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a b s t r a c t

This paper discusses the problem of fitting a distribution function to the marginal

distribution of a long memory moving average process. Because of the uniform

reduction principle, unlike in the i.i.d. set up, classical tests based on empirical process

are relatively easy to implement. More importantly, we discuss fitting the marginal

distribution of the error process in location, scale, location–scale and linear regression

models. An interesting observation is that in the location model, location–scale model,

or more generally in the linear regression models with non-zero intercept parameter,

the null weak limit of the first order difference between the residual empirical process

and the null model is degenerate at zero, and hence it cannot be used to fit an error

distribution in these models for the large samples. This finding is in sharp contrast to a

recent claim of Chan and Ling (2008) that the null weak limit of such a process is a

continuous Gaussian process. This note also proposes some tests based on the second

order difference for the location case. Another finding is that residual empirical process

tests in the scale problem are robust against not knowing the scale parameter.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The problem of fitting a parametric family of distributions to a probability distribution, known as the goodness-of-fit
testing problem, is well studied in the literature when the underlying observations are i.i.d. See, for example, Durbin
(1973, 1975), Khmaladze (1979, 1981), D’Agostino and Stephens (1986), among others.

A discrete time stationary stochastic process with finite variance is said to have long memory if its autocorrelations tend
to zero hyperbolically in the lag parameter, as the lag tends to infinity, but their sum diverges. The importance of these
processes in econometrics, hydrology and other physical sciences is abundantly demonstrated in the works of Beran
(1992, 1994), Baillie (1996), Dehling et al. (2002), and Doukhan et al. (2003), and the references therein.

We model long memory via moving averages. Let Z :¼ f0,71, . . .g. We suppose for the time being that the observable
process is

ej ¼
X1
k ¼ 0

bkzj�k, j 2 Z, ð1:1Þ
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where zs,s 2 Z, are i.i.d., with zero mean and unit variance. The constants bj are assumed to satisfy bk ¼ 0,ko0,b0 ¼ 1, and

bj � c0j�ð1�dÞ as j-1 for some 0oc0o1 and 0odo1=2: ð1:2Þ

Let Bða,bÞ :¼
R 1

0 xa�1ð1�xÞb�1 dx; a40; b40. One can directly verify that as k-1,

Covðe0,ekÞ ¼
X1
j ¼ 0

bjbjþk � c2
0

Z 1
0

yd�1ð1þyÞd�1 dy k�ð1�2dÞ ¼ c2
0Bðd,1�2dÞk�ð1�2dÞ,

so that the process ej,j 2 Z, has long memory.
Now, let e denote a copy of e1, F denote the marginal d.f. of e and F0 be a known d.f. The problem of interest here is to

test the simple hypothesis

H0 : F ¼ F0 vs: H1 : FaF0:

This problem is of interest in applications. For example in the value at risk analysis, cf. Tsay (2002), various probability
calculations are based on the assumption that the underlying process is a Gaussian process. If one would reject the null
hypothesis of a marginal distribution being Gaussian then such analysis would be a suspect.

In this note we shall discuss asymptotic behavior of some omnibus tests for H0 based on the empirical d.f. FnðxÞ :¼Pn
i ¼ 1 IðeirxÞ=n of ei,1r irn for testing H0.
A bit more interesting and at the same time surprisingly challenging problem is to test

Hloc
0 : FðxÞ ¼ F0ðx�mÞ, 8x 2 R for some m 2 R

vs.

Hloc
1 : Hloc

0 is not true:

This problem is equivalent to testing for H0 based on the observations

Yi ¼ mþei, i¼ 1, . . . ,n for some m 2 R, ð1:3Þ

where now ei; i 2 Z, are unobservable moving average errors of (1.1). Here tests would be based on

F nðxÞ :¼ n�1
Xn

i ¼ 1

IðYi�Y nrxÞ, Y n :¼ n�1
Xn

i ¼ 1

Yi, x 2 R:

Sometimes we may be interested in testing the equivalence of F to F0 up to a scale parameter, i.e., to test

Hsc
0 : FðxÞ ¼ F0ðx=sÞ, 8x 2 R for some s40

vs.

Hsc
1 : Hsc

0 is not true:

This problem is equivalent to testing for H0 based on the observations

Yi ¼ sei, i¼ 1, . . . ,n for some s40, ð1:4Þ

where again ei; i 2 Z, are unobservable moving average errors of (1.1). Here tests will be based on

~F nðxÞ :¼ n�1
Xn

i ¼ 1

IðYi= ~snrxÞ, ~s2
n :¼ n�1

Xn

i ¼ 1

Y2
i , x 2 R:

Another interesting problem is to fit a distribution up to unknown location and scale parameters, i.e., to test the
hypothesis

H0 : FðxÞ ¼ F0
x�m
s

� �
, 8x 2 R and for some m 2 R, s40,

H1 : H0 is not true:

This is equivalent to testing for H0 based on the observations

Yi ¼ mþsei, i¼ 1, . . . ,n for some m 2 R;s40, ð1:5Þ

where again ei; i 2 Z, are unobservable as in (1.1). Here tests will be based on

FnðxÞ :¼ n�1
Xn

i ¼ 1

IðYi�Y nrxsnÞ, s2
n :¼ n�1

Xn

i ¼ 1

ðYi�Y nÞ
2, x 2 R:

Next, consider the problem of fitting marginal error d.f. in the linear regression model where one is given an array of
p�1 design vectors xni,1r irn, and one observes an array of random variables fYni;1r irng from the model

Yni ¼ x0nibþei, 1r irn for some b 2 Rp, ð1:6Þ

with ei; i 2 Z, as in (1.1). Now F denotes marginal d.f. of the error process. Consider the problem of testing the above H0 vs.
H1 based on Yni,1r irn. Let b̂n be the LSE of b and F̂ n denote the empirical d.f. of the residuals êi :¼ Yni�x0nib̂n,1r irn.
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In the next section we discuss tests for the first problem based on Fn, while Section 3 pertains to tests for Hloc
0 , H0

sc andH0

based on F n, ~F n, and F n, respectively. It is observed that the first order differences n1=2�dðF n�F0Þ and n1=2�dðFn�F0Þ cannot
be used to test for Hloc

0 and H0, respectively, while tests based on n1=2�dð ~F n�F0Þ for testing H0
sc have the same large sample

behavior as in the case of known s.
Tests for fitting an error d.f. in linear regression set up based on n1=2�dðF̂ n�F0Þ are discussed in Section 4. This process

also converges to zero in probability under H0 if there is a non-zero intercept parameter in (1.6), and thus cannot be used to
test for H0 asymptotically. Section 5 suggests some tests of H0

loc based on the second order difference for F n�F0.
The recent paper of Chan and Ling (2008) discuss the first order asymptotics of residual empirical processes and

goodness-of-fit tests for long-memory errors. They consider the regression models with random design. Although the first
order approximations in their paper are similar to ours, some conclusions of Chan and Ling (2008) for hypotheses testing
are incorrect (see Remark 4.1 below). Moreover, they do not discuss tests based on second order differences.
2. Tests for simple hypothesis

Here, we shall analyze asymptotic behavior of the first order process n1/2�d(Fn�F0) when ei; i 2 Z, is an observable
process. The Kolomorov test based on the supremum statistic

Kn :¼ sup
x2R
jFnðxÞ�F0ðxÞj

will be discussed in some detail.
To proceed, we need to assume, for some Co1 and d40,

jEeiuz0 jrCð1þjujÞ�d, Ejz0j
3o1: ð2:1Þ

Let cðyÞ ¼ c2
0Bðd,1�2dÞ=dð1þ2dÞ, y :¼ ðc0,dÞ0, and en :¼ n�1

Pn
i ¼ 1 ei. Then, from Giraitis et al. (1996) (GKS) and Koul and

Surgailis (2002), we obtain that under H0, F0 is infinitely differentiable with smooth and bounded Lebesgue density f0, and

sup
x2R
jn1=2�dðFnðxÞ�F0ðxÞÞþ f0ðxÞn

1=2�denj ¼ opð1Þ ðH0Þ: ð2:2Þ

Dehling and Taqqu (1989) proved an analog of (2.2) when ei,i 2 Z, is a stationary Gaussian process, and coined the
phrase uniform reduction principle (URP) for this type of result. Koul and Mukherjee (1993) established URP when ei,i 2 Z, is
subordinated to a Gaussian process, and GKS proved it when ei,i 2 Z, is a long memory moving average process and under a
higher moment assumption on z0. Koul and Surgailis (2002) obtained the above expansion under the condition (2.1) that
includes the finite third moment assumption about z0.

In the sequel, up(1) denotes a sequence of stochastic processes indexed by x 2 R and tending to zero, uniformly over
x 2 R, in probability, and ¼)ð-DÞ denotes the weak convergence of a sequence of stochastic processes in the Skorohod
space DðRÞ with the sup-topology (r.v.’s), where R :¼ ½�1,1�. For any smooth function g from R to R, _g and €g denote its
first and second derivatives, respectively.

Now, by a result of Davydov (1970),

c�1=2ðyÞn1=2�den-DN ð0,1Þ: ð2:3Þ

Hence, from (2.2) we obtain

n1=2�dðFnðxÞ�F0ðxÞÞ ¼) �c1=2ðyÞf0ðxÞZ, ð2:4Þ

where Z �N ð0,1Þ r.v. Consequently, with Jf0J1 :¼ supx2Rf0ðxÞ,

n1=2�dKn-Dc1=2ðyÞjZjJf0J1,

and we readily obtain that under H0,

KnðyÞ :¼
n1=2�dKn

c1=2ðyÞJf0J1
-DjZj:

The expansion (2.2) and the limit distribution of Kn were also derived in Ho and Hsing (1996, (3.1), (3.2)), under more
stringent assumptions on the distribution of the innovations zj.

Implementation of the Kn test requires a consistent and a log(n)-consistent estimators of c0 and d, respectively. Dalla
et al. (2006) show that the semi-parametric local Whittle estimators ĉ0 and d̂ of c0 and d satisfy these conditions.
Let ŷ :¼ ðĉ0,d̂Þ0. The proposed test would reject H0 whenever KnðŷÞ is large.

Clearly, the determination of the asymptotic critical values of this test is simple compared to its analog in the i.i.d. set
up. For example, the test that rejects H0 whenever KnðŷÞ4za=2 would be of asymptotic size a, 0oao1, where za is the
100ð1�aÞth percentiles of standard normal distribution.

Needless to say similar statements apply to any other tests based on continuous functionals of the first order difference
n1/2�d(Fn�F0). For example, the Cramér–von Mises test that rejects H0 whenever CnðŷÞ4w2

1�a would also be of asymptotic
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size a, where w2
a is the 100ð1�aÞth percentile of chi-square distribution with 1 degree of freedom. Here

Cn :¼

Z
½FnðxÞ�F0ðxÞ�

2dF0ðxÞ, CnðyÞ :¼
n1�2dCn

cðyÞ
R

f 3
0 ðxÞdx

:

These findings are thus in complete contrast to the results available in the i.i.d. set up where one must use the full
knowledge of the distribution of Brownian bridge on [0,1] to implement tests based on the first order difference
n1/2(Fn�F0) for large samples, cf., Durbin (1973, 1975).

We shall now briefly analyze asymptotic power of the Kn test. Let FaF0 be another marginal d.f. of e such that (2.1) is

satisfied and the local Whittle estimators ĉ0,d̂ are consistent and log(n)-consistent for c0, d. Then, arguing as above, F has a
smooth Lebesgue density f and

KnðŷÞ ¼
supx2Rj�c1=2ðyÞf ðxÞZþn1=2�dðFðxÞ�F0ðxÞÞj

c1=2ðyÞJf0J1
þopð1Þ:

From this we readily see that the above Kolmogorov test is consistent at this F. It has trivial asymptotic power against
sequences of alternatives for which supxn1=2�djFðxÞ�F0ðxÞj-0. Thus this test cannot distinguish the n1/2-neighborhoods of
F0, i.e., this test has asymptotic power a against those {F} in the class of d.f. satisfying the above assumed conditions and for
which n1=2supxjFðxÞ�F0ðxÞj ¼Oð1Þ. Similar conclusions would hold for other tests based on n1/2�d(Fn�F0).

Asymptotic power of the KnðŷÞ test against the sequence of local alternatives F ¼ F0þn�ð1=2�dÞD, where D is absolutely

continuous with a.e. derivative _D bounded, equals

P sup
x
j�f0ðxÞc

1=2ðyÞZþDðxÞj4za=2c1=2ðyÞJf0J1

� �
:

3. Testing for Hloc
0 , Hsc

0 , and H0

First, consider testing for Hloc
0 . Let, now en :¼

Pn
i ¼ 1ðYi�mÞ=n. Recall that here F nðxÞ ¼ FnðxþenÞ.

Proposition 3.1 (URP for the residual empirical process F n.). Assume (1.2) and (2.1) hold. Then,

sup
x2R

n1=2�djF nðxÞ�F0ðxÞj ¼ opð1Þ: ð3:1Þ

Proof. From (2.2), (2.4) and the mean value theorem one obtains

n1=2�dðF nðxÞ�F0ðxÞÞ ¼ n1=2�d FnðxþenÞ�F0ðxþenÞþenf0ðxþenÞþ

Z xþ en

x
ðf0ðuÞ�f0ðxþenÞÞdu

#"

¼ upð1ÞþOpðJ
_f 0J1n1=2�djenj

2Þ ¼ upð1Þ:

This completes the proof. &

According to Proposition 3.1, the first order difference DnðxÞ :¼ n1=2�dðF nðxÞ�F0ðxÞÞ cannot distinguish between the two
marginal distributions of a long memory moving average process that differ only in their means. This finding is in sharp
contrast to what is available in the case of i.i.d. errors where the first order difference n1=2½F nðxÞ�F0ðxÞ� converges weakly to
a time transformed Brownian bridge with a drift under H0

loc, cf., Durbin (1973).
Next, consider the scale problem. Here, ei ¼ Yi=s, and

~F nðxÞ ¼
1

n

Xn

i ¼ 1

IðYi= ~snrxÞ ¼ Fnðx ~sn=sÞ:

Proposition 3.2 (URP for the residual empirical process ~F n). Assume (1.2), (2.1) hold and Ez4
0o1. Then,

sup
x2R

jn1=2�d½ ~F nðxÞ�F0ðxÞ�þn1=2�denf0ðxÞj ¼ opð1Þ:

Proof. Without loss of generality, assume Ee2
i ¼

P1
j ¼ 0 b2

j ¼ 1. We have

Eð ~s2
n�s

2Þ
2
¼ s4n�2E

Xn

i ¼ 1

ðe2
i �1Þ

 !2

¼ s4n�2
Xn

i,j ¼ 1

Covðe2
i ,e2

j Þ:
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Let w4 ¼ Ez4
0þ3 be the 4th cumulant of z0. By elementary computation (see Giraitis and Surgailis, 1990, (2.3))

Covðe2
i ,e2

j Þ ¼
X1
k ¼ 0

bkbkþ i�j

 !2

þw4

X1
k ¼ 0

b2
kb2

kþ i�j ¼ ðCovðei,ejÞÞ
2
þOðji�jj�2ð1�dÞÞ,

implying Covðe2
i ,e2

j Þ ¼OððCovðei,ejÞÞ
2
Þ ¼Oðji�jj�2ð1�2dÞÞ, as ji�jj-1. Whence it follows that

~sn

s
�1¼Opðn

�1=2Þ, 0odo1=4

¼OpððlogðnÞ=nÞ1=2
Þ, d¼ 1=4

¼Opðn
�ð1�2dÞÞ, 1=4odo1=2: ð3:2Þ

Now, let Dn :¼ ð ~sn=s�1Þ. Recall from Lemma 5.1 of Koul and Surgailis (2002) (KS) that under (2.1), F0 is infinitely smooth

with density f0 satisfying

sup
x2R
ð1þx2Þðf0ðxÞþj_f 0ðxÞjÞo1:

This bound and (5.12) of Lemma 5.2 of KS imply

jF0ðxþxDnÞ�F0ðxÞj ¼

Z xDn

0
f0ðxþuÞdu

�����
�����rCð1þx2Þ

�1
ðjxDnjþx2D2

nÞrCðjDnjþD2
nÞ,

jf0ðxþxDnÞ�f0ðxÞj ¼

Z xDn

0

_f 0ðxþuÞdu

�����
�����rCð1þx2Þ

�1
ðjxDnjþx2D2

nÞrCðjDnjþD2
nÞ: ð3:3Þ

Hence,

n1=2�dj ~F nðxÞ�F0ðxÞþenf0ðxÞjrn1=2�djFnðx ~sn=sÞ�F0ðx ~sn=sÞþenf0ðx ~sn=sÞj
þn1=2�denjf0ðxÞ�f0ðxþxDnÞjþn1=2�djF0ðxþxDnÞ�F0ðxÞjrupð1ÞþCn1=2�d

ðjDnjþD2
nÞ:

The statement of the proposition now follows from this bound (3.2) and the fact that 0odo 1
2. &

Note the URP for ~F n is precisely the same as for Fn given in (2.2). In other words, asymptotic null distribution of tests
based on n1=2�dð ~F n�F0Þ for testing H0

sc is the same as those of tests based on n1/2�d(Fn�F0) for testing H0. This is a kind of
robustness property of these tests against the unknown error variance. It is also unlike the above situation in the location
model, and unlike the situation in the i.i.d. set up, where n1=2ð ~F n�F0Þ weakly converges to a Brownian bridge with a drift,
cf., e.g., Durbin (1973).

Location–scale problem: Now consider the problem of testing for H0. Assume, as in the scale problem, that Ez4
0o1.

Let dn :¼ ðsn�sÞ=s and ei ¼ ðYi�mÞ=s, en :¼ ðY n�mÞ=s. Then, with F n the same as in Proposition 3.1,

F nðxÞ ¼ n�1
Xn

i ¼ 1

IðYi�Y nrxsnÞ ¼ n�1
Xn

i ¼ 1

IðeirxþxdnþenÞ ¼ F nðxþxdnÞ:

Also note that the bound (3.2) continues to hold with ~sn replaced by sn under the current set up. Using this fact, (3.1),
and an argument like the one used for deriving the bound in (3.3), we readily obtain, under H0,

n1=2�dsup
x
jF nðxÞ�F0ðxÞjrn1=2�d sup

x
jF nðxÞ�F0ðxÞjþsup

x
jF0ðxþxdnÞ�F0ðxÞj

� �
¼ opð1ÞþCn1=2�d

ðjdnjþd
2
nÞ ¼ opð1Þ:

Thus, here also the location case dominates in the sense that the first order difference n1=2�d½F nðxÞ�F0ðxÞ�,x 2 R,
is not useful for fitting a marginal d.f. up to the unknown location and scale parameters.

4. Fitting an error d.f. in a regression model

Recall the linear regression model (1.6) and definition of F̂ n from Section 1, viz.,

F̂ nðxÞ ¼ n�1
Xn

i ¼ 1

IðYni�x0nib̂nrxÞ ¼ n�1
Xn

i ¼ 1

Iðeirxþx0niðb̂n�bÞÞ,

where b̂n is the LSE of b 2 Rp.
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Proposition 4.1 (URP for the residual empirical process F̂ n). Assume the same conditions on errors as in Proposition 3.1.
Assume the matrix Xn whose ith row is x0ni,1r irn, is of full rank. Let Dn :¼ ðX

0
nXnÞ

1=2. Assume additionally

n1=2 max
1r irn

JD�1
n xniJ¼Oð1Þ: ð4:1Þ

Then,

sup
x2R

n1=2�d½F̂ nðxÞ�F0ðxÞ��f0ðxÞn
�1=2�d

Xn

i ¼ 1

½x0niðb̂n�bÞ�ei�

�����
�����¼ opð1Þ: ð4:2Þ

Proof. To begin with we have uniform linearity of the residual empirical processes: For any nonrandom array fxni,1r irng

of real numbers such that max1r irnjxnij ¼Oð1Þ,

sup
x2R

n�1=2�d
Xn

i ¼ 1

½Iðeirxþxnin
d�1=2Þ�IðeirxÞ�nd�1=2xnif0ðxÞ�

�����
�����¼ opð1Þ: ð4:3Þ

This result was proved in GKS (Theorem 1(1.9)) under a higher moment assumption on z0. Under the current third moment
assumption it follows from (3.16) of Koul and Surgailis (2003) and an argument as in GKS.

The result (4.3) entails the following fact. For any 0obo1 and any nonrandom array fcni,1r irn,nZ1g,cni 2 R
p, with

max1r irnJcniJ¼Oð1Þ,

sup
x2R ,JsJrb

n�1=2�d
Xn

i ¼ 1

½Iðeirxþc0nisnd�1=2Þ�IðeirxÞ�c0nisnd�1=2f0ðxÞ�

�����
�����¼ opð1Þ: ð4:4Þ

This is proved using arguments as in Koul (2002). For the sake of completeness we are reproducing this argument in the

Appendix below.

Let vni :¼ n1=2D�1
n xni. Now write x0niðb̂n�bÞ ¼ v0nin

d�1=2n�dDnðb̂n�bÞ. Recall that

Dnðb̂n�bÞ ¼D�1
n

Xn

i ¼ 1

xniei ¼ n�1=2
Xn

i ¼ 1

vniei:

In view of (1.2), we have jEeiejjrCji�jj2d�1, for all iaj. Hence, in view of (4.1),

EJDnðb̂n�bÞJ
2
¼ n�1

Xn

i,j ¼ 1

v0nivnjEeiejrCn�1
Xn

i,j ¼ 1

jEeiejjrCn2d,

n�dDnðb̂n�bÞ ¼Opð1Þ:

Now (4.4) applied with cni=vni, s¼ n�dDnðb̂n�bÞ and a routine argument yields

sup
x2R

n1=2�d½F̂ nðxÞ�FnðxÞ��n�d�1=2
Xn

i ¼ 1

x0niðb̂n�bÞf0ðxÞ

�����
�����¼ opð1Þ: ð4:5Þ

Write Dn for the l.h.s. of (4.2). From (4.5) and (2.2) we obtain

Dn ¼ sup
x2R

n1=2�d½F̂ nðxÞ�FnðxÞ��f0ðxÞn
�d�1=2

Xn

i ¼ 1

x0niðb̂n�bÞ

����� þn1=2�d½FnðxÞ�F0ðxÞ�þ f0ðxÞn
�d�1=2

Xn

i ¼ 1

ei

�����¼ opð1Þ,

proving (4.2). &

Now, let vn ¼ n�1
Pn

i ¼ 1 vni, and

Zn :¼ n�1=2�d
Xn

i ¼ 1

½x0niðb̂n�bÞ�ei� ¼ n�1=2�d
Xn

i ¼ 1

½v 0nvni�1�ei:

Remark 4.1. Note that if the regression model (1.6) is the one sample location model (1.3), i.e., if in (1.6),
p¼ 1,xni � 1,b¼ m, then vni � 1, LSE is Y n, F̂ nðxÞ ¼ F nðxÞ and Zn ¼ 0, so that we again obtain the conclusion (3.1).

More generally, Zn ¼ 0, for all nZ1, w.p.1, whenever there is a non-zero intercept parameter in the model (1.6). To see
this and to keep the exposition transparent, consider the model (1.6) with p=2, x0ni ¼ ð1,aiÞ, where a1,y,an are some known
constants with s2

a :¼
Pn

i ¼ 1ðai�aÞ240, and a :¼ n�1
Pn

i ¼ 1 ai. Then,

v 0nvni ¼ nð1,aÞðX0nXnÞ
�1

1

ai

 !
¼

n

s2
a

ð1,aÞ
n�1

Pn
j ¼ 1 a2

j �a

�a 1

 !
1

ai

 !
¼ 1, 8i¼ 1, . . . ,n:
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Thus, as in the location problem, as long as there is a non-zero intercept parameter present in the regression model
(1.6), the first order difference n1=2�dðF̂ n�F0Þ cannot be used to test for H0 in these cases.

These facts thus contradict Corollary 3.1 of Chan and Ling (2008) which claims that n1=2�dðF̂ nðxÞ�F0ðxÞÞ,x 2 R, converges
weakly to a continuous Gaussian process under the null hypothesis of the error d.f. being F0. This corollary is incorrectly
derived from the first order expansion in Chan and Ling (2008, Theorem 2.1) which is correct and agrees with the
expansion in (4.5) above. The fact that they deal with random design does not change this contradiction.

Next, if in (1.6),
Pn

i ¼ 1 xni ¼ 0, then Zn ¼�n�1=2�d
Pn

i ¼ 1 ei, and by (2.3), we again obtain the analog of (2.4) for F̂ n. In
other words, if the design vectors corresponding to the slope parameters are orthogonal to the p vector of 1’s, then
asymptotic null distribution of n1=2�dðF̂ n�F0Þ is not affected by not knowing the slope parameters, and is the same as in
(2.4). This fact has nothing to do with long memory. Analogous fact is available in the i.i.d. errors set up also, cf., Koul (2002,
Chapter 6).

In general Zn is a weighted sum of long memory moving average process. The following lemma gives a CLT for such
r.v.’s.

Lemma 4.1. Let ei,i 2 Z, be a linear process as in (1.1) and (1.2). Let fcni 2 R
p,1r irng be uniformly bounded nonrandom

weights, i.e., supnZ1sup1r irnjcnijo1 and let

Rn :¼ Cov n�d�1=2
Xn

i ¼ 1

cniei

 !
:

Assume that the limit limn-1Rn ¼R exists and is positive definite. Then,

n�d�1=2
Xn

i ¼ 1

cniei-DN pð0,RÞ:

The proof of Lemma 4.1 is given in Appendix. Now consider the weighted sum Zn. Clearly, under (4.1), the weights
cni � v 0nvni�1 are uniformly bounded. So one needs only the existence of the limit of Rn ¼VarðZnÞ in order to apply the
above CLT to Zn.

As an example of design where this limit exists and the above lemma is applicable to Zn, consider the first
degree polynomial regression through the origin where p=1 and xni � i=n. Here, (4.1) is satisfied and
an :¼ n1=2D�1

n ¼ n1=2ð
Pn

i ¼ 1ði=nÞ2Þ�1=2
� 31=2, vni :¼ ði=nÞan, vn � 31=2=2, and

Sn �SnðyÞ � 2c2
0Bðd,1�2dÞ

1

n1þ2d

X
1r io jrn

vn
i

n

� �
an�1

	 

vn

j

n

� �
an�1

	 

1

ðj�iÞð1�2dÞ

� 2c2
0Bðd,1�2dÞ

3

2

� �
Bð2,2dÞ�

1

2d

	 

3

2ð2þ2dÞ
�

1

2dþ1

	 

¼: SðyÞ �S:

Hence we can apply the above lemma to Zn to conclude that Zn-DN ð0,SðyÞÞ. The role of cðyÞ in the simple hypothesis
case is now played by SðyÞ. Consequently, here the analog of Kolmogorov test for testing that the error d.f. is F0 would be
based on

~Kn :¼
n1=2�dsupxjF̂ nðxÞ�F0ðxÞj

Sð ~yÞ1=2Jf0J1
,

where now ~y is the local Whittle estimator of y based either on Yni’ s or on the residuals Yni�x0nib̂n’ s. Consistency of ~y for y
under (4.1) follows from Dalla et al. (2006). Other tests based on F̂ n may be modified in a similar fashion. Needless to say
these conclusions remain valid for any finite degree polynomial model.
5. Tests for Hloc
0 based on the second order difference

In view of (3.1), it is desirable to ask the question whether there is a higher order difference of F n�F0 that will provide a
reasonable test for testing Hloc

0 . In order to attempt to answer this question, we need to recall a result from Ho and Hsing
(1996) and Koul and Surgailis (2002). Let eð0Þj :¼ 1, eð1Þj ¼ ej of (1.1) and

eðkÞj :¼
X

sk o ���o s1 r j

bj�s1
� � � bj�sk

zs1
� � � zsk

,

be a polynomial of order kZ2 in the i.i.d. random variables zs,s 2 Z. This series converges in mean square for each kZ1,
under the conditions

P1
k ¼ 0 b2

k o1,Ez2
0o1 alone. Moreover, for each kZ1, the process eðkÞj ,j 2 Z, is strictly stationary with

zero mean and covariance

EðeðkÞ0 eðkÞj Þ ¼
X

0r i1 o ���o ik

bjþ i1 bi1 � � � bjþ ik bik , ð5:1Þ



H.L. Koul, D. Surgailis / Journal of Statistical Planning and Inference 140 (2010) 3742–3753 3749
and for any integers j, i, EeðkÞj eð‘Þi ¼ 0 ðka‘,k,‘¼ 0,1, . . .Þ. It follows from (1.2) and (5.1) that for each kZ1,

jEðeðkÞ0 eðkÞj Þjr
1

k!

X1
i ¼ 1

jbjþ ibij

 !k

¼Oðj�kð1�2dÞÞ, j-1,

E
Xn

j ¼ 1

eðkÞj

0
@

1
A2

¼Oðn2�kð1�2dÞÞ, kð1�2dÞo1;

¼OðnlogðnÞÞ, kð1�2dÞ ¼ 1;

¼OðnÞ, kð1�2dÞ41, n-1:

Let

ZðkÞn :¼ nkð1=2�dÞ�1
Xn

j ¼ 1

eðkÞj , kZ1:

Note that

Zð1Þn ¼ n1=2�den, Zð2Þn ¼ n�2d
Xn

j ¼ 1

X
s2 o s1 r j

bj�s1
bj�s2

zs1
zs2
: ð5:2Þ

Assume 1/(1�2d) is not an integer and let k� denote the greatest integer in 1/(1�2d), i.e., k� :¼ ½1=ð1�2dÞ�. Introduce
the multiple Wiener–Itô integral

ZðkÞ :¼
ck

0

k!

Z
Rk

Z 1

0

Yk

j ¼ 1

ðu�sjÞ
�ð1�dÞ
þ du

8<
:

9=
;Wðds1Þ � � �WðdskÞ

w.r.t. a Gaussian white noise W(ds), E (W(ds))2=ds, which is well-defined for 1rkrk� . From Surgailis (2003a) we obtain
under the conditions (1.2) and Ez2

0o1,

ðZðkÞn ,0rkrk� Þ-DðZ
ðkÞ,0rkrk� Þ: ð5:3Þ

Note that Z(1) is a Gaussian r.v. while Z(2) equals the Rosenblatt process at 1, cf. Taqqu (1975).
We are now ready to state the following theorem giving higher order expansion of empirical process due to Ho and

Hsing (1996). See also KS.

Theorem 5.1. Let fejg be a long memory moving average satisfying (1.1) and (1.2). Suppose the d.f. of z0 is k�+3 times

differentiable with bounded, continuous and integrable derivatives, and Ejz0j
4o1. Then, under H0,

FnðxÞ�F0ðxÞ ¼
X

1rkrk�

ð�1Þkn�kð1�2dÞ=2ZðkÞn

dk�1f0ðxÞ

dxk�1
þn�1=2QnðxÞ,

with

sup
x2R
jQnðxÞj ¼Opðn

dÞ, 8d40: ð5:4Þ

As pointed out in KS, pp. 220–221, while one can show the weak convergence of all finite dimensional distributions of
the remainder process fQnðxÞ,x 2 Rg to that of a continuous Gaussian process, proving tightness of this process remains an
open technical problem. Because of this, in the case 0odo 1

4 or k�=1, the expansion (5.4) yields only the URP of (2.2) and is
not useful in deriving the limiting distribution of the second order difference of Fn�F0. But if fej,j 2 Zg is a long memory
Gaussian process, Theorem 2.1 of KS has shown that the process fQnðxÞ,x 2 Rg converges weakly to a continuous Gaussian
process. Below, we state this result for k�=1, or 0odo 1

4, only. Let

RjðxÞ :¼ IðejrxÞ�F0ðxÞþ f0ðxÞej, j 2 Z,

QnðxÞ :¼ n�1=2
Xn

j ¼ 1

RjðxÞ ¼ n1=2fFnðxÞ�F0ðxÞþ f0ðxÞeng, x 2 R: ð5:5Þ

Proposition 5.1. Let fejg be a Gaussian long memory moving average satisfying (1.1) and (1.2) with 0odo 1
4. Then,

QnðxÞ¼)Q ðxÞ, where fQ ðxÞ,x 2 Rg is a continuous Gaussian process with zero mean and covariance function

CovðQ ðxÞ,Q ðyÞÞ ¼
X
j2Z

CovðR0ðxÞ,RjðyÞÞ:

This proposition and the expansion (5.4) yield the following facts.
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Proposition 5.2. (i) Assume the same conditions as in Theorem 5.1, and let 1
4 odo 1

2. Then,

sup
x
jn1�2dfF nðxÞ�F0ðxÞg�_f 0ðxÞ½Z

ð2Þ
n �2�1

ðZð1Þn Þ
2
�j ¼ opð1Þ, ð5:6Þ

and

n1�2dfF nðxÞ�F0ðxÞg¼)_f 0ðxÞY, ð5:7Þ

where Y :¼ Zð2Þ�2�1
ðZð1ÞÞ2. Moreover,

EY ¼�2�1cðyÞ,

EY2 ¼
c4

0B2ðd,1�2dÞ

2d

1

2ð4d�1Þ
þ

1

2dð1þ2dÞ2
�

1

dð4dþ1Þ
�

Bð1þ2d,1þ2dÞ

d

( )
: ð5:8Þ

(ii) If fejg is a Gaussian long memory moving average satisfying (1.1) and (1.2) with 0odo 1
4, then

n1=2fF nðxÞ�F0ðxÞg¼)Q ðxÞ, ð5:9Þ

where Q ðxÞ,x 2 R is the Gaussian process of Proposition 5.1.

Proof. (i) Note that d4 1
4 implies 2d� 1

2 40 and k�Z2. Combine these facts with (5.4) and (5.6) with a do2d� 1
2 to obtain

the second order expansion under H0:

sup
x2R

jn1�2dfFnðxÞ�F0ðxÞþ f0ðxÞeng�
_f 0ðxÞZ

ð2Þ
n j ¼ opð1Þ: ð5:10Þ

The decomposition

F nðxÞ�F0ðxÞ ¼ FnðxþenÞ�F0ðxþenÞþF0ðxþenÞ�F0ðxÞ

and (5.10) yield

sup
x2R
jn1�2dfF nðxÞ�F0ðxÞþenf0ðxþenÞg�

_f 0ðxþenÞZ
ð2Þ
n �n1�2dfF0ðxþenÞ�F0ðxÞgj ¼ opð1Þ:

Using Taylor expansion of f0, _f 0 and the boundedness of €f 0, we thus obtain

n1�2dfF nðxÞ�F0ðxÞg ¼�n1�2denf0ðxþenÞþ
_f 0ðxþenÞZ

ð2Þ
n �n1�2dfF0ðxþenÞ�F0ðxÞgþupð1Þ

¼ �n1�2den f0ðxÞþen
_f 0ðxÞþ

ðenÞ
2

2
€f 0ðxþxnÞ

" #
þ½_f 0ðxÞþen

€f 0ðxþxnÞ�Z
ð2Þ
n

þn1�2d enf0ðxÞþ
ðenÞ

2

2
_f 0ðxÞþ

ðenÞ
3

6
€f 0ðxþxnÞ

" #
þupð1Þ

¼ _f 0ðxÞ Zð2Þn �
ðenÞ

2

2
n1�2d

" #
þOpðn

1�2dðenÞ
3
Þþupð1Þ,

where xn is a sequence of r.v.’s with jxnjr jenj, ðenÞ
2n1�2d ¼ ðZð1Þn Þ

2-DðZ
ð1ÞÞ

2 and n1�2dðenÞ
3
¼ opðnd�1=2Þ ¼ opð1Þ. This proves

(5.6). Claim (5.7) follows from (5.6) and (5.3).

Next, we prove (5.8). From definition (5.3) and the diagram formula of Wiener–Itô integrals (Surgailis, 2003b) one

obtains EZ(2)=0,

EðZð1ÞÞ2 ¼ c2
0

Z
R

Z 1

0
ðu�sÞd�1

þ du

( )2

ds¼
c2

0Bðd,1�2dÞ

dð1þ2dÞ
¼ cðyÞ,

EðZð1ÞÞ4 ¼ 3ðEðZð1ÞÞ2Þ2 ¼ 3c2ðyÞ,

EðZð2ÞÞ2 ¼ 2�1c4
0

Z
R2

Z 1

0
ðu�s1Þ

d�1
þ ðu�s2Þ

d�1
þ du

( )2

ds1 ds2 ¼
c4

0B2ðd,1�2dÞ

4dð4d�1Þ
,

and

EZð2ÞðZð1ÞÞ2 ¼ c4
0

Z
R

Z
R

ds1 ds2

Z 1

0
ðu�s1Þ

d�1
þ ðu�s2Þ

d�1
þ du

Z 1

0
ðv�s1Þ

d�1
þ dv

Z 1

0
ðw�s2Þ

d�1
þ dw

¼ c4
0B2ðd,1�2dÞ

Z 1

0

Z 1

0

Z 1

0
ju�vj2d�1ju�wj2d�1 du dv dw

¼ c4
0B2ðd,1�2dÞ

Z 1

0
fð2dÞ�1

ðu2dþð1�uÞ2d
Þg2 du¼

c4
0B2ðd,1�2dÞ

2d2

1

4dþ1
þBð2dþ1,2dþ1Þ

� �
: &
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Proof of (ii). Using the definition of Qn(x) in (5.5), rewrite n1=2ðF nðxÞ�F0ðxÞÞ ¼QnðxþenÞþUnðxÞ, where
UnðxÞ :¼ n1=2½F0ðxþenÞ�F0ðxÞ�f0ðxþenÞen�. By Taylor expansion,

sup
x
jUnðxÞjr n1=2ðenÞ

2sup
x
j_f 0ðxÞj ¼Opðn

2d�1=2Þ ¼ opð1Þ:

Therefore (5.9) follows from (5.5) and

sup
x
jQnðxþenÞ�QnðxÞj ¼ opð1Þ: ð5:11Þ

For any d1,d240,

P sup
x
jQnðxþenÞ�QnðxÞj4d1

� �
rPðjenjZd2ÞþP sup

jx�yjod2

jQnðxÞ�QnðyÞj4d1

 !
:

Since the sequence Qn,nZ1, is tight in the sup-topology on R, the last probability can be made arbitrarily small for all n

large enough, by choosing d2 small enough. As en ¼ opð1Þ, this proves (5.11) and, also completes the proof of Proposition
5.2. &

Now, let d̂ be a log(n) consistent estimator of d and Dn :¼ supx2Rn1�2d̂ jF nðxÞ�F0ðxÞj. Proposition 5.2(i) readily implies that
in the case 1

4 odo 1
2, the asymptotic null distribution of Dn is the same as that of J_f 0J1Y. Consequently, asymptotic critical

values of the test that rejects H0
loc whenever Dn=J_f 0J1 is large can be determined from the distribution of Y. Unfortunately

this distribution depends on c0, d in a complicated fashion, and is not easy to track. However, one may use a Monte Carlo
method to simulate the distribution of this r.v. corresponding to c0 ¼ ĉ0,d¼ d̂.

Higher order moments of the limiting r.v. Y can be computed using the diagram formula for Wiener–Itô integrals; see
e.g., Major (1981, Corollary 5.4) and Surgailis (2003b, Proposition 5.1), although the resulting formulas are rather
cumbersome. The characteristic function of r.v. Z(2) and the representation of it as a infinite weighted sum of chi-squares
was obtained by Rosenblatt (1961). See also Taqqu (1975, (6.2)).

For the case 0odo 1
4 and when the process ej is Gaussian satisfying (1.1) and (1.2), Proposition 5.2(ii) implies that the

large sample critical values of the test that rejects H0
loc whenever supx2Rn1=2jF nðxÞ�F0ðxÞj is large can be determined from

the distribution of JQJ1. This is similar to the ‘usual’ asymptotics of the Kolmogorov test for short memory errors based on
Fn, see e.g., Csörg +o and Mielniczuk (1996).
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Appendix A
Proof of (4.4). For s 2 Rp,z,y 2 R put

Wðs,z; yÞ :¼ n�1=2�d
Xn

i ¼ 1

½Iðeiryþðc0nisþJcniJzÞnd�1=2Þ�IðeiryÞ�f0ðyÞðc
0
nisþJcniJzÞnd�1=2�:

Fact (4.3) applied with xni ¼ c0nisþJcniJz implies

sup
y
jWðs,z; yÞj ¼ opð1Þ, 8s 2 R

p, z 2 R: ðA:1Þ

Note Wðs; yÞ :¼Wðs,0; yÞ is the empirical process on the left hand side of (4.4). It suffices to show that for any e40 there

exists an NeZ1 such that for any n4Ne and for every 0obo1,

P sup
y2R,JtJrb

jWðt; yÞj42e
 !

o2e: ðA:2Þ

Fix a 0obo1 and an e40. Because the ball Kb :¼ fs 2 R
p; JsJrbg is compact, for any d40 there exist k¼ kðd,bÞ and

points s1,y, sk in Kb such that for any t 2 Kb, Jt�sjJod, for some j=1,2,y,k. Hence,

P sup
y2R,JtJrb

jWðt; yÞj42e
 !

r
Xk

j ¼ 1

P sup
t2Kb ,Jt�sjJod,y2R

jWðt; yÞ�Wðsj; yÞj4e
 !

þ
Xk

j ¼ 1

P sup
y
jWðsj; yÞj4e

 !
: ðA:3Þ

Note that for any t 2 Rp such that Jt�sjJod,

c0nisj�JcniJdrc0nitrc0nisjþJcniJd, 81r irn:
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Let d1 :¼ e=ð18CJf J1Þ, where C is such that maxiJcniJrC. The above inequality and the monotonicity of the indicator

function imply that for all dod1, and for all Jt�sjJod,

jWðt; yÞ�Wðsj; yÞjr jWðsj,d1; yÞjþjWðsj,�d1; yÞjþn�1
Xn

i ¼ 1

JcniJf0ðyÞð2d1þdÞr jWðsj,d1; yÞjþjWðsj,�d1; yÞjþ3Cf 0ðyÞd1:

Introduce the events

Anj :¼ sup
Jt�sjJod;y2R

jWðt; yÞ�Wðsj; yÞj4e
( )

,

Bnj :¼ sup
y
jWðsj,d1; yÞjþsup

y
jWðsj,�d1; yÞj4e=2

( )
:

Then, by (A.1), applied with z¼ 7d1, there is an Nj,e such that for all n4Nj,e,

PðBnjÞre=k for each j¼ 1, . . . ,k:

Let Bc
nj denote the complement of Bnj. On Bc

nj,

sup
Jt�sjJod;y2R

jWðt; yÞ�Wðsj; yÞjre=2þ3CJf0J1d1 ¼ e=2þe=6¼ 2e=3oe,

for all j=1,y,k. Hence, for all n4Ne :¼ max1r jrkNj,e,

PðAnjÞ ¼ PðAnj \ BnjÞþPðAnj \ Bc
njÞre=k, j¼ 1, . . . ,k:

Similarly as above, by (A.1) applied with z=0, there is an Me such that for all n4Me,

P sup
y
jWðsj; yÞj4e

 !
oe=k, j¼ 1, . . . ,k:

Hence, for all n4Ne3Me,

P sup
y2R,JtJrb

jWðt; yÞj42e
 !

r
Xk

j ¼ 1

PðAnjÞþ
Xk

j ¼ 1

P sup
y
jWðsj; yÞj4e

 !
o2e,

proving (A.2) and hence, (4.4). &

Proof of Lemma 4.1. Recall Ez2
0 ¼ 1. For a given a 2 Rp, introduce a normal r.v. U �N ð0,a0RaÞ. In (1.2), define bj ¼ 0,jo0,

and let

bnj :¼ n�d�1=2
Xn

i ¼ 1

a0cnibi�j, Un :¼ n�d�1=2
Xn

i ¼ 1

a0cniei ¼
X
j2Z

bnjzj: ðA:4Þ

Then, VarðUnÞ ¼ a0Rna-a0Ra¼VarðUÞ and the statement of the lemma translates to Un-DU.

Introduce truncated i.i.d. r.v.’s zi,K :¼ ziIðjzijrKÞ�EziIðjzijrKÞ ði 2 ZÞ, and let Un,K be defined as in (A.4) with zj’ s replaced

by zj,K ’ s. Then EðUn�Un,K Þ
2
¼Varðz0�z0,K ÞVarðUnÞ-0, as K-1, uniformly in nZ1. Therefore, it suffices to show the

asymptotic normality of Un,K instead of Un, for each K fixed. Since zi,K are bounded r.v.’s, it thus suffices to prove the claimed

result under the assumption that the r.v. zi’ s are bounded having all moments finite. Then Un-DU follows if we show that

CumkðUnÞ ¼ oð1Þ, 8k¼ 3,4, . . . , ðA:5Þ

where Cumk(Y) denotes the kth order cumulant of the r.v. Y. Let wk :¼ Cumkðz0Þ. According to the multilinearity and

additivity properties of cumulants,

CumkðUnÞ ¼ wk

X
j2Z

bk
njr jwkjsup

j2Z
jbnjj

k�2VarðUnÞ

since
P

j2Zb2
nj ¼VarðUnÞ, see (A.4). Therefore, (A.5) follows from

sup
j2Z
jbnjj

k�2 ¼ oð1Þ, 8k¼ 3,4, . . . : ðA:6Þ

But,

jbnjjrCn�d�1=2
Xn

i ¼ 1

ði�jÞd�1
þ ¼Oðn�1=2Þ ¼ oð1Þ, 8j 2 Z:

This proves (A.6) and also Lemma 4.1. &
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