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SUMMARY

Traditional variable selection methods are compromised by overlooking useful information
on covariates with similar functionality or spatial proximity, and by treating each covariate inde-
pendently. Leveraging prior grouping information on covariates, we propose partition-based
screening methods for ultrahigh-dimensional variables in the framework of generalized linear
models. We show that partition-based screening exhibits the sure screening property with a van-
ishing false selection rate, and we propose a data-driven partition screening framework with
unavailable or unreliable prior knowledge on covariate grouping and investigate its theoretical
properties. We consider two special cases: correlation-guided partitioning and spatial location-
guided partitioning. In the absence of a single partition, we propose a theoretically justified
strategy for combining statistics from various partitioning methods. The utility of the proposed
methods is demonstrated via simulation and analysis of functional neuroimaging data.

Some key words: Correlation-based variable screening; Partition; Spatial variable screening; Ultrahigh-dimensional
variable screening.

1. INTRODUCTION

Biotechnological advances have resulted in an explosion of ultrahigh-dimensional data, where
the dimension of the data can be of exponential order in the sample size. Because of high
computational cost and poor numerical stability, ultrahigh-dimensional data have long defied
existing regularization approaches designed for high-dimensional data analysis (Tibshirani, 1996;
Fan & Li, 2001; Zou & Hastie, 2005; Meinshausen & Bühlmann, 2006; Yuan & Lin, 2006; Zhao
& Yu, 2006; Zou, 2006; Candès & Tao, 2007; Zhang & Lu, 2007; Huang et al., 2008; Zou &
Zhang, 2009; Meinshausen & Bühlmann, 2010; Wang & Leng, 2012). An overarching goal of
ultrahigh-dimensional data analytics is to effectively reduce the dimension of covariates.
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Sure independence screening (Fan & Lv, 2008) has been extended to generalized linear models
(Fan & Fan, 2008; Fan et al., 2009; Fan & Song, 2010), generalized additive models (Fan et al.,
2012) and proportional hazards models (Zhao & Li, 2012; Gorst-Rasmussen & Scheike, 2013;
Hong et al., 2016a; Li et al., 2016). By extending screening criteria that are solely based on
marginal correlations between the outcome and predictors, a variety of statistics that account for
dependence between predictors have been proposed to improve screening accuracy and robustness
(Hall & Miller, 2009; Zhu et al., 2011; Cho & Fryzlewicz, 2012; Li et al., 2012; Cui et al., 2015). In
particular, high-dimensional ordinary least squares projection (Wang & Leng, 2016), which uses
the generalized inverse of the design matrix in lieu of marginal correlations, has good theoretical
properties and high computational efficiency.

In many cases, scientists have knowledge about important predictors from previous research.
For example, neuroimaging studies have identified voxel-level imaging predictors clustered in
certain brain regions that are linked to brain functions or diseases. Genome-wide association
studies have detected single nucleotide polymorphisms that are strongly associated with clinical
outcomes. However, most variable screening approaches are not designed to make use of such
information.

As an alternative to marginal screening approaches, conditional sure independence screening
methods have been developed for generalized linear models (Barut et al., 2016) and proportional
hazards models (Hong et al., 2016a). By including important predictors, conditional screening
ranks the marginal utility of each variable after adjusting for variables in the conditioning set.

Partitioning biomarkers into smaller groups according to biological knowledge or other use-
ful information may facilitate variable selection. In biological studies, leveraging information
about groups of weak predictors is often useful because such predictors may have a non-
trivial impact on outcomes as a group, and without considering the group structure these
features might be missed. We exemplify the merit of using the grouping structure with a simple
example.

Suppose that we want to identify the important associations between the outcome Y and
X1, . . . , X1000, where Y = 0·5X1 −X2 + ε with ε ∼ N (0, 1·6) and (X1, . . . , X1000) follows a mul-
tivariate normal distribution with mean zero, unit marginal variance and correlation corr(Xj, Xk) =
0·5 for any j |= k ∈ {1, . . . , 1000}. To screen for important variables, marginal screening would
fit 1000 variate regression models, Y = Xjβj + ε̃ for j = 1, . . . , 1000, and use β̂j, the estimate of
βj, as the screening statistic. Suppose that we partition these 1000 predictors into 200 groups such
that the group membership index sets are S1 = (1, . . . , 5), . . . , S200 = (996, . . . , 1000). An alter-
native screening approach would fit 200 multivariate regression models along the group partition,
Y = ∑

j∈Sg
Xjβj + ε̃ for g = 1, . . . , 200, and use the corresponding β̂j as the screening statistic.

We examine the performances of the two approaches based on 300 samples and 400 replicates.
Figure 1 shows plots of the densities of β̂1 and β̂2 and the mixture density of β̂3, . . . , β̂1000 for
both approaches. Due to signal cancellation, the univariate regression introduces large biases in
estimating β1 and β2, causing considerable overlap between the distribution of β̂1 or β̂2 and those
of the estimates for the noise variables, whereas groupwise multivariate regression separates the
distribution of β̂1 or β̂2 from the distributions of the others.

This example motivates partition-based screening, which is based on a partition of covariates
using prior knowledge. Our work generalizes the univariate framework of sure independence
screening (Fan & Lv, 2008) and its group version (Niu et al., 2011). Under mild conditions,
partition-based screening exhibits good theoretical properties.A new functional operator, general-
ized linear conditional expectation, is introduced to help establish sure screening properties.When
prior grouping information is available, we show that the screening accuracy of partition-based
screening is superior to that of competing methods. In the absence of prior grouping information,
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Fig. 1. Simple example simulations: (a) summary distributions of 400 replicates of coefficient estimates in 1000
univariate regression model fits; (b) summary of 200 group-specific multivariate regression model fits. Plotted are the
estimated densities of β̂1 (solid) and β̂2 (dashed) and the estimated mixture densities of β̂3, . . . , β̂1000 (dotted); true

coefficients are β1 = 0·5, β2 = −1 and β3 = · · · = β1000 = 0.

we propose correlation-based screening and spatial partition-based screening, which make the
proposed methods applicable to a wide range of problems.

2. PARTITION-BASED VARIABLE SCREENING

Suppose that we have n independent samples D = {(Xi, Yi), i = 1, . . . , n}, where Yi is an
outcome and Xi = (Xi,1, . . . , Xi,p)

T is a collection of p predictors for the ith sample. Assume
without loss of generality that all the covariates have been standardized so that E(Xi,j) = 0 and
E(X 2

i,j) = 1. We consider a class of generalized linear models by assuming that the conditional
density of Yi given Xi belongs to a linear exponential family,

π(Yi | Xi) = exp{Yi(β0 + X T
i β) − b(β0 + X T

i β) + A(Yi, Xi)}, (1)

where A(· , ·) and b(·) are known functions, β = (β1, . . . , βp)
T represent the coefficients of the

predictors, and β0 is an intercept, regarded as a nuisance parameter. Let M = {j : βj |= 0}. We
assume that b(·) is twice continuously differentiable, with a nonnegative second derivative b′′(·).
For a nonrandom function f (·) and a sequence of independent random variables ξi (i = 1, . . . , n),
let En{f (ξ)} = n−1∑n

i=1 f (ξi) be the empirical mean of {f (ξi)}n
i=1, which are independent

replicates of f (ξ). The loglikelihood function is

�(β0, β; D) = 1

n

n∑
i=1

l(β0 + X T
i β, Yi) = En{l(β0 + X Tβ, Y )}, (2)

where l(θ , y) = yθ − b(θ). We assume that {Xij, Xi, Yi} are independently and identically dis-
tributed copies of {Xj, X , Y }. When p < n, the maximum likelihood estimator of β, denoted by
β̂MLE, can be obtained by maximizing �(β0, β; D). When p � n, regularization estimation is
often performed under an assumption of sparsity among predictors. When p is of exponential
order in n, a popular approach for reducing the dimensionality is screening.

First, we consider a simple case where the covariates can be partitioned into G disjoint groups
in accordance with known information. Denote by gj the group membership of variable Xj. Let
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X ∗
g = {Xj : gj = g} be the collection of predictors in group g, where g ∈ {1, . . . , G}.Additionally,

let β∗
g = {βj : gj = g} represent the corresponding coefficients and let βg,0 be the group-specific

intercept in the model. Denote their estimates by β̂∗
g = {β̂j : gj = g} and β̂∗

g,0, respectively. For
predictor j with gj = g, the partition-based screening statistic is defined as

(β̂∗
g,0, β̂∗

g ) = arg max
(βg,0,β∗

g )

En{l(βg,0 + X ∗T
g β∗

g , Y )}.

We call β̂∗
g the partition-based screening statistic. Then, for a chosen thresholding parameter γ ,

the set of indices selected by our proposed partition-based screening is M̂γ = {j : |β̂j| � γ }.
When gj = j (j = 1, . . . , p), partition-based screening encompasses sure independence

screening as a special case.

3. SURE SCREENING PROPERTIES

Let (	, F , pr) be the probability space for all random variables considered in this paper. Let
R

d be a d-dimensional Euclidean vector space for some positive integer d. Denote by E(·), var(·)
and cov(· , ·) the expectation, variance and covariance operators associated with (	, F , pr). For
any vector a = (a1, . . . , ap) ∈ R

p, let aC = (aj, j ∈ C)T be the subvector with elements indexed
by C. Let ‖a‖d = (

∑p
j=1 |a|dj )1/d be the Ld-norm for any vector a ∈ R

p, and denote the Euclidean
norm by ‖a‖ when no confusion is likely to arise. Let λmin(M ) and λmax(M ) be the smallest and
largest eigenvalues of the matrix M , respectively.

We start with population-level parameters for the discussion of sure screening properties. Let

(β̄∗
g,0, β̄∗

g ) = arg max
(βg,0,β∗

g )

E{l(βg,0 + X ∗T
g β∗

g , Y )}, (3)

where β̄∗
g = {β̄j : gj = g} is the population version of β̂∗

g . We first establish conditions to ensure
that if |βj| exceeds a threshold, then |β̄j| will exceed a certain constant. Write β∗−j = {βl : gl =
gj, l |= j}T and X ∗−j = {Xl : gl = gj, l |= j}T. With (2), β̄j satisfies the score equations

E{b′(β̄∗
g,0 + X ∗T−j β̄

∗−j + Xjβ̄j)(1, X ∗T
g )T} = E{Y (1, X ∗T

g )T}. (4)

To derive the theoretical properties of the proposed methods, we introduce a functional operator
on random variables.

DEFINITION 1. For two random variables ζ : 	 → R and ξ : 	 → R
p, let h : R → R be a

continuous link function. The generalized linear conditional expectation of ζ given ξ is

Eh(ζ | ξ) = h(α0 + αTξ), (5)

where (α0, αT)T is the solution to the equation E[{ζ − h(α0 + αTξ)}(1, ξT)T] = 0.

The generalized linear conditional expectation measures how ξ can explain ζ through a gen-
eralized linear model, where ζ is regarded as the outcome variable and ξ as the predictors. It can
also be interpreted as the best prediction of ζ using ξ based on a generalized linear model, leading
to an alternative measure of the dependence between ζ and ξ . The generalized linear conditional
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expectation may depend on the choice of link functions, and it is equivalent to the conditional
expectation if the true conditional distribution of ζ given ξ is specified by the corresponding
generalized linear model. The introduction of (5) facilitates the development of partition-based
screening and its theoretical properties, and extends the linear conditional expectation proposed
by Barut et al. (2016) and Hong et al. (2016a). Some basic properties are summarized below.

LEMMA 1. Let ζ and ξ be random variables in (	, F , pr).

(i) When h(x) = 1(x) = x, Eh(ζ | ξ) is unique and has a closed-form expression. Moreover,
E1(ζ | ξ) = E(ζ ) + cov(ζ , ξ)var(ξ)−1{ξ − E(ξ)} and E{E1(ζ | ξ)ξ} = E(ζ ξ).

(ii) When the conditional distribution of ζ given ξ belongs to a linear exponential family,
i.e., f (ζ | ξ) = exp{ζ(γ0 + γ Tξ) − b(γ0 + γ Tξ) + A(ζ , ξ)}, then h(x) = b′(x) and
Eb′(ζ | ξ) = E(ζ | ξ) = b′(γ0 + γ Tξ).

(iii) For any h, we have E{Eh(ζ | ξ)} = E(ζ ).

These properties immediately imply the following result.

THEOREM 1. Suppose that the solution to (4) is unique. For j = 1, . . . , p, the partition-based
regression parameter β̄j equals 0 if and only if Eb′(Y | X ∗−j) = Eb′(Y | X ∗−j, Xj).

The sufficient part of Theorem 1 implies that if the generalized linear conditional expectation
of the response given all the predictors within group gj does not involve Xj, then the regression
coefficient βj will be vanishing, implying that unimportant variables would have smaller fitted
coefficients.

To ensure the sure screening property at the population level, the important variables {Xj, j ∈
M} should be conditionally associated with Y given other variables within the same group
{X ∗−j, j ∈ M}. The following conditions are required.

Condition 1. For j ∈ M, there exist c0 > 0 and κ < 1/2 such that∣∣E[Xj{Eb′(Y | X ∗−j, Xj) − Eb′(Y | X ∗−j)}
]∣∣ > c0n−κ .

Condition 2. The derivative b′(θ) satisfies a Lipschitz condition, i.e., there exists an L > 0
such that |b′(θ1) − b′(θ2)| < L|θ1 − θ2| for all θ1, θ2 ∈ R.

Condition 3. There exists a constant M > 0 such that E(X 2
j ) � M for all j.

Condition 1 provides a lower bound on the generalized linear dependence between each active
covariate Xj and Y conditional on other covariates within the same group, justifying the use of
group partitions to retain true signals. Linear regression, logistic regression and probit regression
all satisfy Condition 2.

THEOREM 2. If Conditions 1–3 hold, then there exists c2 > 0 such that minj∈M |β̄j| > c2n−κ .

To establish sure screening properties, we need regularity conditions (Fan & Song, 2010; Barut
et al., 2016); see Conditions A·1–A·6 in the Supplementary Material.

THEOREM 3. Let Sg = ∑p
j=1 I (gj = g) be the size of group g. Assume that Conditions A·1–A·6

in the Supplementary Material hold and that Qg,n = n1−2κ(Rnrg,n)
−2 → ∞ as n → ∞ for all

g = 1, . . . , G.
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(i) With c2 as in Theorem 2, there exists a positive constant c3 such that

pr
(

max
1�j�p

|β̂j − β̄j| � c2n−κ/2
)

�
G∑

g=1

Sg exp
(−c3Qg,n

)+ nr2 exp(−r0Rα
n ),

where r2 = ∑G
g=1 Sg(Sgr1 + s1).

(ii) If Conditions 1–3 hold, then with γ = c4n−κ and c4 � c2/2, we have

pr
(
M ⊂ M̂γ

)
� 1 −

∑
j∈M

exp(−c3Qgj ,n) − nr3 exp(−r0Rα
n ),

where r3 = ∑
j∈M(Sgj r1 + s1).

For logistic regression, the Lipschitz constant rg,n is bounded. Therefore, the optimal rate for
Rn is of order n(1−2κ)/(2+α), ensuring that Qg,n is of the same order as Rα

n . This also implies that
the partition-based screening method can handle group sizes of order log Sg = o(n(1−2κ)α/(α+2))

(g = 1, . . . , G). The same optimal rate and a similar order of dimensionality can be achieved
for logistic regression by sure independence screening (Fan & Song, 2010) and conditional sure
independence screening (Barut et al., 2016).

To provide an upper bound on the number of selected variables, we need the following
additional conditions:

Condition 4.
∑p

j=1 var(Xjβj) and b′′(θ) are both bounded for all θ and β.

Condition 5. Let g = gj and 	j = E[δj(1, X ∗T
g )T(1, X ∗T

g )] with

δj = b′(β̄∗
g,0 + X ∗T−j β̄

∗−j + Xjβ̄
∗
j ) − b′(β̃∗

g,0 + X ∗T−j β̃
∗−j)

β̄∗
g,0 − β̃∗

g,0 + X ∗T−j (β̄
∗−j − β̃∗−j) + Xjβ̄

∗
j

,

where (β̃∗
g,0, β̃∗−j) = arg max(β0,β∗−j)

E{l(β0 + X ∗T−j β
∗−j, Y )}. Then there exists a K1 > 0 such that

λmin(	j) > K1 for all j = 1, . . . , p.

Condition 6. Assume that ‖U‖2 = o(V ) where U = (U1, . . . , Up)
T with

Uj = E
{
E1(Xj | X ∗−j, X ∗

g , g |= gj)(β0 − β̃∗
gj ,0 + X Tβ − X ∗T−j β̃

∗−j)
}

and V = sup1�j�p E[{Xj − E1(Xj | X ∗−j, X ∗
g , g |= gj)}2]. Here (β0, βT)T are the parameters that

generate the data.

For a linear model, Condition 5 becomes λmin[E{(1, X ∗T
g )T(1, X ∗T

g )}] > K1 for all g, which is
a mild condition. In Condition 6, Uj = 0 for the linear model when cov(X ) has a block-diagonal
structure over a group partition, i.e., cov(X ∗

g , X ∗
g′) = 0 for g |= g′, because E1(Xj | X ∗−j, X ∗

g , g |=
gj) = E1(Xj | X ∗−j) and E{X ∗−j(β0 − β̃∗

gj ,0
+X Tβ −X ∗T−j β̃

∗−j)} = E[X ∗−j{b′(β0 +X Tβ)−b′(β̃∗
gj ,0

+
X ∗T−j β̃

∗−j)}] = 0.
Condition 6, which requires ‖U‖ to be bounded, may be restrictive. This condition holds if the

number of nonzero coefficients is finite or if the correlations among different partitions shrink
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Fig. 2. Variable screening accuracy in the example in § 1 by sure independence screening (dot-dash), high-dimensional
ordinary least squares projection (dotted), partition-based screening without goodness-of-fit adjustment (dashed) and
partition-based screening with goodness-of-fit adjustment (solid). Panel (a) shows results with the group partitions
defined in § 1 where group 1 includes the two true predictors; panel (b) displays results with a random group partition

where the two true predictors are not in the same group.

as p → ∞. Condition 6 can be viewed as rigid, even though the group structure is natural in
many biomedical applications. To overcome this difficulty, one could first perform a principal
component analysis on X , and then apply the proposed procedures to the residuals of X after
projecting them to a set of variables with the largest loadings on the leading eigenvectors (Hong
et al., 2016a). See the Supplementary Material for more details.

THEOREM 4. With γ , c3 and r2 as in Theorem 3, if Conditions 4–6 and A·1–A·6 hold, then as
n → ∞,

pr
{|M̂γ | � O(n2κV )

}
� 1 −

G∑
g=1

Sg exp
(−c3Qg,n

)− nr2 exp(−r0Rα
n ).

4. EXTENSIONS OF PARTITION-BASED SCREENING

4·1. Goodness-of-fit adjustment

One difficulty in the proposed partition-based screening is that the coefficient estimates from
group-specific models may not be comparable because different models may have various degrees
of goodness-of-fit. Under the generalized linear model framework, we propose to adjust for
the goodness-of-fit by weighting the screening statistics using the deviance ratio �g ∈ (0, 1)

(Friedman et al., 2010), which is the fraction of null deviance explained by the covariates in group
g and is equal to R2 in the linear model. In other words, we weight the partition-based screening
statistic as β̂a

j = �gj β̂j for predictor j and redefine the selected index set as M̂a
γ = {j : |β̂a

j | > γ }.
However, the performance of such a procedure may be sensitive to grouping. For instance,
in the example in § 1, goodness-of-fit adjustment can improve the model selection accuracy
when all the true predictors are in the same group, as in Fig. 2(a). In contrast, when the true
predictors are in separate groups, there is no improvement; see Fig. 2(b) and the Supplementary
Material.
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4·2. Data-driven partition

When prior partitioning information is unavailable, we may use information from the data,
including correlations between predictors and the spatial locations. Let us denote the data-driven
partition by Ĝ. We derive two procedures for determining Ĝ based on such information.

The data-driven partition can be determined by the covariance or correlation structure of the
design matrix. We propose a simple correlation-guided partition procedure. We use the correlation
between covariates to define a p × p distance matrix, denoted by � = (dj,k), where dj,k = 1 −
|corr(Xk , Xj)| (1 � k , j � p). We apply the nearest-neighbour chain algorithm (Murtagh, 1983),
a standard hierarchical clustering algorithm, to � to obtain an estimate of Ĝ, where the number
of groups, Ĝ, can be determined by controlling the corresponding maximum group size maxg Ŝg

for the generalized linear model fitting. Based on our experience, choosing maxg Ŝg ∝ n1/2 can
lead to good performance. When the correlation matrix has a block-diagonal structure and the
correlations within each block are high, this procedure can correctly identify the block structure.
Covariate-assisted variable screening (Ke et al., 2014) and graphlet screening (Jin et al., 2014)
are also based on the covariance structure of covariates, but these procedures focus on linear
regression.

Spatial regression models have often been used in environmental health and neuroimaging
studies, where a spatial location is attached to each covariate. For example, in the scalar-on-
image regression problem for brain imaging, where the spatial location of each voxel is in a
standard three-dimensional brain template, the imaging intensities at different voxels are usually
considered as potential predictors for clinical outcomes. It is generally believed that spatially
close predictors tend to have stronger correlations and may have more similar effects on the
outcome (Wang et al., 2017). Therefore spatial location information can be useful in determining
the partition for variable screening. Specifically, model-based clustering (Fraley & Raftery, 2002)
and k-means clustering (Jain, 2010) can be used to assign each predictor to a fixed number of
clusters or spatial locations, typically determined by controlling the corresponding maximum
group size in a similar fashion to correlation-guided partitioning.

Using a partition Ĝ determined by data, we can also establish the following theoretical results
for data-driven partition-based screening, which can be proved by conditioning on the event
{Ĝ = G} and using Theorems 1–4.

THEOREM 5. Suppose that Ĝ is a consistent estimator of G satisfying Conditions 1–6 and A·1–
A·6; that is, limn→∞ pr(Ĝ = G) = 1. With the same γ , c3, r2 and r3 as in Theorem 3, as n → ∞
we have

pr
(
M ⊂ M̂γ

)
� pr(Ĝ = G) −

∑
j∈M

exp(−c3Qgj ,n) − nr3(−r0Rα
n ),

pr
{
|M̂γ | � O(n2κV )

}
� pr(Ĝ = G) −

G∑
g=1

Sg exp(−c3Qg,n) − nr2(−r0Rα
n ).

4·3. Combined partition-based screening

Several partitioning rules for covariates may exist, but none is clearly superior. For example, in
neuroimaging, brain atlases, such as Talairach–Tournoux, Harvard–Oxford, Eickoff–Zilles and
automatic anatomical labelling, have variable partitioning of brain regions. In genome-wide asso-
ciation studies, different sources of information, including the locations of genes that harbour
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single nucleotide polymorphisms and linkage disequilibrium between single nucleotide poly-
morphisms, can be integrated to determine the groups. Using multiple sources of partitioning,
we propose a strategy for combining screening statistics from different partitions and establish
its theoretical properties.

DEFINITION 2. Suppose that we have K < ∞ partitions and that partition k has G(k)

groups and group indices G(k) = (g(k)
1 , . . . , g(k)

p )T. Let S(k)
g = ∑p

j=1 I (g(k)
j = g) and let β̂(k) =

(β̂
(k)
1 , . . . , β̂(k)

p )T be the screening statistics for partition k. The combined partition-based screen-

ing statistic is β̃ = (β̃1, . . . , β̃p)
T with β̃j = max1�k�K |β̂(k)

j |. Given a thresholding parameter

γ , the selected index set is M̃γ = {j : β̃j � γ }, which is referred to as combined partition-based
screening selection.

THEOREM 6. Suppose that Conditions 4–6 andA·1–A·6 hold for all partitions k (k = 1, . . . , K),
and take γ = c5n−κ for some constant c5.

(i) If there exists an l ∈ {1, . . . , K} such that G(l) satisfies Conditions 1–3, then
limn→∞ pr(M ⊂ M̃γ ) = 1.

(ii) Let V (k) be the V term in Condition 6 for G(k). Then combined partition-based screening
controls the false positive rates; that is,

lim
n→∞ pr

{
|M̃γ | � O

(
n2κ

K∑
k=1

V (k)

)}
= 1.

Theorem 6 suggests that combined partition-based screening has sure screening properties,
even when some partition-based screening procedures do not satisfy Conditions 1–3, which are in
general difficult to verify. Moreover, Conditions 4–6 and A·1–A·6 are true for many generalized
linear models. Thus, combined partition-based screening can extract useful prior knowledge about
partitions and maintain good theoretical properties.

4·4. Choice of thresholding parameters

The thresholding parameter γ is critical to the performance of the variable screening procedure.
Overestimating γ will inflate false positive rates and underestimating γ will hinder sure screening.
We define the expected false positive rate EFPRγ = E(|M̂γ ∩ Mc|/|Mc|), where Mc = {j : j /∈
M}. To control EFPRγ , we resort to higher-criticism t statistics (Zhao & Li, 2012; Barut et al.,
2016; Hong et al., 2016a). We introduce M̂#

τ = {j : Ij(β̂j)
1/2|β̂j| � τ }, where Ij(β̂j) is the element

that corresponds to βj in the information matrix Igj (β̄
∗
gj
). The key idea is to select γ such that M̂γ

is of the same size as M̂#
τ , where τ is chosen to control the expected false positive rate. Under

Conditions 4 and 5 and Conditions A·1–A·6 and B in the Supplementary Material, we have the
following theorem.

THEOREM 7. For a given false positive number q, take τ = �−1{1−q/(2p)}, where � denotes
the standard normal distribution function. Set γ = |β̂(s)|, where s = |M#

τ | and {(1), . . . , (p)} is
a permutation of {1, . . . , p} such that |β̂(1)| > · · · > |β̂(p)|. Then there exist N7 > 0 and c7 > 0
such that for any n > N7, EFPRγ � q/p + c7n−1/2.

For M̃γ , the set of indices selected by combined partition-based screening in § 4·3, we choose
γ = |β̂(s)| with s = min1�k�K s(k). Here s(k) is the size of the higher-criticism t-tests for
partition k .
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5. SIMULATION STUDIES

We conducted simulation studies to compare the model selection accuracy of partition-based
screening with that of existing variable screening methods. We generated the covariates X from
multivariate normal distributions and specified the true coefficient β with four different settings.

Setting 1: (n, p) = (200, 5000) and β = (3, 3, 3, 3, 3, −7·5, 0T
p−6)

T. Thus M = {1, . . . , 6}. The
covariance structure of X is compound symmetric with unit variance and correlation 0·5, i.e.,
cov(X ) = 0·5Ip + 0·51p1T

p.

Setting 2: (n, p) = (200, 5000) and βj = 3(−1)jI (j � 10) for j ∈ {1, . . . , p}. Thus M =
{1, . . . , 10}. The covariance structure of X is that of a block first-order autoregression model
with unit variance and correlation 0·9, i.e., cov(Xj, Xj′) = 0·9|j−j′| for any j |= j′ ∈ Bk , where
Bk = {j ∈ Z : 100k − 99 � j � 100k} for k = 1, . . . , 50, and cov(Xj, Xj′) = 0 otherwise.

Setting 3: (n, p) = (200, 5000) and βj = (−1)jI (j � 10) for j ∈ {1, . . . , p}. Thus M =
{1, . . . , 10}. The covariance structure of X is block compound symmetric with unit variance and
correlation 0·9, i.e., cov(Xj, Xj′) = 0·9 for any j |= j′ ∈ Bk , where Bk = {j ∈ Z : 100(k −1)+1 �
j � 100k} for k = 1, . . . , 50, and cov(Xj, Xj′) = 0 otherwise.

Setting 4: (n, p) = (500, 10 000). We first define S as a collection of 100×100 equally spaced
grid points on [0, 1]2. Specifically, set S = {sj}p

j=1 with sj = 0·01(l, k), j = (100 − 0·5l)(l −
1) + k − l for 1 � l, k � 100, and S = ⋃100

g=1 Sg , where Sg ∩ Sg′ = ∅ for any g |= g′ ∈
{1, . . . , G}. All the sj were clustered into 100 exclusive spatially contiguous regions using a k-
means clustering algorithm. Set βj = 3(−1)j if sj ∈ S1 and βj = 0 otherwise. The covariance
structure of X is exponentially decaying over space, cov(Xj, Xj′) = exp(−10‖sj − sj′‖2) for any
j |= j′ ∈ S. For example, cov(Xj, Xj′) = 0·9 when ‖sj − sj′‖2 = 0·01 and cov(Xj, Xj′) < 0·05
when ‖sj − sj′‖2 > 0·3. This configuration was designed to mimic the spatial data with an active
set M = {j : sj ∈ S1}.

Given X and β generated from each of the above settings, we generated Y from a linear
regression model and a logistic regression model. For the linear regression model, we set the
variance of random errors so that the theoretical R2 is equal to 0·9. We replicated our simulation
200 times and evaluated the performance using the following criteria: probability of including
the true model, minimum model size, and true positive rate.

DEFINITION 3. Every partition G belongs to at least one of the following types:

(i) a size-reduced partition if there exists a group g ∈ G that contains all active covariates,
which means M ⊂ {j : gj = g};

(ii) an optimal partition if there exists a group g ∈ G that is a collection of all active covariates,
which means M = {j : gj = g};

(iii) a misspecified partition if there does not exist a group g ∈ G such that M ⊂ {j : gj = g}.
Each partition is either a size-reduced partition or a misspecified partition. An optimal partition

must be a size-reduced partition. Neither the misspecified partition, the size-reduced partition,
nor the optimal partition, is unique in general. For each non-optimal reduced partition, there
exists at least a group containing M that can be further reduced in size while containing M.

We assessed the performance of the proposed methods under various partition types.
In Setting 1, the size-reduced partition Gred = (gred

1 , . . . , gred
357) was specified with 357
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groups and each group had 14 members except for group 357 which had 16 members;
the group size was approximately n1/2. For covariate j ∈ {1, . . . , 4998}, its group
label was assigned to be gred

j = ∑357
g=1 gI (14g − 13 � j � 14g), and for j = 4999 or

5000, gred
j = 357, where M ⊂ {j : gred

j = 1} for each setting. The misspecified partitions
Gmis1 = (gmis1

1 , . . . , gmis1
p )T and Gmis2 = (gmis2

1 , . . . , gmis2
p )T were respectively sampled from

pr(gmis1
j = g) = 1/178 (g = 1, . . . , 178) and pr(gmis2

j = g) = 1/357 (g = 1, . . . , 357). In this
setting, variable X6 is marginally unimportant but conditionally important. Some studies (Barut
et al., 2016; Hong et al., 2016a,b) have shown that conditional sure independence screening
performs much better than sure independence screening in terms of retaining X6. In Settings 2
and 3, where the correlation matrix for covariates is block diagonal, we focused primarily on
the performance of partition-based screening under reduced partitions and correlation-guided
partition-based screening with the same specifications as in Setting 1. The partition determined by
the estimated correlation structure is denoted by Gcor. In Setting 4, the optimal partition Gopt was
designed as follows. For each covariate j, gopt

j = ∑100
g=1 gI (sj ∈ Sg), where M = {j : gopt

j = 1} =
S1. To generate Gred, we combined groups 1 and 2 while keeping other groups intact, i.e., for each
covariate j, gred

j = I (sj ∈ S1 ∪S2)+∑99
g=2 gI (sj ∈ Sg+1), where M ⊂ {j : gopt

j = 1} = S1 ∪S2.
To form the misspecified partitions in Setting 4, we split S1 into two adjacent but mutually exclu-
sive subregions S1,1 and S1,2 such that S1 = S1,1∪S1,2. We considered two different misspecified
partitions, denoted by Gmis1 and Gmis2 , where gmis1

j = ∑2
g=1 gI (sj ∈ S1,g)+∑101

g=3 gI (sj ∈ Sg−1)

and gmis2
j = I (sj ∈ S1,g) + 2I (sj ∈ S1,2 ∪ S2) + ∑100

g=3 g(sj ∈ Sg). Figure 3 is a graphical
representation of Setting 4.

For further comparison, we investigated the performance of sure independence screening (Fan
& Lv, 2008) and high-dimensional ordinary least squares projection (Wang & Leng, 2016) in
Settings 1–4. In addition, conditional sure independence screening (Barut et al., 2016) with
a conditioning variable X1 was considered for Settings 1–3. To evaluate the performance of
high-dimensional ordinary least squares projection for logistic regression, we modified it to
accommodate generalized linear models with a ridge penalty by specifying the tuning parameter
to be 1. Sure and conditional sure independence screening results were obtained using the R
(R Development Core Team, 2017) package SIS, while high-dimensional ordinary least squares
projection was implemented using the R package screening. To make different methods com-
parable, we chose γ so that the number of selected indices was equal to the sample size and
computed the true positive rate and the probability that the selected indices include the true
model, following Fan & Lv (2008).

Table 1 summarizes the simulation results. In Settings 1–3, partition-based screening performs
best for linear and logistic regression. In Setting 4, the performance of spatial-oriented reduced
partition screening is almost the same as spatial-oriented optimal partition screening in linear
regression, and is close to spatial-oriented optimal partition screening in logistic regression. This
indicates that even when an optimal partition is not available, a size-reduced partition is a good
alternative. In Settings 2 and 3, correlation-guided partition screening produces better selec-
tion accuracy than all three existing methods, and is comparable to partition-based screening.
Thus, when there is insufficient prior knowledge to determine a size-reduced partition but the
covariate variables have a block-diagonal correlation structure up to permutations, data-driven
partition-based screening can yield improved selection accuracy. In Setting 1, where the covari-
ance structure of covariates is compound symmetric, correlation-guided partition screening does
not yield more accurate selection than high-dimensional ordinary least squares projection and con-
ditional sure independence screening. In this case we examined the performance of partition-based
screening with randomly generated misspecified partitions, as well as combined partition-based
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Fig. 3. Model designs and configurations of different partitions on S, the 100 × 100 equally spaced grid points in
two-dimensional space [0, 1]2, in Setting 4 of the simulation study for spatial variable screening: (a) the true coefficient
βj , which takes only three possible values, −3 in blue, 3 in red and 0 in green; (b) one set of simulated predictors Xj
over space from a Gaussian random field on S with covariance kernel exp(−10‖s − s′‖2) for s, s′ ∈ S; (c) the partition
{Sg}100

g=1 in Setting 4 to define the true nonzero coefficients, with βj |= 0 if and only if sj ∈ S1, in yellow. Panels (c),
(d), (e) and (f) respectively represent the optimal partition Gopt, the size-reduced partition Gred, and two misspecified
partitions, Gmis1 and Gmis2 , for the corresponding partition-based screening for selecting variables in Setting 4; in

panels (c)–(f), S1 is coloured yellow.

screening that combines five or ten different random partition-based screening statistics. The
results indicate that combined partition-based screening with ten random Gmis2 is slightly better
than combined partition-based screening with five random Gmis2 and outperforms partition-based
screening with Gmis1 only or with Gmis2 only. Therefore, in the absence of an optimal partition,
combining multiple partitions for variable screening fares better than relying on a single partition.
Moreover, it produces better results than high-dimensional ordinary least squares projection and
sure independence screening in Setting 1. The advantages of combined partition-based screening
are obvious in Setting 4, where the accuracy of spatial-oriented partition screening with Gred can
be improved by combining it with two misspecified partition-based screening statistics. Thus,
combining various screening statistics from multiple sources of partitions, even though they may
have been misspecified, appears to be a useful strategy.

6. APPLICATION

We applied the proposed methods to analyse resting-state functional magnetic resonance imag-
ing data from the Autism Brain Imaging Data Exchange study (Di Martino et al., 2014). The
primary goal of this study was to understand how brain activity is associated with autism spec-
trum disorder, a disease with substantial heterogeneities among children. Functional magnetic
resonance imaging measures blood oxygen levels linked to neural activity, and resting-state
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Table 1. Model selection accuracy of variable screening methods for linear and logistic
regression in Settings 1–4

Setting 1
Linear regression Logistic regression

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

SIS 10 2273 84 12 2590 80
HOLP 91 24 98 53 173 90
CSIS 97 11 100 73 62 95
PartS (Gred) 100 7 100 100 6 100
PartS (Gmis1 ) 84 36 97 46 226 88
PartS (Gmis2 ) 87 34 98 60 145 91
CombPartS (5 Gmis2 ) 93 25 99 64 115 93
CombPartS (10 Gmis2 ) 96 22 99 74 105 96
CorrPartS (Gcor) 78 64 96 47 219 88

Setting 2
Linear regression Logistic regression

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)
SIS 0 3982 56 0 4243 41
HOLP 0 3721 59 0 4231 43
CSIS 69 52 96 0 311 90
PartS (Gred) 100 10 100 100 10 100
CorrPartS (Gcor) 91 10 98 88 10 98

Setting 3
Linear regression Logistic regression

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)
SIS 0 3671 20 100 1367 60
HOLP 65 110 100 16 560 90
CSIS 6 3033 70 6 2265 70
PartS (Gred) 100 11 100 100 10 100
CorrPartS (Gcor) 62 101 100 18 426 80

Setting 4
Linear regression Logistic regression

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)
SIS 0 9890 17 0 9860 26
HOLP 0 9886 18 0 9876 27
SpatPartS (Gopt) 100 100 100 100 100 100
SpatPartS (Gred) 100 100 100 73 174 100
SpatPartS (Gmis1 ) 0 8232 65 0 9033 65
SpatPartS (Gmis2 ) 0 9190 55 0 9269 74
CombPartS (Gred, Gmis1 , Gmis2 ) 100 100 100 80 174 100

SIS, sure independence screening; HOLP, high-dimensional ordinary least squares projection; CSIS, conditional
sure independence screening; PartS, partition-based screening; CombPartS, combined partition-based screening;
CorrPartS, correlation-guided partition screening; SpatPartS, spatial-oriented partition screening; MMS, median
minimum size of the selected models that are required to have a sure screening; TPR, average true positive rate;
PIT, estimated probability of including all true predictors in the top n selected predictors.

functional magnetic resonance imaging measures brain activity only when the brain is not per-
forming any tasks. This study aggregated 20 resting-state functional magnetic resonance imaging
datasets from 17 experiment sites. For each subject, the resting-state functional magnetic reso-
nance imaging signal was recorded for each voxel in the brain over multiple time-points. Standard
imaging pre-processing steps (Di Martino et al., 2014) included motion correction, slice-timing
correction, and spatial smoothing. The entire brain was registered into the 3 mm standard Mon-
treal Neurological Institute space, which consists of 38 547 voxels in 90 brain regions defined
by the automated anatomical labelling system (Hervé et al., 2012). After removal of missing val-
ues, the complete dataset included 819 subjects, consisting of 378 patients and 441 age-matched
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Table 2. Eight automated anatomical labelling regions with more than 60 voxels that are
selected by combined partition-based screening

Selected region Voxel counts Median rank Selected region Voxel counts Median rank

Frontal_Mid_R 95 5 Frontal_Sup_L 71 14
Temporal_Mid_R 78 27 Frontal_Mid_L 71 47
Temporal_Mid_L 75 154 Frontal_Sup_R 66 35
Precuneus_L 73 56 Precuneus_R 65 41

controls. To select imaging biomarkers for autism spectrum disorder risk prediction, we consid-
ered the fractional amplitude of low-frequency fluctuations (Zou et al., 2008), defined as the ratio
of the power spectrum for frequencies 0·01–0·08 Hz to the entire frequency range. This measure
has been widely used as a voxel-wise measure of the intrinsic functional brain architecture derived
from resting-state functional magnetic resonance imaging data (Zuo et al., 2010).

We constructed a spatial logistic regression model that has clinical diagnosis of autism spec-
trum disorder as the outcome and the voxel-wise fractional amplitudes of frequency fluctuations
as imaging predictors, adjusting for age at scan, sex and intelligence quotient. Because imag-
ing predictors on the risk of autism spectrum disorder are spatially clustered and sparse (Liu &
Calhoun, 2014), the primary aim of this study is to identify imaging biomarkers among 38 547
voxel-level fractional amplitudes of low-frequency fluctuations that predict the autism spectrum
disorder risk. We applied partition-based screening by using anatomical information, correlation
among imaging predictors and spatial information. Specifically, we considered the following
methods: brain region partition-based screening on 90 brain regions; correlation-guided parti-
tion screening, which partitions the 38 547 voxels into G groups using the clustering algorithm
introduced in § 4·2, where G is taken to be 256, 128, 64, 32, 16 or 8; spatial-oriented partition
screening, which partitions the 38 547 voxels into 1024 equal-sized regions where the voxels are
spatially contiguous within each region; and combined partition-based screening that combines
all of the above. We also applied high-dimensional ordinary least squares projection for logistic
regression with the ridge penalty, as implemented in the R package screening.

To assess the performance of the different methods, we used ten-fold crossvalidation, randomly
splitting the data into ten equal-sized subsets. We applied the variable screening methods to the
training dataset and obtained a set of selected voxels, based on which we made a prediction about
the disease status in the testing dataset using logistic regression with the elastic net penalty, as
implemented in the R package glmnet. We repeated this ten times and computed the crossvalida-
tion accuracy. Among all the methods, combined partition-based screening achieved the smallest
crossvalidation prediction error, 37%, and high-dimensional ordinary least squares projection had
the largest crossvalidation prediction error, 48%. All the other partition-based screening meth-
ods achieved a prediction error of approximately 40%. More details and the receiver operating
characteristic curves are given in the Supplementary Material.

Next, we applied combined partition-based screening to the entire dataset, using the method
in § 4·4 to determine the threshold by taking an upper bound on the expected false positive rate to
be 0·20. A total of 6142 important voxels were selected. Eight regions with more than 60 selected
voxels are reported in Table 2, along with the median rank of voxel-specific screening statistics
within each region. These regions are known to be involved in specific brain functions related to
autism (Friederici et al., 2003; Japee et al., 2015).

7. DISCUSSION

The method proposed in this paper can be improved. First, our framework requires that the
size of each partition group be less than the sample size to make (3) sensible. If this condition is
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not met, penalized likelihood methods such as the lasso can be applied, though these approaches
may involve the selection of tuning parameters and the correction of biases due to penalization.
A simple but efficient remedy would be to further refine the groups randomly. This refining
procedure can be performed multiple times, and the resulting screening statistics can be combined
using the rule in § 4·3. Second, although this paper has focused on non-overlapping partitions
for ease of theoretical development, our screening framework can accommodate overlapping
partitions. According to the combination rule in § 4·3, for each predictor that is covered by more
than one partition, we can simply choose the screening statistic with larger value. Third, the time
complexity of correlation-guided partition screening is O(p2), mainly due to the need to compute
the correlation matrix and clustering predictors. To compute the correlations among ultrahigh-
dimensional predictors more efficiently, we suggest adopting parallel computing techniques.
To speed up the clustering of predictors, we propose to threshold the correlation matrix and
generate a binary matrix, regarded as the adjacency matrix of an undirected graph. The connected
components corresponding to group partitions can be obtained by using the breadth-first or
depth-first search algorithms with time complexity between O(p) and O(p2).
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