ods, such as penalized regression, can then be applied in the second stage. This practice has become routine in many
fields such as genomics and finance, where the number of available features in the data is often huge compared with
the sample size.

Fan & Lv (2008) proposed the sure independence screening (SIS) methodology for linear regression, which screens
variables by ranking their marginal correlations with the response variable. Under some regularity conditions, these
authors proved that SIS has the ability to keep all the important variables with probability tending to one. This
desirable property is often referred to as the sure screening property. The marginal screening procedure has been
further developed in a series of recent papers for a variety of settings (Hall & Miller, 2009; Fan & Song, 2010;
Bühlmann et al., 2010; Fan et al., 2011; Zhu et al., 2011; Li et al., 2012; Li et al., 2012; Mai & Zou, 2013;
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He et al., 2013; Liu et al., 2014; Shao & Zhang, 2014; among others). A different screening procedure is recently
proposed by Wang & Leng (2016), which aims to target joint associations in a covariate space in the dimension of
the sample size.

1.2 False negatives in marginal screening
Naturally, the success of any marginal screening procedure depends on how well the marginal utility, correlation
coefficient between the response and each individual predictor, captures the importance of the predictors in a joint
model. A variable may be retained by the screening procedure when it is marginally important but not jointly important
(false positive), or a variable that is jointly important but not marginally important can be screened out, resulting in a
false negative.

False negatives have two potentially serious consequences. First, important features may be screened out and will
not be reinstated by the second-stage analysis. Second, the false negatives can lead to bias in subsequent inference.
The risk of false negatives is widely recognized. An active variable can be hidden when the correlation is estimated
marginally. One illustrative example was given by Guyon & Elisseeff (2003, Section 3.3) for a two-class classification
problem, where individual variables have no separation power but, jointly, the variables provide good class separation.
As another example, we consider the following model from Barut et al. (2016), Y D b1X1 C � � � C bqXq � ˛.b1 C
� � � C bq/XqC1 C e, where q � p, b1, : : : , bq are nonzero constants and e has a standard normal distribution. The
vector of covariates .X1, : : : , Xp/

T has a multivariate normal distribution, and the covariance matrix of which has an
equally correlated structure with the correlation coefficient ˛. In this case, cov.Y, XqC1/ D 0 even if XqC1 has a large
coefficient. Hence, we expect that marginal screening will give little priority to XqC1.

Existing marginal screening procedures share the simplistic assumption that jointly important variables are also
marginally important. This assumption is critical to ensuring the sure screening property because if it is violated, false
negatives are likely to arise. To alleviate this problem, Fan & Lv (2008) suggested an iterative procedure (iterative sure
independence screening, ISIS) by repeatedly using the residuals from the previous iteration, which was subsequently
adopted by many other marginal screening procedures. A generalized linear model version of ISIS is studied in Fan &
Song (2010) and Fan et al. (2009). Because of the iterative nature, the computational costs are higher, and the sta-
tistical properties of the resulting model are more difficult to analyze. Perhaps more importantly, the performance of
the iterative SIS depends a lot on the underlying model. In some settings, particularly when the signal-to-noise ratio
is not very high, iterative SIS can underperform SIS, as shown in our empirical comparisons.

Recently, Barut et al. (2016) proposed a conditional screening technique that uses the prior knowledge that a certain
set of predictors (denoted by C) are relevant to the response variable. Each remaining variable Xj, where Xj … C, is
evaluated by fitting a regression model using Xj and the predictors in C. The variable Xj is considered important if the
magnitude of its coefficient in the aforementioned regression model exceeds a given threshold. They derived the sure
screening property and demonstrated that the prior knowledge of a “good” set C can be very helpful for identifying
hidden variables. However, the question remains how to select a good set C. Our simulation studies suggest that the
performance of such a procedure is sensitive to the choice of C.

Motivated by the work of Barut et al. (2016) and recent developments on sparse principal component analysis, we
propose a data-driven algorithm for conditional screening with generalized linear models. Our goal is to reduce false
negatives because of marginal screening without relying on a cherry-picked set of C on which the conditional screening
is based. To illustrate our proposed methodology, we analyzed the popular leukaemia data (Golub et al., 1999). In
this data set, expression levels are measured on 7129 genes for each of the 72 patients. The classification task is to
discriminate acute lymphoblastic leukaemia (ALL) from acute myeloid leukaemia (AML). We compare the proposed
method with several competing procedures with respect to their abilities to select a small subset of genes to build an
interpretable and effective predictive model. This real data example demonstrates that subjective or random choice of
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the conditioning set often leads to unstable performance. The proposed data-adaptive method produced meaningful
and more reproducible results in the analysis.

2 The proposed three-step method
2.1 Preliminaries
Throughout the paper, we assume that the conditional density of the response variable Y given the vector of predictors
X D x belongs to the following exponential family:

f.y; x, �/ D exp Œy�.x/ � b¹�.x/º C c.x, y/� , (1)

where b.�/ and c.�, �/ are known functions and �.x/ is the canonical parameter. We write x D .x1, : : : , xp/
T. The popular

generalized linear model assumes that there exists a .pC 1/-vector of parameters ˇ D .ˇ0,ˇ1, : : : ,ˇp/
T such that

E.Y j X D x/ D b0¹�.x/º D g�1.ˇ0 C ˇ1x1 C � � � C ˇpxp/, where g.�/ is the canonical link function. That is, g D .b0/�1,
and b0.�/ is the first derivative of b.�/ with respect to � . In (1), no dispersion parameter is included because we
focus on the mean regression. Furthermore, we standardize the covariates so that they have mean zero and standard
deviation one. To emphasize the dependence of p on the sample size, we use p D pn in the remaining of the paper,
and let ˇ� D .ˇ�0,ˇ�1, : : : ,ˇ�pn/

T be the vector of true parameter values. Furthermore, assume that ˇ� is sparse in
the sense that the size of the set M� D ¹j : ˇ�j ¤ 0, 1 � j � pnº is small relative to n even when pn is large.

In a nutshell, our new algorithm consists of three steps. First, we perform pre-cleaning by standard marginal regression
to reduce dimensionality of the problem. Second, we perform sparse principal component analysis on the variables
surviving the first step and obtain a set of variables corresponding to those having large loadings on the leading
eigenvectors. Finally, using the set of predictors obtained in step 2, we perform conditional marginal screening. Each
step of the new algorithm is computationally fast. We will describe the details of the three steps later in this section.

Step 2 of the proposed method relies on the recent work on sparse principal component analysis. Recently, it has been
revealed by several authors, including Li (2007), Artemiou & Li (2009, 2013) and Ni (2011), that the response is
often highly correlated with the leading principal components of the covariate vector, and hence, principal component
analysis is valuable for the purpose of finding a low-dimensional summary of relevant predictors in the regression
setting. In Section 3, we demonstrate that, with the assistance of the sparse principal component analysis, the
proposed method yields a robust variant of the conditional marginal screening and works well in a variety of settings
to reduce false negatives without relying on a pre-selected set of variables with a priori information to perform the
conditional analysis.

2.2 Step 1: pre-cleaning
In some applications, the number of available predictors can be in the order of tens of thousands or more, but the
sample size is limited. To expedite the computation, we first perform a pre-screening step. In this step, the number
of predictors we retain is allowed to be larger than the sample size, but usually significantly less than the candidate
number of predictors. Although the pre-cleaning is based on the marginal utility as the traditional marginal screening
methods, we do not require the assumption that jointly important variables are also marginally important to hold. It is
important to note that a variable that is screened out at this stage may still be identified in step 3.

Let Ǒj be the maximum likelihood estimator of the coefficient of Xj from fitting a marginal generalized linear model
using only the intercept and Xj. Denote . Ǒ0j, Ǒj/ D argmin

.ˇ0,ˇj/

Pnl.ˇ0 C Xjˇj, Y/, where l.�.x/, Y/ D �
�
�.x/Y � b¹�.x/º

�
,

and for a measurable function g, Png.X, Y/ D n�1
Pn

iD1 g.Xi, Yi/. We retain the variables whose estimated marginal
magnitude is sufficiently large. For a given threshold �n, let
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Mn1 D
°
j : j Ǒjj > �n

±

be the index set of the predictors that survive the pre-cleaning.

Define .ˇ�
0j,ˇ

�
j / D arg min.ˇ0,ˇj/ E¹l.ˇ0 C Xjˇj, Y/º as the population version of the marginal regression coefficients.

Assume that there exists An � ¹1, : : : , pnº such that minj2An jˇ
�
j j � c1n�� and supj2Ac

n
jˇ�j j � c2n���ı , for some

0 < � < 1=2, ı > 0 and some positive constants c1 and c2. Let qn D jAnj, where jAnj denotes the cardinality of An.
We assume that qn !1 but qn D o.pn/.

Proposition 2.1
Assume that conditions 1–5 in the Appendix are satisfied. For �n D c3n�� with c3 � c1=2, there exist positive
constants �i > 0, i D 1, 2, 3, such that pr.Mn1 D An/ � 1�pn¹exp.��1n1�2�k�2n K�2n /Cexp.��2K

�3
n /º, for all n, where

Kn and kn are defined in conditions 2 and 5, respectively.

Remark 1
This result follows from a direct application of the exponential bound for the marginal maximum likelihood estimator
in the generalized linear model shown in Fan & Song (2010). Under relatively weak conditions, the aforementioned
probability bound converges to 1 as n!1.

2.3 Step 2: sparse principal component analysis
Next, we apply sparse principal component analysis to the variables surviving the pre-cleaning to construct a subset
of covariates to condition on. Let XAn denote the subset of the components of X whose indices are in An. Let † be the
population covariance matrix of XAn , and consider its spectral decomposition † D

Pqn
jD1 �jujuT

j , where �1 � � � � � �qn

are eigenvalues and u1, : : : , uqn 2 Rqn constitute an orthonormal basis of the eigenvectors. For a given positive integer
k < qn, we consider the principal subspace spanned by the k leading eigenvectors of †, that is, the space spanned
by u1, : : : , uk. Our working assumption is that the leading eigenvectors are sparse in the sense that most of their
components are zero.

For a vector v, let supp.v/ be the index set corresponding to nonzero entries of v. Then Bn D [
k
jD1supp.uj/ represents

the collection of the indices of the predictors corresponding to the nonzero components of the first k eigenvectors. In
our numerical examples, a small positive integer k, say k D 1, 2, is found to work well. The set of predictors XBn is
what we will use in the conditional screening step.

There are a number of different algorithms for sparse principal component analysis; we refer to Jolliffe et al. (2003),
Zou et al. (2006), Shen & Huang (2008), Witten et al. (2009), Johnstone & Lu (2009), Ma (2013), Vu & Lei (2013),
She (2014) and the references therein. We use the recently developed Fantope projection and selection algorithm of Vu
et al. (2013) in our work. Unlike some of the alternatives, Fantope projection and selection algorithm can be applied
to correlation matrices and has proved theoretical guarantee for consistently identifying Bn. Let U D[ u1, : : : , uk]. Then
the projection matrix associated with the principal subspace is … D UUT. Let Sn be the sample covariance matrix of
XMn1 . Vu et al. (2013) proposed to estimate … by OH D arg max¹hSn, Hi � �kHk1,1º subject to the jMn1j 	 jMn1j matrix
H 2 Fk, where Fk D ¹H : 0 
 H 
 I and tr.H/ D kº, which is called the trace-k Fantope; � is a tuning parameter; and
hSn, Hi D tr.Sn

TH/ is the trace inner product. The matrix (1,1)-pseudonorm kHk1,1 D .kH1�k1, : : : , kHk�k1/1 with Hj�

denoting the jth row of H, j D 1, : : : , k, that is, kHk1,1, is the L1 norm of the vector that consists of row-wise L1 norms
of H. We then estimate Bn by

Mn2 D supp¹diag. OH/º,

which is the index set corresponding to the nonzero diagonal elements of OH.
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Proposition 2.2
Assume that conditions 1–8 in the Appendix are satisfied. Then pr.Mn2 D Bn/ � .1 � 2qn

�2/h
1 � pn

°
exp

�
��1n1�2�k�2n K�2n

�
C exp

�
��2K

�3
n

�±i
, for all n.

Remark 2
This result follows directly from Theorem 2 on sparsistency of Lei & Vu (2015). The validity of this result does not
depend on any assumption on the joint model. Lei & Vu (2015) also showed that, even without assuming sparsity,
Fantope projection and selection method provides a sparse, linear dimension-reducing transformation that is close
to the best possible in terms of maximizing the predictive covariance. Vu et al. (2013) recommended to dynamically
update � after each iteration of their algorithm to keep the primal and dual residual norms within a constant factor
of each other.

2.4 Step 3: conditional screening
In the last step, we perform the conditional screening of Barut et al. (2016) by conditioning on XMn2 . This step allows
us to include variables with large additional contributions, which may help recruit predictors that are missed in step
1. More specifically, for each j … Mn2, let . O	0j, O	Mn2 , O	j/ D argmin

.�0j,�Mn2 ,�j/

Pnl.	0 C XT
Mn2
	Mn2 C Xj	j, Y/.

Conditioning on Mn2, we keep the variables in the following set:

Mn3 D
®
j : j O	jj > �2, j 2 Mc

n2

¯

for a given threshold �2. Under weak conditions, it can be shown that Mn3 enjoys the sure screening property. In
practice, the threshold �2 may need no prior specification if we choose to retain a fixed number of variables with the
largest coefficients j O	jj. At the end of the algorithm, we keep the predictors in the set OMn D Mn2 [Mn3.

Theorem 2.1
(Sure screening property) Assume that conditions 1–11 in the Appendix are satisfied. For the �0 defined in
condition 9, let �2 D a1n��

0

with a1 � a2, where a1 > 0, a2 > 0 are constants. Then there exist positive
constants �i, i D 4, 5, 6 such that pr.M� � OMn/ �

h
1�dn

°
exp

�
��4n1�2�k0�2n K�2n

�
Cn exp

�
��5K

�6
n

�±i
.1� 2qn

�2/h
1 � pn

®
exp.��1n1�2�k�2n K�2n /C exp.��2K

�3
n /
¯i

for all n, where dn D jM�j and k0n are defined in condition 11.

Remark 3
This result follows from Proposition 2 and Theorem 3 of Barut et al. (2016). For linear and logistic models, the
optimal order of Kn is a positive power of n1�2� . It is easy to see that the probability in Theorem 1 goes to one even
when pn is allowed to grow exponentially fast.

3 Monte Carlo studies
In the simulation studies, we compare the proposed three-step method (denoted by 3S in Table I) with the following
alternatives: (i) SIS of Fan & Lv (2008); (ii) ISIS of Fan et al. (2009); (iii) conditional sure independence screening
(CSIS) of Barut et al. (2016) with different choices of the conditioning set C; and (iv) high-dimensional ordinary least-
squares projector of Wang & Leng (2016). SIS and ISIS are both implemented using the R-package SIS on CRAN
(version of 0.7-5). We fix � D 0.5, the tuning parameter in the Fantope projection. In the real analysis, we can
determine a value of � by cross validation.
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Table I. Comparison of true model inclusion and average active viable ratios by different screening methods.

.p, n/ D (1000,100) .p, n/ D (10000,200)
R2 D 50% R2 D 90% R2 D 50% R2 D 90%

Method TMR AAR TMR AAR TMR AAR TMR AAR

Example 1 SIS 0.00 0.60 0.00 0.77 0.00 0.59 0.00 0.80
(d D 6) ISIS 0.00 0.41 0.98 1.00 0.01 0.49 1.00 1.00

CSIS with C1 0.28 0.81 0.80 0.96 0.29 0.82 0.93 0.99
CSIS with C2 0.06 0.68 0.46 0.89 0.07 0.68 0.62 0.94
HOLP 0.06 0.67 0.58 0.91 0.14 0.69 0.77 0.96
3S 0.08 0.67 0.65 0.93 0.15 0.74 0.82 0.96

Example 2 SIS 0.00 0.48 0.00 0.63 0.00 0.40 0.00 0.64
(d D 6) ISIS 0.00 0.28 0.01 0.52 0.00 0.29 0.04 0.59

CSIS with C1 0.12 0.71 0.32 0.83 0.08 0.70 0.48 0.88
CSIS with C2 0.02 0.54 0.14 0.74 0.00 0.46 0.10 0.73
HOLP – – – – – – – –
3S 0.00 0.55 0.23 0.78 0.03 0.52 0.15 0.76

Example 3 SIS 0.13 0.56 0.22 0.61 0.13 0.56 0.19 0.60
(d D 2) ISIS 0.06 0.50 0.56 0.78 0.05 0.51 0.79 0.90

CSIS with C1 0.24 0.62 0.89 0.94 0.15 0.57 0.95 0.98
CSIS with C2 0.14 0.57 0.22 0.61 0.14 0.57 0.21 0.60
HOLP 0.15 0.57 0.34 0.67 0.13 0.56 0.22 0.61
3S 0.23 0.62 0.57 0.78 0.13 0.56 0.63 0.82

Example 4 SIS 0.00 0.66 0.07 0.84 0.00 0.69 0.24 0.91
(d D 12) ISIS 0.00 0.32 0.85 0.96 0.00 0.37 0.98 0.99

CSIS with C1 0.01 0.69 0.17 0.87 0.00 0.75 0.40 0.93
CSIS with C2 0.00 0.65 0.06 0.83 0.00 0.69 0.24 0.90
HOLP 0.00 0.64 0.13 0.86 0.02 0.69 0.30 0.92
3S 0.00 0.65 0.09 0.84 0.02 0.68 0.28 0.91

Example 5 SIS 0.33 0.63 0.51 0.76 0.50 0.73 0.74 0.91
(d D 4) ISIS 0.00 0.28 0.00 0.44 0.00 0.30 0.00 0.48

CSIS with C1 0.56 0.79 1.00 1.00 0.78 0.92 1.00 1.00
CSIS with C2 0.15 0.62 0.14 0.66 0.14 0.62 0.20 0.69
HOLP 0.00 0.25 0.00 0.26 0.02 0.30 0.06 0.48
3S 0.27 0.65 0.36 0.74 0.30 0.67 0.28 0.65

R2 D 30% R2 D 50% R2 D 30% R2 D 50%
Example 6 SIS 0.71 0.90 0.90 0.97 0.83 0.94 0.97 0.99
(d D 3) ISIS 0.33 0.70 0.79 0.92 0.37 0.73 0.93 0.94

CSIS with C1 0.83 0.94 0.99 0.99 0.83 0.94 1.00 1.00
CSIS with C2 0.72 0.90 0.89 0.96 0.70 0.89 0.97 0.99
HOLP 0.71 0.90 0.89 0.96 0.73 0.91 0.97 0.99
3S 0.72 0.90 0.91 0.97 0.87 0.96 1.00 1.00

TMR, true model inclusion ratio; AAR, average active variable ratio; SIS, sure independence screening; ISIS, iterative SIS; CSIS,
comparative SIS; HOLP, ordinary least-squares projector; 3S, three-step.
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We evaluate different screening methods on B simulations runs, where B D 200 for .p, n/ D .1000, 100/ and B D 100
for .p, n/ D .10000, 200/. Across B simulation runs, we compare the different methods according to two criteria:
(i) true model inclusion ratio, the proportion of times when the first n variables retained from screening include all
the active variables, and (ii) average active variable ratio, the proportion of active variables in the set of n retained
variables after screening. Higher values of true model inclusion ratio and average active variable ratio indicate better
screening procedures.

In this study, examples 1–4 are adapted or modified from Barut et al. (2016) and Fan & Lv (2008), and example 6
is used in Wang (2009) and Wang & Leng (2016). The random error 
 follows N.0, �2/ with �2 being adjusted to
achieve a pre-specified R2 defined as var.XTˇ//var.Y/.

Example 1. Y D XTˇ C 
, where all covariates follow the standard normal distribution with equal correlation
0.5 and ˇ D .3, 3, 3, 3, 3,�7.5, 0, : : : , 0/T. In this setting, X6 is the hidden active variable because
cov.X6, Y/ D 0 although ˇ6 has a large contribution to the response variable.

Example 2. The conditional distribution of Y given X D x follows the binomial distribution with pr.Y D 1 j X D x/ D
exp.xTˇ/=¹1C exp.xTˇ/º, where X and ˇ are the same as in example 1.

Example 3. Y D XTˇC
, where all the covariates except X1–X7 follow the independent standard normal distribution
and ˇ D .10, 0, : : : , 0, 1/T. The first seven covariates are normal with equi-correlation 0.9.

Example 4. Y D XTˇ C 
, where ˇ D .1, 1.3, 1, 1.3, 1, 1.3, 1, 1.3, 1, 1.3, 1, 1.3, 0, : : : , 0/T, Xj D 
j, ¹
jºjD1,:::,[p=3] are
independent and identically distributed standard normal variables, ¹
jºjD[p=3]C1,:::,[.2p/=3] are indepen-
dent and identically distributed double exponential variables with location parameter zero and scale
parameter one and ¹
jºjD[.2p/=3]C1,:::,p are independent and identically distributed with a mixture nor-
mal distribution with two components N.�1, 1/ and N.1, 0.5/ of equal mixture proportion, where [ x]
denotes the integer part of x.

Example 5. Y D XTˇC
, where all the covariates except X2–X50 are independent standard normal random variables
and ˇ D .0.7,0.2,�0.2,�0.2, 0, : : : , 0/T. The covariates X2–X50 are normal with equi-correlation 0.9.

Example 6. Y D XTˇC
, where each Xi follows a multivariate normal distribution with mean 0 and cov.Xij1 , Xij2/ D

0.3jj1�j2j and ˇ D .3, 0, 0, 1.5, 0, 0, 2, 0, : : : , 0/T.

We summarize the simulation results from the aforementioned examples in Table I, but note that the study of Wang
& Leng (2016) is not developed for binary responses so is excluded in example 2. The performance of CSIS depends
on the prior knowledge of a conditioning set C. We consider the case when such an informative set is available as
well as the case where we do not have such knowledge. In example 1, we consider two choices of the conditioning
sets, C1 D ¹1, 2º and C2 D{a random choice of two inactive variables}; in examples 2–6, we consider the choices
C1 D ¹1º and C2 D{a random choice of one inactive variable}. Here, C1 is a favourable choice, but C2 is not. For the
proposed 3S method, we retain n covariates in the pre-cleaning step. Although the number of predictors kept in this
stage can be larger than the sample size, we did not observe significant gains from holding larger sets of covariates
such as sizes of 2n and 3n in the aforementioned examples. To control the effect due to the size of the conditioning
set, we let the size of Mn2 of our proposed procedure be the same as that of the conditioning set used for CSIS. We
observe from Table I that

� The ISIS tends to perform well when the signal-to-noise ratio is high (with R2 D 0.9), but it does not always impr-
ove over SIS. In a more realistic setting with R2 D 0.5 or lower, the iterative screening often performs worse, and
sometimes substantially so (examples 2, 5 and 6).

� The benefit of CSIS is clear when a favourable choice of the conditioning set is given, such as the case with C1.
However, when the conditioning set is not well chosen, it becomes less robust, and its performance could degene-
rate easily.
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� In all the examples, the proposed method 3S remains highly competitive. Often, it performs significantly better
than SIS when the latter has difficulty selecting the hidden active variables (examples 1–3). When compared with
CSIS, it is much closer to the behaviour of CSIS under a favourable conditioning set than that without a well-
informed choice of the conditioning set.

� High-dimensional ordinary least-squares projector is often a competitive method; however, it has very poor perfor-
mance in example 5, and it has not been developed for binary regression (example 2).

In summary, for a wide range of settings, the proposed method remains competitive. It can be viewed as a data-
adaptive version of the CSIS. Our empirical work demonstrates the potential of the proposed method to reduce the
false negatives when hidden variables are present.

4 Real data example
We illustrate the proposed methodology using the widely analyzed leukaemia microarray data set from Golub et al.
(1999). The data set contains measurements on specimens from bone marrow or peripheral blood samples taken
from 72 patients, who had either ALL or AML. Gene expression levels were measured using Affymetrix high-density
oligonucleotide arrays containing p D7129 human genes.

It is important to identify signature genes for distinguishing ALL and AML. We first split the data into 38 training
samples (27 ALL and 11 AML) and 34 testing samples (20 ALL and 14 AML) as performed in the original investigation
(Golub et al., 1999) and then apply the proposed method to select genes and evaluate the performance of classification
power. We standardize the gene expression data so that the arrays have mean 0 and variance 1 across genes, which is
a common pre-processing method used in expression data analysis. The predictive performance of the selected genes
on the training and testing data is assessed for several competing methods under consideration. They are

� SIS: using top three genes by marginal screening.
� ISIS: using top three genes by iterative screening.
� CSIS-i: the CSIS method conditional on C1 D ¹X95735, D26156º, two genes used in Barut et al. (2016) as good

choices.
� CSIS-ii: the CSIS method conditional on C2 D ¹X95735, M27783º, two top genes from marginal screening SIS.
� CSIS-iii: the CSIS method conditional on C3, which consists of two randomly chosen genes.
� 3S: the proposed three-step screening method.

The results on the misclassification performance (evaluated on the testing data) are reported in Table II, where the
misclassification rates are computed using two different approaches. The first one, Test error1, uses the training data
to both select the genes and fit the logistic regression model that is then used for classification, while the second
one, Test error2, uses the training data to select the genes and then use the full data to estimate the logistic model
coefficients for classification.

We retain three genes for SIS to compare directly with the results in Barut et al. (2016). For the CSIS-iii, the mis-
classification rates are averaged over 200 randomly chosen sets of C3. For our proposed method 3S, we choose the
tuning parameter � needed in step 2 (the Fantope projection) by cross validation. The � value of 0.45 for the training
data set is used.

The proposed data-driven conditional screening method 3S identified genes D88422 (CYSTATIN A), X95735 (Zyxin) in
step 2 and selected an additional gene M21624 (TCRD T-cell receptor, delta) in step 3. We observe that the three genes
identified by the 3S procedure have satisfactory predictive power. In fact, the misclassification rates (Test error1= 2/34,
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Table II. Misclassification rates for the leukaemia data with training and testing samples.

Train Test Test
Method error error1 error2

(1) SIS 0/38 5/34 3/34
(2) ISIS 0/38 3/34 3/34
(3) CSIS

(i) Informative C1 ={X95735, D26156} 0/38 2/34 1/34
(ii) Informative C2 ={X95735, M27783} 1/38 5/34 3/34
(iii) Non-informative C3 ={two random choices} (0.1˙1.14)/38 (6.9˙3.42)/34 (6.1˙ 3.93)/34

(4) Proposed data-driven C ={D88422, X95735} 0/38 2/34 1/34

SIS, sure independence screening; ISIS, iterative SIS; CSIS, comparative SIS.

Test error2= 1/34) are the same as those for CSIS-i, where a knowledgeable choice of the conditioning set based on
information from the medical literature is used (Barut et al., 2016). The original paper of Golub et al. (1999) used
50 genes to build a predictive model but only achieved correct classification on 29 of the 34 cases in the testing data
set. In comparison, the proposed 3S method achieve better classification performance with far fewer genes.

It is also informative to see what happens when we apply different methods to the full data. That is, the full data are
used to select the genes, fit the model and evaluate the classification performance. When CSIS-i with the same C1 as
in Table II is applied to the full data, it selects an additional gene HG651�HT4201 and results in a misclassification rate
of 4/72. This is clearly not as favourable as the results in Table II and demonstrates that, even though C1 (subjective
choice) gives good performance for the training data, it would lead to less favourable results on the full data. When
the proposed method S3 is used, we obtain C D ¹M27891(cystatin C)º for k D 1 and C D ¹M27891(cystatin C),
D88422 (cystatin A)}, for k D 2 in step 2 using the Fantope projection tuning parameter � D 0.49. In step 3, an
additional gene U62136 (putative enterocyte differentiation promoting factor mRNA) is selected conditioning on either
¹M27891, D88422º or ¹M27891º. In either case, the method identified a model with no misclassification on the same
data. Note that U62136 is removed in step 1 of the 3S method because of its small marginal utility, but it is retrieved
in step 3 by conditioning on the gene(s) selected in step 2. Those three genes by 3S were all identified as important
in Golub et al. (1999). Previous studies (Dramiński et al., 2008; Guan & Zhao, 2005) also confirmed U62136 as
one of the top-ranked reference genes for leukaemia.

With SIS, U62136 is ranked as 63 out of the total number of 7129 genes. Therefore, it can be easily missed by
marginal screening when only a small subset of genes are chosen in the final model. It is also missed by CSIS with the
subjective choice of C1 used by Barut et al. (2016). Overall, we conclude that the proposed 3S method with adaptive
choice of conditioning set provides reliable results in this example, whether the procedure is applied to the training
data alone or to the full data.

Appendix A. Technical conditions
We first introduce some additional notation. Let ˇj D .ˇ0j,ˇj/

T, Xj D .1, Xj/
T, ˇ D .ˇ0,ˇ1, : : : ,ˇpn/

T and
X D .1, X1, : : : , Xpn/

T. Let XBn be the subvector of X consisting of those components in Bn, where Bn is defined in

Section 2.3. For j … Bn, let XBnj D
�
XT

Bn
, Xj

�T
. Let � D .	0, 	1, : : : , 	pn/

T. For j … Bn, let �Bnj D
�
�T

Bn
, 	j

�T
and

��Bnj D arg min�Bnj
El
�
XT

Bnj�Bnj, Y
�
. For a vector v 2 Rk, jjvjj denotes the Euclidean norm, and jjvjj1 D max1�i�k jvij.

For a matrix A 2 Rn�m and index sets J1 � ¹1, : : : , nº and J2 � ¹1, : : : , mº, AJ1J2 denotes that the submatrix
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consists of rows in J1 and columns in J2. For 1 � i � n and 1 � j � m, Aij denotes the .i, j/th entry of A.
The matrix .2,1/-norm jjAjj2,1 is defined as jj.jjA1�jj, jjA2�jj/, : : : , jjAn�jj/jj1, where Ai� denotes the ith row of A,
i D 1, : : : , n. Let M�Bn D M� \ Bn. Let EL.XjjXBn/ denote the best linear regression fit of Xj regressed on XBn . Let
covL.Y, XjjXBn/ D E.Xj � EL.XjjXBn//.Y � EL.YjXBn//.

Condition 1. The marginal Fisher information Ij.ˇj/ D E
°
b00
�
XT

j ˇj

�
XjX

T
j

±
is finite and positive definite at

ˇ�j D
�
ˇ�
0j,ˇ

�
j

�T
, where

�
ˇ�
0j,ˇ

�
j

�
D arg min.ˇ0,ˇj/ E¹l.ˇ0 C Xjˇj, Y/º for j D 1, : : : , pn. More-

over, supˇj2B,jjXjjD1 jjIj.ˇj/
1=2Xjj is bounded from earlier, where jj � jj is the Euclidean norm and

B D ¹ˇj : jˇ0jj � B, jˇjj � Bº is a sufficiently large set for which ˇ�j is an interior point.
Condition 2. The second derivative of b.�/ is continuous and positive. There exists an 
1 > 0 such that, for all

j D 1, : : : , pn, for some sufficiently large positive constant Kn, supˇj2B,jjˇj�ˇ
�

j jj��1

ˇ̌
Eb
�
XT

j ˇj

�
I.jXjj >

Kn/
ˇ̌
Do.n�1/.

Condition 3. For all ˇj 2 B, we have E
�
l
�
XT

j ˇj, Y
�
� l

�
XT

j ˇ
�
j , Y

��
� Vjjˇj � ˇ

�
j jj
2, for some positive constant V,

bounded from the later equation uniformly over j D 1, : : : , pn.
Condition 4. There exist some positive constants m0, m1, s0, s1 and ˛, such that, for sufficiently large t, P.jXjj >

t/ � .m1 � s1/ exp.�m0t˛/, for j D 1, : : : , pn, and that E
h
exp

°
b
�
XT
ˇ� C s0

�
� b

�
XT
ˇ�

�±i
C

E
h
exp

°
b
�
XT
ˇ� � s0

�
� b

�
XT
ˇ�

�±i
� s1.

Condition 5. Let kn D b0.KnBC B/Cm0K˛n =s0. Assume that n1�2�=.k2nK2n/!1.
Condition 6. The matrix † defined in Section 2.3 satisfies the sparse principal subspace condition in Lei & Vu

(2015) with some positive integer k and a support set J of size s; † also satisfies the limited
correlation condition (LCC) in Lei & Vu (2015) with a constant ı 2 .0, 1]. The matrix Sn defined
in Section 2.3 satisfies the maximum error bound condition in Lei & Vu (2015) with a scaling
constant � .

Condition 7. Assume that s
p

log qn=n � ¹ı.�k � �kC1/
2º=¹4�.8�1 C �k � �kC1/º. The tuning parameter � in

estimating OH satisfies � D �ı�1
p

log qn=n.
Condition 8. Either of the following two conditions holds:

(1) 4s�
p

log qn=n < ı.�k � �kC1/minj2J
p
…jj, where … is defined in Section 2.3;

(2) rank.sign.†JJ// D 1 and 2�
p

log qn=n < ımini2J,j2J†ij.
Condition 9. There exist c01 > 0 and 0 < k0 < 1=2 such that covL.Y, XjjXBn/ � c01n

��0 , 8 j 2 M�Bn . Let �j D°
b0
�
XT

Bnj�
�
Bnj

�
� b0

�
XT

Bn
��Bn

�±
=
�
XT

Bnj�
�
Bnj � XT

Bn
��Bn

�
. Assume that E

�
�jX2j

�
� c02 for some positive

constant c2, uniformly in j 2 Bc
n.

Condition 10. (i) The marginal Fisher information Ij.�Bnj/ D E
°
b
00

�
XT

Bnj�
�
Bnj

�
XBnjX

T
Bnj

±
is bounded. Moreover,

supˇBnj2B0,jjXBnjjjD1
jjIj.�Bnj/

1=2XBnjjj is bounded, where jj � jj is the Euclidean norm, B0 D ¹�Bnj :
j.�Bnj

/lj � B0, 8 l 2 Bn [ ¹jºº is a sufficiently large set for which ��Bnj is an interior point, B0 is a
sufficiently large positive constant and .�Bnj

/l denotes the lth component of �Bnj
.

(ii) There exists an 
01 > 0 such that, for all j 2 Bc
n, for the Kn specified in condition 2,

sup�Bnj2B0,jj�Bnj��
�

Bnjjj��
0

1

ˇ̌
Eb
�
XT

Bnj�Bnj

�
I.jXjj > Kn/

ˇ̌
Do.n�1/. The function l.xTˇ, y/ satisfies the Lip-

schitz condition with positive constant kn, jl.xTˇ, y/ � l.xTˇ0, y/jIn.x, y/ � knjxTˇ � xTˇ0jIn.x, y/, for
ˇ,ˇ0 2 B, a compact, convex parameter set, where In.x, y/ D I¹.x, y/ 2 nº and n D ¹.x, y/ :
jjxjj1 � Kn, jyj � K�n º, for some positive constants Kn and K�n D m0K˛n =s0.
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(iii) For all �Bnj 2 B0, we have E
�
l
�
XT

Bnj�Bnj, Y
�
� l

�
XT

Bnj�
�
Bnj, Y

��
� V0jj��Bnj � �

�
Bnjjj

2, for some

positive constant V0.
Condition 11. Let k0n D b0.KnB.jBnj C 1//Cm0K˛n =s0. Assume that n1�2�

0

=.k02n K2n/!1.

Remark 4
Conditions 1–5 are those that appear in Theorem 4 of Fan & Song (2010) for the exponential bound for the marginal
maximum likelihood estimator in the generalized linear model. As they have discussed, conditions 1–3 are satisfied
by many examples of generalized linear models; condition 4 ensures the tail of Y to be exponentially light; condition
5 is necessary for the exponential inequality of the marginal maximum likelihood estimation. Conditions 6–8 are
those that appear in Theorem 2 of Lei & Vu (2015). Conditions 9–11 are those that appear in Theorem 3 of Barut
et al. (2016), which are parallel to conditions 1–5 for the unconditional case.

Appendix B. Technical derivations
Proof of Proposition 1.
It is embedded in the proof for Theorem 4(i) of Fan & Song (2010) that, for �n D c3n�� with c3 � c1=2, there exist
positive constants �i > 0, i D 1, 2, 3, such that the marginal likelihood estimator satisfies

pr
�
j Ǒj � ˇ

�
j j > �n

�
� exp

�
��1n1�2�k�2n K�2n

�
C exp

�
��2K

�3
n

�
, (2)

8 1 � i � pn. Consider the event En D ¹max1�i�pn j
Ǒj � ˇ

�
j j � �nº. Note that, on this event, we have Mn1 D An.

Hence, pr.Mn1 D An/ � pr.En/ D 1�pr.Ec
n/, and the result follows by an application of (2) and the union bound.

Proof of Proposition 2.
Note that pr.Mn2 D Bn/ � pr.Mn2 D BnjMn1 D An/pr.Mn1 D An/. By Theorem 2 of Lei & Vu (2015), pr.Mn2 D

BnjMn1 D An/ � 1 � 2q�2n . The result then follows by an application of Proposition 1.

Proof of Theorem 1.
Note that pr

�
M� � OMn

�
� pr

�
M� � OMnjMn2 D Bn

�
pr.Mn2 D Bn/. By Theorem 3 of Barut et al. (2016), pr.M� �

OMnjMn2 D Bn/ �
h
1 � dn

°
exp

�
��4n1�2�k0�2n K�2n

�
C n exp

�
��5K

�6
n

�±i
. The result then follows by an application of

Proposition 2.
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