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1. Introduction

The problem of fitting a parametric family of distributions to a probability distribution, known as the goodness-of-fit
testing problem, is well studied in the literature when the underlying observations are i.i.d. See, for example, Durbin
(1973, 1975), Khmaladze (1979, 1981), D’Agostino and Stephens (1986), among others.

A discrete time stationary stochastic process with finite variance is said to have long memory if its autocorrelations tend
to zero hyperbolically in the lag parameter, as the lag tends to infinity, but their sum diverges. The importance of these
processes in econometrics, hydrology and other physical sciences is abundantly demonstrated in the works of Beran
(1992, 1994), Baillie (1996), Dehling et al. (2002), and Doukhan et al. (2003), and the references therein.

We model long memory via moving averages. Let Z .= {0, + 1, ...}. We suppose for the time being that the observable
process is

&= Z biljk, jeZ, (1.1)
K=o
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where (,,s € Z, are i.i.d., with zero mean and unit variance. The constants b; are assumed to satisfy b, =0,k <0,bp =1, and
b; ~caj~ 179 as j—oo for some 0 <cp<ooand 0 <d<1/2. (1.2)

Let B(a,b) := fol x9-1(1=x)*~'dx,a > 0,b > 0. One can directly verify that as k— oo,

Cov(eg, &) = beﬁk co/ Y1 +y) @ dy k=020 = ZB(d,1-2d)k~1-29),

so that the process ¢;,j € Z, has long memory.
Now, let ¢ denote a copy of &;, F denote the marginal d.f. of ¢ and Fy be a known d.f. The problem of interest here is to
test the simple hypothesis

Ho :F=Fy vs. Hp:F#F.

This problem is of interest in applications. For example in the value at risk analysis, cf. Tsay (2002), various probability
calculations are based on the assumption that the underlying process is a Gaussian process. If one would reject the null
hypothesis of a marginal distribution being Gaussian then such analysis would be a suspect.

In this note we shall discuss asymptotic behavior of some omnibus tests for Hy based on the empirical d.f. F,(x) =
S 11(gi <x)/n of g,1 <i<n for testing Ho.

A bit more interesting and at the same time surprisingly challenging problem is to test

HY¢ - F(x) = Fo(x—u), Vx € R for some p e R
vs.
H'oc - HY¢ is not true.
This problem is equivalent to testing for Hy based on the observations
Yi=u+¢, i=1,...,n for some p e R, (1.3)
where now ¢;,i € Z, are unobservable moving average errors of (1.1). Here tests would be based on
Fn(x) =n~! zn:I(Yi—Vn <x), Yp,=n! zn: Y, xeR.
i=1 i=1
Sometimes we may be interested in testing the equivalence of F to Fy up to a scale parameter, i.e., to test
HY : F(x)=Fo(x/0), Vx € R for some ¢ >0
Vs.
H{ : HY s not true.
This problem is equivalent to testing for Hy based on the observations
Yi=0¢, i=1,...,n for some o >0, (1.4)
where again ¢;,i € Z, are unobservable moving average errors of (1.1). Here tests will be based on
Fnx) =n"" z": IY;/6n<x), 62=n" Z Y?, x
i=1 i=1

Another interesting problem is to fit a distribution up to unknown location and scale parameters, i.e., to test the
hypothesis

Ho :F(x):FO(X?T'u), vx € R and for some p e R, ¢ >0,

‘Hq : Hp is not true.
This is equivalent to testing for Hy based on the observations
Yi=pu+oe, i=1,...,nfor some puec R,c>0, (1.5)
where again ¢;,i € Z, are unobservable as in (1.1). Here tests will be based on
n n
Fa@) =0 IYi=Ya<xsp), sp=n"'> (Yi-Yn)? xeR
i=1 i=1

Next, consider the problem of fitting marginal error d.f. in the linear regression model where one is given an array of
p x 1 design vectors x,;,1 <i<n, and one observes an array of random variables {Y,;; 1 <i<n} from the model

Yo =x,;B+¢&, 1<i<n for some e RP, (1.6)

with &;,i € Z, as in (1.1). Now F denotes marginal d.f. of the error process. Consider the problem of testing the above Ho vs.
H; based on Y,;,1 <i<n. Let /?n be the LSE of f and F, denote the empirical d.f. of the residuals &; == Yni—X], [3”,1 <i<n.



3744 H.L. Koul, D. Surgailis / Journal of Statistical Planning and Inference 140 (2010) 3742-3753

In the next section we discuss tests for the first problem based on F,, while Section 3 pertains to tests for HYS, HY and Ho
based on Fy, Fr, and F,, respectively. It is observed that the first order differences n'/2-4(F,—F,) and n!/2-4(F,—F,) cannot
be used to test for Hi’® and H,, respectively, while tests based on n'/2-4(F,—Fy) for testing H{f have the same large sample
behavior as in the case of known o.

Tests for fitting an error d.f. in linear regression set up based on n!/2-4(F,—F,) are discussed in Section 4. This process
also converges to zero in probability under Hj if there is a non-zero intercept parameter in (1.6), and thus cannot be used to
test for Hy asymptotically. Section 5 suggests some tests of H based on the second order difference for F,—Fj.

The recent paper of Chan and Ling (2008) discuss the first order asymptotics of residual empirical processes and
goodness-of-fit tests for long-memory errors. They consider the regression models with random design. Although the first
order approximations in their paper are similar to ours, some conclusions of Chan and Ling (2008) for hypotheses testing
are incorrect (see Remark 4.1 below). Moreover, they do not discuss tests based on second order differences.

2. Tests for simple hypothesis

Here, we shall analyze asymptotic behavior of the first order process n'/?~%F,—F,) when ¢;,i € Z, is an observable
process. The Kolomorov test based on the supremum statistic

Ky = sup|Fn(x)—Fo(x)|
xeR

will be discussed in some detail.
To proceed, we need to assume, for some C < oo and J > 0,

[Ee™| < C(1+|ul)~°,  E|{of < oc. 2.1)

Let ¢(0) = c3B(d,1-2d)/d(1+2d), 0 := (co,d), and &, =n"'3"{_; &. Then, from Giraitis et al. (1996) (GKS) and Koul and
Surgailis (2002), we obtain that under Hy, Fy is infinitely differentiable with smooth and bounded Lebesgue density fo, and
supin'/24(Fy(x)~Fo(x))-+foCn'/* el = 0p(1)  (Ho). 22
Xe
Dehling and Taqqu (1989) proved an analog of (2.2) when ¢;,i € Z, is a stationary Gaussian process, and coined the
phrase uniform reduction principle (URP) for this type of result. Koul and Mukherjee (1993) established URP when ¢;,i € Z, is
subordinated to a Gaussian process, and GKS proved it when ¢;,i € Z, is a long memory moving average process and under a
higher moment assumption on {,. Koul and Surgailis (2002) obtained the above expansion under the condition (2.1) that
includes the finite third moment assumption about (.
In the sequel, u,(1) denotes a sequence of stochastic processes indexed by x € R and tending to zero, uniformly over
x € R, in probability, and =>(— p) denotes the weak convergence of a sequence of stochastic processes in the Skorohod
space D(R) with the sup-topology (r.v.’s), where R := [—oc0,00]. For any smooth function g from R to R, & and § denote its
first and second derivatives, respectively.
Now, by a result of Davydov (1970),

c12@)n'/?9g, > pN(0,1). 2.3)
Hence, from (2.2) we obtain

n' 2 Ex)—Fo(x) = —c'2(0)fo)Z, (2.4)
where Z ~ N(0,1) r.v. Consequently, with llfglls = Supy.pfo(X),

n'2=4K, - pc 2 (0)1Z]11fy s,
and we readily obtain that under H,

nl/Z—dKn
c12(0)follos

The expansion (2.2) and the limit distribution of K,, were also derived in Ho and Hsing (1996, (3.1), (3.2)), under more
stringent assumptions on the distribution of the innovations {;.

Implementation of the K, test requires a consistent and a log(n)-consistent estimators of co and d, respectively. Dalla
et al. (2006) show that the semi-parametric local Whittle estimators ¢, and d of co and d satisfy these conditions.
Let 0 = (éo,fi)’. The proposed test would reject Hy whenever Kn(@) is large.

Clearly, the determination of the asymptotic critical values of this test is simple compared to its analog in the i.i.d. set
up. For example, the test that rejects Ho whenever £,(0) > Z,, would be of asymptotic size a, 0 <o < 1, where z, is the
100(1—o)th percentiles of standard normal distribution.

Needless to say similar statements apply to any other tests based on continuous functionals of the first order difference
n'/2=4(F, — Fy). For example, the Cramér-von Mises test that rejects H, whenever Cn(é) > y2_, would also be of asymptotic

Kn(0) = —plZ|.
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size o, where 72 is the 100(1—a)th percentile of chi-square distribution with 1 degree of freedom. Here

n]—Zan
c®) [fExydx

These findings are thus in complete contrast to the results available in the i.i.d. set up where one must use the full
knowledge of the distribution of Brownian bridge on [0,1] to implement tests based on the first order difference
n'/2(F, —Fy) for large samples, cf., Durbin (1973, 1975).

We shall now briefly analyze asymptotic power of the K, test. Let F#Fy be another marginal d.f. of ¢ such that (2.1) is

satisfied and the local Whittle estimators ¢o,d are consistent and log(n)-consistent for co, d. Then, arguing as above, F has a
smooth Lebesgue density f and

Co= / [Fa(X)—Fo)PdFo(X), Ca(0) =

SUPyep|—C2(OFf ®Z+n'/>~4(FX)—Fo))|
c120)fplle

From this we readily see that the above Kolmogorov test is consistent at this F. It has trivial asymptotic power against
sequences of alternatives for which sup,n'/2-4|F(x)—Fy(x)| - 0. Thus this test cannot distinguish the n'”2-neighborhoods of
Fo, i.e., this test has asymptotic power o against those {F} in the class of d.f. satisfying the above assumed conditions and for
which n'/2sup,|F(x)—Fo(x)| = O(1). Similar conclusions would hold for other tests based on n'2=94(F,—Fy).

Asymptotic power of the ICn(é) test against the sequence of local alternatives F = Fy+n~(1/2-9 4, where A is absolutely
continuous with a.e. derivative 4 bounded, equals

Kn(0) = +0p(1).

P(sup|—f0(x)c”2(9)Z+ Ax)| > 21/261/2(6)Ilfol\00> )

3. Testing for HYS, HES, and 7
First, consider testing for HS®. Let, now &, = S 1(Yi—p)/n. Recall that here Fp(x) = Fy(X+&n).

Proposition 3.1 (URP for the residual empirical process F,.). Assume (1.2) and (2.1) hold. Then,
supn'/2~4|F;(x)—Fo(x)| = 0p(1). 3B

xeR
Proof. From (2.2), (2.4) and the mean value theorem one obtains
_ X+&p
n'/2=4(F () —Fo(®) = n'/>~* | Fa(x+&n)—Fo(X+En) + Enfo(x +En) + / (fow)—fo(x+&n)) du
X

=up(1) +O0p(If ol [2n %) = up(1).

This completes the proof. O

According to Proposition 3.1, the first order difference Dy(x) = n'/2-4(F,,(x)—Fy(x)) cannot distinguish between the two
marginal distributions of a long memory moving average process that differ only in their means. This finding is in sharp
contrast to what is available in the case of i.i.d. errors where the first order difference n'/2[F ,(x)—Fy(x)] converges weakly to
a time transformed Brownian bridge with a drift under HY<, cf., Durbin (1973).

Next, consider the scale problem. Here, ¢; =Y;/0, and

Fa(®) = % i 1(Yi/&n <X) = Fy(xGn/0).

i=1

Proposition 3.2 (URP for the residual empirical process F,). Assume (1.2), (2.1) hold and Eég < oo. Then,

sup|n' 2~ (x)—Fo(x)]+n"/>“Enfo(x)| = 0p(1).

xeR

Proof. Without loss of generality, assume Eg? = >ito b]? =1. We have

n 2 n
E@2—0%)? = 64n2E<Z(81~21)> =a'n"? Y Cov(e},&).

i=1 ij=1
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Let y, = ECg+3 be the 4th cumulant of {y. By elementary computation (see Giraitis and Surgailis, 1990, (2.3))

o0 2 o0
Cov(e},e}) = <Z bkb,H,-j) +2a > bEbt, i ;= (Cov(g;g))* +0(i—j|21=D),
k=0 k=0

implying Cov(e?,&?) = O((Cov(&;,&))%) = O(Ji—j|~21-29), as |i—j| »oco. Whence it follows that

%—1 =0, 1?), 0<d<1/4

= Op((logm)/m)'/?), d=1/4
=0,(n"129), 1/4<d<1/2. .

Now, let 4, = (6,/0—1). Recall from Lemma 5.1 of Koul and Surgailis (2002) (KS) that under (2.1), Fy is infinitely smooth
with density fo satisfying

sup(1+x*)(fo(x) + If o X)) < oo.
xeR
This bound and (5.12) of Lemma 5.2 of KS imply

xAy
|Fo(x+x4,)—Fo(x)| = ’/O fox+uydu| < C(1 +x2)*1(|xAn|+x2A§)sC(|An|+Aﬁ),

XAn |
fox+x4n)—fox)| = ’ /0 fo@+uydu| < CA+x2) 1 (1xAn|+Xx242) < C(|An| + 4%). (3.3)

Hence,

n'2-AF p()—Fo(X)+EnfoX)] < n'/>~|Fy(xG n/0)~Fo(xGn/0) +Enfo(XGn/0)|
0279 o () —fo(x+XAn)| + 127 Fo(x+ X An)—Fo ()] < tp(1)+Cn' 271 Ay + A7)

The statement of the proposition now follows from this bound (3.2) and the fact that 0<d< 1. O

Note the URP for F, is precisely the same as for F, given in (2.2). In other words, asymptotic null distribution of tests
based on n'/2-4(F,—Fy) for testing HY is the same as those of tests based on n'/?~9(F,,— F,) for testing Ho. This is a kind of
robustness property of these tests against the unknown error variance. It is also unlike the above situation in the location
model, and unlike the situation in the i.i.d. set up, where n'/2(F,—F,) weakly converges to a Brownian bridge with a drift,
cf,, e.g., Durbin (1973).

Location-scale problem: Now consider the problem of testing for 7y. Assume, as in the scale problem, that Elé < oo.
Let &, == (sp—0)/0 and & = (Y;—w)/0, €, = (Y,—w)/o. Then, with F, the same as in Proposition 3.1,

n n
Fa)=n"" 3 I(Yi=Yn<xsp)=n""3 (& <X+X0n+En) = Fn(X+X0n).
i=1 i=1

Also note that the bound (3.2) continues to hold with 6, replaced by s, under the current set up. Using this fact, (3.1),
and an argument like the one used for deriving the bound in (3.3), we readily obtain, under Ho,

nV2-dgup| Fp(x)—Fo(x)| < n”“’{ sup|Fn(X)—Fo(x)| +SUP|F0(X+x5n)—Fo(X)|} =0p(1)+Cn'279(18,] 4 62) = 0p(1).
X X X

Thus, here also the location case dominates in the sense that the first order difference n'/2-4[F,(x)—Fo(x)],x € R,
is not useful for fitting a marginal d.f. up to the unknown location and scale parameters.

4. Fitting an error d.f. in a regression model

Recall the linear regression model (1.6) and definition of F, from Section 1, viz.,

Fa(y=n"" Z I(Yni—XpiBp <x)=n""1 Z I(e; < X+X3(Bo—B)),

i=1 i=1

where f, is the LSE of f§ € RP.
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Proposition 4.1 (URP for the residual empirical process F,). Assume the same conditions on errors as in Proposition 3.1.
Assume the matrix X, whose ith row is x;,1 <i<n, is of full rank. Let D, = (X;Xn)”z. Assume additionally

ni’

n”zlmax ID; il = O(1). “4.1)
Then,

sup|n'/24[F () —Fo(ol—fo(on™ /24 > " [x1(By—B)—eil| = 0p(1). 42)

xeR i=1

Proof. To begin with we have uniform linearity of the residual empirical processes: For any nonrandom array {&,;,1 <i<n}
of real numbers such that max; ;< ,[&n| = O(1),

n
n=2EN e < x4 Ein® ) —1(er < 0)—nT V2 Eifo (0]
i=1

sup
xeR

=0p(1). 4.3)

This result was proved in GKS (Theorem 1(1.9)) under a higher moment assumption on {,. Under the current third moment
assumption it follows from (3.16) of Koul and Surgailis (2003) and an argument as in GKS.

The result (4.3) entails the following fact. For any 0 < b < oo and any nonrandom array {c,1 <i<n,n> 1},c,; € RP, with
maxy << nllCyill = 0(1),

n
> (e < x+cpsn™2)—I(g; < x)—cpsn? 2 fo(x)]
-1

sup n1/2-d
xeR,lsl < b

= 0p(1). 4.4

This is proved using arguments as in Koul (2002). For the sake of completeness we are reproducing this argument in the
Appendix below.
Let vy == n'/2D; 'x,;. Now write X,.(8,— ) = v,;n%2n=4Dy (B, — ). Recall that

R n n
Du(Bp—P)=D;" > xuei=n""2" vy
iz i=1
In view of (1.2), we have |Eg;¢;j| < Cli—j|>*~1, for all i#j. Hence, in view of (4.1),
R n n
EIDy(B,—B)I1> =n"" > vynEeig; < ' > |Egigjl < Cn,
=1 ii=1
= Dy(By—F) = Op(1).
Now (4.4) applied with cpi=vy;, S= n*an(Bn—ﬁ) and a routine argument yields
n ~
2 —Fa(ol—n~ 12 Y " x(Ba—Pifo(0)| = 0p(1). (4.5)
iz

Write 4, for the Lh.s. of (4.2). From (4.5) and (2.2) we obtain

sup
xeR

!4 E ()~ Fa()]—foon =41/ Z Xpi( Bu—B)+ 112 AFo ()~ Fo ()] +foxyn 41/ Z &= 0p(1),

i=1 i=1

Ap =sup
xeR

proving (4.2). O

Now, let 7, =n~1 321 v, and

2y =02 (B P—e] = n V2> v —1e.

i=1 i=1

Remark 4.1. Note that if the regression model (1.6) is the one sample location model (1.3), ie., if in (1.6),
p=1x,=1,8=p, then v,; =1, LSE is Y, F,(x) =F,(x) and 2, =0, so that we again obtain the conclusion (3.1).

More generally, Z, =0, for all n> 1, w.p.1, whenever there is a non-zero intercept parameter in the model (1.6). To see
this and to keep the exposition transparent, consider the model (1.6) with p=2, x; = (1,a;), where ay,...,a, are some known
constants with ¢2 .= 3"'_ (g;j—@)* >0, and @ .= n~' 3_I'_, a;. Then,

1 n1s" a2 —a 1
T, v = n(1,@)(X,Xn) ™! (a> = %(m)( ZJ; i ) ) <a> =1, Vi=1,...,n
i a — i
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Thus, as in the location problem, as long as there is a non-zero intercept parameter present in the regression model
(1.6), the first order difference n!/2-4(F,—Fy) cannot be used to test for Ho in these cases.

These facts thus contradict Corollary 3.1 of Chan and Ling (2008) which claims that n!/2-4(F ,(x)—Fo(x)),x € R, converges
weakly to a continuous Gaussian process under the null hypothesis of the error d.f. being Fy. This corollary is incorrectly
derived from the first order expansion in Chan and Ling (2008, Theorem 2.1) which is correct and agrees with the
expansion in (4.5) above. The fact that they deal with random design does not change this contradiction.

Next, if in (1.6), >7_ | x,; =0, then £, =—n""/2-43""__ ¢, and by (2.3), we again obtain the analog of (2.4) for F,. In
other words, if the design vectors corresponding to the slope parameters are orthogonal to the p vector of 1's, then
asymptotic null distribution of n'/2=4(F,—F,) is not affected by not knowing the slope parameters, and is the same as in
(2.4). This fact has nothing to do with long memory. Analogous fact is available in the i.i.d. errors set up also, cf., Koul (2002,
Chapter 6).

In general Z, is a weighted sum of long memory moving average process. The following lemma gives a CLT for such
I.V.’s.

Lemma 4.1. Let &;,i € Z, be a linear process as in (1.1) and (1.2). Let {c,; € R?,1 <i<n} be uniformly bounded nonrandom
weights, i.e., SUP,, s 1SUPq < < nlCnil < o0 and let

n
¥, = Cov (ndl/z > cn,»si>.

i=1

Assume that the limit lim,,_, X, = X exists and is positive definite. Then,

n
nid?l/z Z Chi&i —>DNp(0,Z).

i=1

The proof of Lemma 4.1 is given in Appendix. Now consider the weighted sum Z,. Clearly, under (4.1), the weights
Cni = VyVpi—1 are uniformly bounded. So one needs only the existence of the limit of X, = Var(Z,) in order to apply the
above CLT to Z,.

As an example of design where this limit exists and the above lemma is applicable to Z,, consider the first
degree polynomial regression through the origin where p=1 and x,=i/n. Here, (4.1) is satisfied and
ay = n'2D;t =n'2(30_ (i/n)z)*‘/2 ~312 pui = (i/n)an, 7o ~3Y%/2, and

(i (] 1
Zn=Zn(0) ~2¢5B(d,1-2d) 4 1+2d > {v,,(ﬁ)an—l} {vn<ﬁ>an—l}m

1<i<j<n
3 1
~2c2B(d,1- 2d)K >3(22d) H2(2+2d) m} =20)=

Hence we can apply the above lemma to Z, to conclude that Z, —pA/(0,2(0)). The role of c(0) in the simple hypothesis
case is now played by X(6). Consequently, here the analog of Kolmogorov test for testing that the error d.f. is Fy would be
based on

R, o M2 SUD Fr(0—Fo(x)|
2O 2fpll

where now 0 is the local Whittle estimator of 0 based either on Yy’ soron the residuals Yy;—x;, ﬁn s. Consistency of 0 for 0
under (4.1) follows from Dalla et al. (2006). Other tests based on F, may be modified in a 51m11ar fashion. Needless to say
these conclusions remain valid for any finite degree polynomial model.

5. Tests for HYC based on the second order difference

In view of (3.1), it is desirable to ask the question whether there is a higher order difference of F,,—F, that will provide a
reasonable test for testing HYC. In order to attempt to answer this question, we need to recall a result from Ho and Hsing
(1996) and Koul and Surgailis (2002). Let 8(0) 1, s(” =¢ of (1.1) and

(Y .
&= Z bjs, - b L5 -+ Ly

Sp<--<S<j

be a polynomial of order k > 2 in the i.i.d. random variables {;,s € Z. This series converges in mean square for each k> 1,
under the conditions }"3°_ o b? < 00,E(3 < oo alone. Moreover, for each k > 1, the process s;k),j € Z, is strictly stationary with
zero mean and covariance
k) (k
Eeo'e )= > bisibi o biib, G-

0<iy < <iy
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and for any integers j, i, Es](."’g}” =0 (k#¢6,k,t=0,1,...). It follows from (1.2) and (5.1) that for each k> 1,

00

k

1 . .

|E(3g<)8j(‘k))sk_'<z |b,-+,-bf|) =0 H12), e,
“Ni=1

2
n
E (Z} s}’”) =0(n?>k1-2d) " j1-2d) <1,

j
=0(nlog(n)), k(1-2d)=1,
=0(n), k(1-2d)>1, n-oo.
Let

n
200 = k122013 0 e 1,

j=1
Note that
n
Z,(T]) = nl/z’dﬁn, Zﬁz) = n72d Z Z bj—51 bj—sz é’sl CSZ . (52)

j=1s<s1<j

Assume 1/(1-2d) is not an integer and let k* denote the greatest integer in 1/(1—2d), i.e., k* := [1/(1—2d)]. Introduce
the multiple Wiener-Ito integral

k 1 k
z® ;:% /R k{ /O H(u—sj)fd’du}W(dsl)---W(dsk)
! P

w.rI.t. a Gaussian white noise W(ds), E (W(ds))*=ds, which is well-defined for 1 < k < k*. From Surgailis (2003a) we obtain
under the conditions (1.2) and EC% < 00,

@®,0 <k <k*)—-pZ®,0 <k <k*). (5.3)

Note that Z1) is a Gaussian r.v. while Z() equals the Rosenblatt process at 1, cf. Taqqu (1975).
We are now ready to state the following theorem giving higher order expansion of empirical process due to Ho and
Hsing (1996). See also KS.

Theorem 5.1. Let {¢;} be a long memory moving average satisfying (1.1) and (1.2). Suppose the d.f. of (o is k*+3 times
differentiable with bounded, continuous and integrable derivatives, and E|{y|* < co. Then, under H,

k—1
Fa)—Fo)= > (—1)"n-’<<1-2d>/225,’<)%+n‘1/2Qn(X),

1<k<k:
with
sup|Qn(x)| = Op(n®), ¥3>0. (5.4)
xeR

As pointed out in KS, pp. 220-221, while one can show the weak convergence of all finite dimensional distributions of
the remainder process {Q.(x),x € R} to that of a continuous Gaussian process, proving tightness of this process remains an
open technical problem. Because of this, in the case 0 <d < } or k*=1, the expansion (5.4) yields only the URP of (2.2) and is
not useful in deriving the limiting distribution of the second order difference of F,—Fo. But if {¢;,j € Z} is a long memory
Gaussian process, Theorem 2.1 of KS has shown that the process {Qn(x),x € R} converges weakly to a continuous Gaussian
process. Below, we state this result for k*=1, or 0 <d < J, only. Let

Ri(x) = I(¢; < x)—Fo(x)+fox)gj, je Z,

Qu(x)=n"17? Z Ri(x) =" {Fa)—Fo()+fo()en}, x € R. (5.5)
j=1

Proposition 5.1. Let {¢j} be a Gaussian long memory moving average satisfying (1.1) and (1.2) with 0<d < L Then,
Qn(X)=Q(x), where {Q(x),x € R} is a continuous Gaussian process with zero mean and covariance function

Cov(Q(x),Q() = > _Cov(Ro(X),R;()).

jezZ

This proposition and the expansion (5.4) yield the following facts.
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Proposition 5.2. (i) Assume the same conditions as in Theorem 5.1, and let }; <d < 1. Then,

sup|n!~2{Fn(x)—Fo(x)} —f o )IZP—27"Z)] = 0p(1),

and

' 24Fp(x)—Fo(x)}=f o(X)V,

where Y := Z@-2"1ZM)?. Moreover,

Ey=-2"1c(0),
Ey? — caB%(d,1-2d) 1 N 1 1 _ B(1+2d,1+24d)
B 2d 2(4d-1) " 2d(1+2dy? d@d+1) d '

(ii) If {¢;} is a Gaussian long memory moving average satisfying (1.1) and (1.2) with 0 <d < %, then
n'/2{F(x)—Fo(x)}=Q(x),
where Q(x),x € R is the Gaussian process of Proposition 5.1.

Proof. (i) Note that d > 1 1 implies 2d— 1 > 0 and k* > 2. Combine these facts with (5.4) and (5.6) with a 6 < 2d—
the second order expansion under HO

sup|n' 24 {Fa(x)—Fo(X)+foX)En} —f o(0Z| = 0p(1).

xeR
The decomposition

F(X)—Fo(X) = Fa(X+&n)—Fo(X+&n) + Fo(X+&n)—Fo(X)
and (5.10) yield

sup|n! =2 {Fn(x)—Fo(x) + EnfoX + En)}—f o (X +En)ZP —n' =2 {Fo(x + En)—Fo(x)}| = 0p(1).

xeR

Using Taylor expansion of fo, f, and the boundedness offo, we thus obtain
n!2UF (0 —Fo(X)} = —n'"29Enfo(x+En) +f o(x+En)ZP —n' 24 (Fo(x+En)—Fo(X)} +up(1)

_pl-2d

. = \2 . . .
Fo0-+nf o0+ CFoet )| +Fo00) +uf o+ 2

&n

(Sn)

fo(x)+

+n!—2 |:<°rLfO(X)+ Fox+&n } +up(1)

=fo) {Zﬁ?’—(gg)n”d +0p(n' 2@n)) +up(1),

(5.6)

(5.7)

(5.8)

(5.9)

to obtain

(5.10)

where ¢, is a sequence of r.v.'s with |&,| < [&al, En)?n!~2d = (Z")? - p(ZDM)? and n'~24(z,)* = 0,(n?-1/2) = 0,(1). This proves

(5.6). Claim (5.7) follows from (5.6) and (5.3).

Next, we prove (5.8). From definition (5.3) and the diagram formula of Wiener-It6 integrals (Surgailis, 2003b) one

obtains EZ®=0,

(N2 _ d-1 _ ¢3B(d,1-2d) _
E@ZWy? = c2 /{/ u—s)4 du} 5_7d0+2d) =c(0),

EZM)y* =3(EZMy*)? = 3c%(0),

1 2 4p2
)2 _ 1.4 e \d=T(p o yd-1 _ gB4d,1-2d)
EZ¥)y" =2 CO/RZ{/O (u—s1)% (u—s)¥ du} d51d52_74d(4d71) ,
and
op 1 1 1
EZ‘2)(Z(”)2=C4// ds; dsz/ (u—s1)* " u—sp)® ‘du/ (v—sﬂ‘“dv/ T o
0

=c3B*(d,1- 2d)/ / / [u—v24- N u—w)??1 dudv dw

_ ciBd1-2d) (1
242 <4d 1

— c2B(d,1-2d) / (2d) @2+ (1—w)2)2 du +B(2d+1,2d+l)).

O
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Proof of (ii). Using the definition of Qu(x) in (5.5), rewrite n'/2(Fu(x)—Fy(X)) = Qn(X+&n)+Un(x), where
Un(%) := n'/2[Fo(X +2n)—Fo(x)—fo(x+€n)ex]. By Taylor expansion,

sup|Un(®)| < n'2En)?suplf o(x)] = Op(m?~1/2) = 0p(1).

Therefore (5.9) follows from (5.5) and
SUp|Qn(X+&n)—Qn(X)| = 0p(1). (5.11)
X

For any 01,0, >0,

P<Sup|Qn(X+En)*Qn(X)| > 51) <P([en| > 52)+P< sup_ |Qn(x)—Qn ()| > 51) .

X |X=y| < 02

Since the sequence Qu,n > 1, is tight in the sup-topology on R, the last probability can be made arbitrarily small for all n
large enough, by choosing J, small enough. As &, = op(1), this proves (5.11) and, also completes the proof of Proposition
52. O

Now, let d be a log(n) consistent estimator of d and D, == suprRnl*Za |F.(x)—Fo(x)|. Proposition 5.2(i) readily implies that
in the case } <d < 1, the asymptotic null distribution of Dj, is the same as that of || f olloY- Consequently, asymptotic critical
values of the test that rejects H whenever D, /Ilf yll» is large can be determined from the distribution of . Unfortunately
this distribution depends on co, d in a complicated fashion, and is not easy to track. However, one may use a Monte Carlo
method to simulate the distribution of this r.v. corresponding to ¢y = ¢o,d =d.

Higher order moments of the limiting r.v. I can be computed using the diagram formula for Wiener-It6 integrals; see
e.g., Major (1981, Corollary 5.4) and Surgailis (2003b, Proposition 5.1), although the resulting formulas are rather
cumbersome. The characteristic function of r.v. Z®) and the representation of it as a infinite weighted sum of chi-squares
was obtained by Rosenblatt (1961). See also Taqqu (1975, (6.2)).

For the case 0 <d < ] and when the process ¢; is Gaussian satisfying (1.1) and (1.2), Proposition 5.2(ii) implies that the
large sample critical values of the test that rejects H§° whenever sup,_pn'/2|F,(x)—Fy(x)| is large can be determined from
the distribution of Q.. This is similar to the ‘usual’ asymptotics of the Kolmogorov test for short memory errors based on

F,, see e.g., Csorgd and Mielniczuk (1996).
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Appendix A

Proof of (4.4). For s € R?,z,y € R put
n
W(s.z:y) =n""2"1N "[l(e; <y + (s +Icnil n®)—I(e; < y)~fo)(Cys + licnillzn®1/2].
i=1
Fact (4.3) applied with &,; = c};s+lic,;liz implies
sup|W(s,z;y) =0p(1), VseRP,zeR. (A1)
y

Note W(s;y) = W(s,0;y) is the empirical process on the left hand side of (4.4). It suffices to show that for any ¢ > 0 there
exists an N, > 1 such that for any n > N, and for every 0 < b < o,

P( sup |W(t;y)| > 28) < 2¢. (A2)
y

eR,Itl <b
Fix a 0<b<oo and an &> 0. Because the ball K, = {s € RP;lisl < b} is compact, for any J >0 there exist k= k(d,b) and
points s,..., S in K, such that for any t € Ky, llt—s;ll <6, for some j=1,2,...,k. Hence,
k

k
P< sup |W(ty)l > 28> <> P( sup IW(t;y)-W(sj;y)| > «5> +Y P<sup|W(sj;y) > a) . (A3)
y y

eR,Itl < b 21 \teknlt—sji < s,yeR =

Note that for any t € R” such that lt—s;ll <6,

CriSj—Nlcpilld < ¢t < cpsj+licplld, vV1<i<n.
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Let 1 = ¢/(18ClIfl), where C is such that max;lic,;ll <C. The above inequality and the monotonicity of the indicator
function imply that for all 6 < ¢4, and for all lit—s;ll <4,

n
IW(t; 9)=W(sj; Y)I < IW(s;,00:9) |+ IW(Ssj, =011+ > licrillfo)(261 +6) < IW(Sj,01; )| +IW(sj,—51: )+ 3Cf o (1)01.
iz
Introduce the events

Anj::{ sup W(t;Y)—W(5j§y)|>3}v

lit—sjll < o:;yeR

By = {Sl;plw(sj,éuy)l+51y1p|W(sj.—51;y)| > 8/2}-

Then, by (A.1), applied with z= + §,, there is an N;j, such that for all n > N;,,
P(Bpj)<e/k foreachj=1,... k.
Let Bj; denote the complement of B,;. On By,

sup  |W(t;)—W(sp; )l <e/2+3Clfolld1 =¢/2+6/6=2¢/3 <,
lt—sjll < o:;yeR

for all j=1,... k. Hence, for all n> N; := max; _; . (N,
P(Apj) = P(Apj N Buj) +P(Ayy N B <e/k, j=1,... k.

Similarly as above, by (A.1) applied with z=0, there is an M, such that for all n > M,,
P(sup|W(sj;y)| > c) <e/k, j=1,....k
y
Hence, for all n > N, v M,

k k
P( sup |W(t:y) > 28> < D PApN+ D P(sup|W(sj;y)| > 8) <2,
v

cR,Itl<b ji=1 j=1 y
proving (A.2) and hence, (4.4). O

Proof of Lemma 4.1. Recall EC(Z) = 1. For a given a € R, introduce a normal r.v. U ~ A(0,a’Xa). In (1.2), define b; =0,j <0,
and let

n n
bnj =n"412 Z a’c,,,-bi_j, U, = n-d4-1/2 Z a'cyiei = anjCj. (A4)
iz1 i1 jez

Then, Var(U,) =a’¥,a—a’Xa =Var(U) and the statement of the lemma translates to U, —pU.

Introduce truncated i.i.d. r.v.’s i, = GI() < K)—-EGI(G < K) (i € Z), and let Uy, ¢ be defined as in (A.4) with {;’ s replaced
by {jk’s. Then E(Uy—Up)? = Var({o—{ox)Var(Uy) -0, as K— oo, uniformly in n > 1. Therefore, it suffices to show the
asymptotic normality of Uy, x instead of Uy, for each K fixed. Since {; x are bounded r.v.’s, it thus suffices to prove the claimed
result under the assumption that the r.v. {;’ s are bounded having all moments finite. Then U, — pU follows if we show that

Cumy(Up) =o(1), vk=34,..., (A.5)

where Cum(Y) denotes the kth order cumulant of the r.v. Y. Let y; := Cumg({p). According to the multilinearity and
additivity properties of cumulants,

Cumy(Un) = 1> bl < I7Isuplby; | 2Var(Uy)
jez jezZ

since Zjezbﬁj =Var(U,), see (A.4). Therefore, (A.5) follows from
suplby*2 =0(1), ¥k=34,.... (A.6)
jez
But,
n
bnl < Cn~ 12N (i)t =02 =0(1), VjeZ
i=1

This proves (A.6) and also Lemma 4.1. O
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