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Abstract

This paper discusses a class of minimum distance tests for fitting a parametric regression
model to a regression function when the underlying d dimensional design variable is random,
d ≥ 1, and the regression model is possibly heteroscedastic. These tests are based on certain
minimized L2 distances between a nonparametric regression function estimator and the para-
metric model being fitted. The paper establishes the asymptotic normality of the proposed test
statistics and that of the corresponding minimum distance estimators under the fitted model.
These estimators turn out to be n1/2- consistent. Some simulations are also included.

1 Introduction

This paper discusses a minimum distance method for fitting a parametric model to the regression
function. To be specific, let X, Y be random variables, with X being d-dimensional and Y 1-
dimensional with E|Y | < ∞. Let

µ(x) = E(Y |X = x), x ∈ Rd,

denote the regression function, and let {mθ(·) : θ ∈ Θ}, Θ ⊂ Rq be a given parametric model. The
statistical problem of interest here is to test the hypothesis

H0 : µ(x) = mθ0(x), for some θ0 ∈ Θ, and for all x ∈ I vs. H1 : H0 is not true,

based on the random sample {(Xi, Yi) : i = 1, ..., n} from the distribution of (X, Y ), where I is a
compact subset of Rd. Moreover, assuming that the given parametric model holds, one is interested
in finding the parameter in the given family that best fits the data.

Several authors have addressed the problem of regression model fitting: see, e.g., Cox, Koh,
Wahba and Yandell (1988), Eubank and Hart (1992, 1993), Eubank and Spiegelman (1990), Härdle
and Mammen (1993), Zheng (1996), Stute (1997), Stute, González Manteiga and Presedo Quindimil
(1998), Stute, Thies and Zhu (1998), Diebolt and Zuber (1999), among others. The last four refer-
ences propose tests based on a certain marked empirical process while the former cited references
base tests on nonparametric regression estimators. Härdle and Mammen (1993) and Stute, González
Manteiga and Presedo Quindimil (1998) recommend to use wild bootstrap method to implement
their tests for fitting the linear model mθ(x) = θ′γ(x), where γ is a vector of q real valued func-
tions on Rd. The monograph of Hart (1997) contains a large class of tests for the case d = 1 and
numerous additional references.

In the present paper, d ≥ 1, the design is random, and the errors are allowed to be heteroscedas-
tic. Moreover, the asymptotic normality of the proposed test statistic that is proved here allows one
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to bypass the bootstrap methodology. The proposed inference procedures are motivated from the
minimum distance ideas of Wolfowitz (1953, 1954, 1957). The inference procedures based on vari-
ous L2-distances have proved to be successful in producing tests for fitting a distribution and/or a
density function, and in producing asymptotically efficient and robust estimators of the underlying
parameters in the fitted model, as is evidenced in the works of Beran (1977, 1978), Donoho and
Liu (1988a, 1988b), Koul (1985), and González Manteiga (1990), among others.

In the context of density fitting problem in the one sample set up, Beran (1977, 1978) showed
that the inference procedures based on the Hellinger distance have desirable properties. In the
current context, this motivates one to consider the L2 distance

M∗
n(θ) =

∫

I
(µ̂h(x)−mθ(x))2dG(x), θ ∈ Rq,

and the corresponding minimum distance estimator α∗n = argminθ∈ΘM∗
n(θ), where µ̂h(x) is a

nonparametric estimator of the regression function µ(x) based on the window width hn:

µ̂h(x) =
n−1

∑n
i=1 Kh(x−Xi)Yi

f̂h(x)
, f̂h(x) = n−1

n∑

i=1

Kh(x−Xi), x ∈ Rd,

Kh(u) =
1
hd

n

K(
u

hn
),

K a kernel function on [−1, 1]d and G is a σ-finite measure on Rd.
But because the integrand inside the square of M∗

n is not centered, and because of the non-
negligible asymptotic bias in the nonparametric estimator µ̂h, the goodness-of-fit statistic M∗

n(α∗n)
does not have a desirable asymptotic null distribution. Moreover, the estimator α∗n, though
consistent, is not asymptotically normal. In fact it can be shown that generally the sequence
(nhd)1/2‖α∗n − θ0‖ is not even tight, cf. Ni (2002). To overcome this difficulty, one may think of
using

Mn(θ) =
∫

I

[
n−1

n∑

i=1

Kh(x−Xi) (Yi −mθ(Xi))

]2

{f̂h(x)}−2dG(x),

α̂n = argminθ∈ΘMn(θ).

Under the null hypothesis H0, the ith summand inside the squared integrand of Mn(θ0) is now
conditionally centered, given the ith design variable, 1 ≤ i ≤ n. But the asymptotic bias in
n1/2(α̂n − θ0) and Mn(α̂n) caused by the nonparametric estimator f̂h of f in the denominator of
µ̂h still exists. An important observation of this paper is that these asymptotic biases can be made
negligible if one uses an optimal window width for the estimation of the density f , different from h,
and possibly a different kernel, to estimate f . This leads us to consider the following modification
of the above procedures: Define

f̂w(x) = n−1
n∑

i=1

K∗
w(x−Xi), x ∈ Rd, wn ∼ (log n/n)

1
d+4 ,

Tn(θ) =
∫

I

[
n−1

n∑

i=1

Kh(x−Xi) (Yi −mθ(Xi))

]2

{f̂w(x)}−2dG(x),
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where K∗ is a density kernel function, possibly different from K. The proposed class, one for each
G, of minimum distance tests of H0 and estimators of θ, respectively, are

inf
θ∈Θ

Tn(θ) = Tn(θ̂n), θ̂n := argminθ∈ΘTn(θ).

We also need the following entities:

m̂n(x) := n−1
n∑

i=1

Kh(x−Xi)Yi

/
f̂w(x), x ∈ Rd,

T ∗n(θ) =
∫

I
(m̂n(x)−mθ(x))2dG(x), θ ∈ Rq, θ∗n := argminθ∈ΘT ∗n(θ).

This paper first proves the consistency of θ∗n, θ̂n, and the asymptotic normality of n1/2(θ̂n− θ0)
and nhd/2

(
Tn(θ̂n)− C̃n

)
under H0, where C̃n is given below at (1.1). Both limiting distributions

have mean 0 while the variance of the latter is Γ. Then, sequences of estimators Ĉn and Γ̂n are
provided such that Ĉn is nhd/2-consistent for C̃n and Γ̂n is consistent for Γ so that the asymptotic
null distribution of Dn := nhd/2

(
Tn(θ̂n)− Ĉn

)
/Γ̂1/2

n is standard normal. This result is similar in
nature as the corollary to Theorem 8 of Beran (1977, p459). A test of H0 can be thus based on
Dn. Here,

C̃n := n−2
n∑

i=1

∫

I
K2

h(x−Xi) ε2
i {f(x)}−2dG(x),(1.1)

Ĉn := n−2
n∑

i=1

∫

I
K2

h(x−Xi) ε̂2
i {f̂w(x)}−2dG(x), ε̂i := Yi −mθ̂n

(Xi), 1 ≤ i ≤ n,

Γ := 2
∫

I
σ4(x)

g2(x)
f2(x)

dx

∫ (∫
K(u)K(v + u)du

)2
dv,

Γ̂n := hdn−2
∑

i 6=j

(∫

I
Kh(x−Xi)Kh(x−Xj) ε̂iε̂j {f̂h(x)}−2dG(x)

)2

,

where σ2(x) := E
{

(Y −mθ0(x))2
∣∣∣X = x

}
, x ∈ Rd, and g is the density of G.

There are three reasons for choosing the window width wn different from hn in the estimator
of f . The first is to obtain nhd/2-consistent estimator Ĉn of the asymptotic centering C̃n, i.e., to
prove nh

d/2
n (Ĉn− C̃n) = op(1), cf. Lemma 5.4 below. The second reason is similar in that it renders

the asymptotic bias of n1/2(θ̂n − θ0) to be zero, cf. Lemma 4.1(B). The third is given in Lemma
5.3.

Härdle and Mammen (1993) also consider a class of goodness-of-fit tests based on Mn(θ̃) (see
Tn there), where the estimator θ̃ of θ0 and the null model {mθ} are assumed to satisfy, among other
conditions, the following condition.

mθ̃(x)−mθ0(x) = (1/n)
n∑

i=1

< γ(x), l(Xi) > εi + op((n log n)−1/2),

uniformly in x, with γ and l being bounded functions taking values in Rk for some k. This
assumption holds for linear models and the weighted least square estimators in nonlinear models
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if mθ is “smooth in θ” with γ(x) ≡ (∂/∂θ)mθ0(x), but not for the minimum distance estimator
θ̂n. Among other things, they need to have the bandwidth hn ∝ n−1/(d+4). This bandwidth is
asymptotically optimal for the class of twice continuously differentiable regression functions, and it
is also crucial in getting the rates of uniform consistency of nonparametric estimators of µ, which
in turn are needed in their proofs. Under some additional assumptions, they concluded that the
asymptotic null distribution of nh

d/2
n (Mn(θ̃)−C∗

n) is N1(0, Ṽ ), where C∗
n depends on µ−mθ0 , the

second derivative K(2) of K and h
−d/2
n , and where

Ṽ = 2
∫

σ4(x)g2(x)
f2(x)

dx

∫ (
K(2)(t)

)2
dt.

They do not provide any estimators of the asymptotic mean and variance, but instead recommend
using the wild bootstrap to determine the critical values. They also do not discuss any asymptotics
for the minimizer α̃n.

In contrast our results do not require the null regression function to be twice continuously
differentiable nor do the proofs in this paper need the rate for uniform consistency of µ̂h for µ.
Moreover, we derive the asymptotic distributions of n1/2(θ̂n − θ0) and Dn under H0. This was
made feasible by recognizing to use different window widths for the estimation of the numerator
and denominator in the nonparametric regression function estimator.

Zheng (1996) proposed a test of H0 based on the statistic

Vn :=
1

n(n− 1)

n∑

i=1

n∑

j=1,j 6=i

Kh(Xi −Xj)eiej ,

where ei = Yi − mθ̂(Xi), with θ̂ the least square estimator under H0. As can be directly seen,
this test statistic is not a member of the above class of minimum distance statistics. Under some
regularity conditions that includes the second order differentiability of mθ in θ, Zheng proves the
asymptotic normality of nhd/2Vn and consistency of the corresponding test against certain fixed
alternatives.

The rest of the paper is organized as follows. Section 2 states various assumptions, and section
3 contains the consistency proofs. The claimed asymptotic normality of θ̂n and Tn(θ̂n) are proved
in sections 4 and 5, respectively.

Section 6 contains two simulation studies. The first investigates the Monte Carlo size and
power of the MD test Dn := nh(Tn(θ̂n) − C̃n) in the case d = 2, and when fitting the linear
model θ′x, θ, x ∈ R2. The power is computed at 4 alternatives, two error distributions (double
exponential and normal) and two designs: the two coordinates of X are i.i.d. normal and bivariate
normal with correlation 0.36. From tables 1 and 2, one sees that this test has very good empirical
power against the four chosen alternatives, but is affected by the dependence structure of the design
coordinates. The performance with regards to the empirical size is not as impressive for the sample
sizes 30, 50, 100, but is satisfactory for 200.

The second simulation study investigates a Monte Carlo size and power comparison of an MD
test with the tests of An and Cheng (1991) (AC) and Stute, Thies and Zhu (1998) (STZ) for d = 1
when fitting a simple linear regression model against two alternatives. This simulation shows no
clear cut domination of any one test over the other, although the STZ test appears to have some
advantage with regards to the empirical size, while the AC test performs the worse of the three
tests. See Section 6 for details.
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2 Assumptions

Here we shall state the needed assumptions. About the errors, the underlying design and G we
assume the following:

(e1) The random variables {(Xi, Yi); Xi ∈ Rd, Yi ∈ R, i = 1, · · · , n}, are i.i.d. with the regression
function µ(x) = E(Y |X = x) satisfying

∫
µ2(x)dG(x) < ∞, where G is a σ-finite measure

on Rd.

(e2) E(Y − µ(X))2 < ∞ and the function σ2(x) := E{(Y − µ(x))2|X = x} is a.s. (G) continuous
on I.

(e3) E|Y − µ(X)|2+δ < ∞, for some δ > 0.

(e4) E(Y − µ(X))4 < ∞.

(f1) The design variable X has a uniformly continuous Lebesgue density f that is bounded from
below on I.

(f2) The density f is twice continuously differentiable with a compact support.

(g) G has a continuous Lebesgue density g.

About the kernel functions K, K∗ we shall assume the following:

(k) The kernels K, K∗ are positive symmetric square integrable densities on [−1, 1]d. In addition,
K∗ satisfies a Lipschitz condition.

About the parametric family of functions to be fitted we need to assume the following:

(m1) For each θ, mθ(x) is a.s. continuous in x w.r.t. integrating measure G.

(m2) The parametric family of models mθ(x) is identifiable w.r.t. θ, i.e., if mθ1(x) = mθ2(x), for
almost all x (G), then θ1 = θ2.

(m3) For some positive continuous function ` on I and for some β > 0,

|mθ2(x)−mθ1(x)| ≤ ‖θ2 − θ1‖β `(x), ∀ θ2, θ1 ∈ Θ, x ∈ I.

(m4) For every x, mθ(x) is differentiable in θ in a neighborhood of θ0 with the vector of derivatives
ṁθ(x), such that for every ε > 0, k < ∞,

lim sup
n

P
(

sup
1≤i≤n, (nhd

n)1/2‖θ−θ0‖≤k

|mθ(Xi)−mθ0(Xi)− (θ − θ0)T ṁθ0(Xi)|
‖θ − θ0‖ > ε

)
= 0.

(m5) The vector function x 7→ ṁθ0(x) is continuous in x ∈ I and for every ε > 0, there is an
Nε < ∞ such that for every 0 < k < ∞,

P

(
max

1≤i≤n, (nhd
n)1/2‖θ−θ0‖≤k

h−d/2
n ‖ṁθ(Xi)− ṁθ0(Xi)‖ ≥ ε

)
≤ ε, ∀n > Nε.

About the bandwidth hn we shall make the following assumptions:

(h1) hn → 0 as n →∞.
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(h2) nh2d
n →∞ as n →∞.

(h3) hn ∼ n−a, where a < min(1/2d, 4/(d(d + 4))).

Conditions (e1), (e2), (f1), (k), (m1) - (m3), (h1) and (h2) suffice for the consistency of θ̂n, while
these plus (e3), (f2), (m4), (m5) and (h3) are needed for the asymptotic normality of θ̂n. The
asymptotic normality of Tn(θ̂n) needs (e1), (e2), (e4), and (f1) - (m5), and (h3). Of course, (h3)
implies (h1) and (h2). Note that the conditions (m1) - (m5) are trivially satisfied by the model
mθ(x) ≡ θ′γ(x) provided the components of γ are continuous on I.

It is well known that under (f1), (k), (h1) and (h2), cf., Mack and Silverman (1982),

sup
x∈I

∣∣∣f̂h(x)− f(x)
∣∣∣ = op(1), sup

x∈I

∣∣∣f̂w(x)− f(x)
∣∣∣ = op(1),(2.1)

sup
x∈I

∣∣∣∣∣
f(x)

f̂w(x)
− 1

∣∣∣∣∣ = op(1).

These conclusions are often used in the proofs below.
In the sequel, we write h for hn, w for wn; the true parameter θ0 is assumed to be an inner

point of Θ; εi ≡ Yi −mθ0(Xi), ε a copy of ε1; and the integrals with respect to the G-measure are
understood to be over the set I. The inequality (a + b)2 ≤ 2(a2 + b2), for any real numbers a, b,

is often used without mention in the proofs below. The convergence in distribution is denoted by
−→d andNp(a, B) denotes the p-dimensional normal distribution with mean vector a and covariance
matrix B, p ≥ 1.

3 Consistency of θ∗n and θ̂n

This section proves the consistency of θ∗n and θ̂n. To state and prove these results we need the
following preliminary lemma. Let L2(G) denote a class of square integrable real valued functions
on Rd with respect to G. Define

ρ(ν1, ν2) :=
∫

I
(ν1(x)− ν2(x))2dG(x), ν1, ν2 ∈ L2(G),

and the map

M(ν) = argminθ∈Θ ρ(ν, mθ), ν ∈ L2(G).

Lemma 3.1 Let m satisfy the conditions (m1) - (m3). Then the following hold.
(a) M(ν) always exists, ∀ ν ∈ L2(G).
(b) If M(ν) is unique, then M is continuous at ν in the sense that for any sequence of {νn} ∈

L2(G) converging to ν in L2(G), M(νn) →M(ν), i.e.,

ρ(νn, ν) −→ 0 implies M(νn) −→M(ν), as n →∞.

(c) M(mθ(·)) = θ, uniquely for ∀ θ ∈ Θ.

The proof of this lemma is similar to that of Theorem 1 Beran (1977), hence omitted.
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In the sequel we shall often write

dϕ̂w := f̂−2
w dG, dϕ = f−2dG.

Moreover, for any integral L :=
∫

γdϕ̂w, L̃ :=
∫

γdϕ. Thus, e.g., T̃n(θ) stands for Tn(θ) with ϕ̂w

replaced by ϕ, i.e., with f̂w replaced by f . We also need to define for θ ∈ Rd, x ∈ Rq,

µn(x, θ) := n−1
n∑

i=1

Kh(x−Xi) mθ(Xi), µ̇n(x, θ) := n−1
n∑

i=1

Kh(x−Xi)ṁθ(Xi),(3.1)

Un(x, θ) := n−1
n∑

i=1

Kh(x−Xi)Yi − µn(x, θ)

= n−1
n∑

i=1

Kh(x−Xi)(Yi −mθ(Xi)), Un(x) = Un(x, θ0),

Zn(x, θ) := µn(x, θ)− µn(x, θ0) = n−1
n∑

i=1

Kh(x−Xi)[mθ(Xi)−mθ0(Xi)],

Σ0 :=
∫

ṁθ0(x)ṁT
θ0

(x)dG(x), Cn1 :=
∫

U2
n(x)dϕ̂w(x),

Cn2(θ) :=
∫ [

µn(x, θ)− f̂w(x)mθ(x)
]2

dϕ̂w(x), θ ∈ Rq.

A consequence of Lemma 3.1 is the following

Corollary 3.1 Suppose H0, (e1), (e2), (f1), and (m1) - (m3) hold. Then, θ∗n −→ θ0, in probability.

Proof. We shall use part (b) of the Lemma 3.1 with νn = m̂n, ν = mθ0 . Note that T ∗n(θ0) =
ρ(m̂n,mθ0), θ∗n = M(m̂n), and by the identifiability condition (m2), M(mθ0) = θ0 is unique. It
thus suffices to prove

ρ(m̂n,mθ0) = op(1).(3.2)

To prove this, substitute mθ0(Xi) + εi for Yi inside the ith summand of T ∗n(θ0) and expand
the quadratic integrand to obtain that ρ(m̂n,mθ0) is bounded above by the sum 2[Cn1 + Cn2(θ0)],
where Cn1, Cn2 are as in (3.1). It thus suffices to show that both of these two terms are op(1).

By Fubini, the continuity of f and σ2, assured by (e2) and (f1), and by (k) and (h2), we have

E

∫
U2

n(x)dϕ(x) = n−1

∫
EK2

h(x−X)σ2(X)dϕ(x) = O(1/nhd) = o(1),(3.3)

so that
∫

U2
n(x)dϕ(x) = Op((nhd)−1).(3.4)

Hence, by (2.1),

Cn1 ≤ sup
x∈I

|f(x)/f̂w(x)|2
∫

U2
n(x)dϕ(x) = Op((nhd)−1).

Next, we shall show

Cn2(θ0) = op(1).(3.5)
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Let

eh(x, θ) = EKh(x−X)mθ(X) =
∫

K(u)mθ(x− uh)f(x− uh)du,

e∗w(x, θ) = EK∗
w(x−X)mθ(x) =

∫
K∗(u)mθ(x)f(x− uw)du.

By adding and subtracting eh(x, θ) and e∗w(x, θ) in the quadratic term of the integrand of Cn2, one
obtains that

Cn2(θ) ≤ 3Cn21(θ) + 3Cn22(θ) + 3Cn23(θ), θ ∈ Θ,(3.6)

where

Cn21(θ) =
∫

[µn(x, θ)− eh(x, θ)]2 dϕ̂w(x),(3.7)

Cn22(θ) =
∫ [

f̂w(x)mθ(x)− e∗w(x, θ)
]2

dϕ̂w(x),

Cn23(θ) =
∫

[eh(x, θ)− e∗w(x, θ)]2 dϕ̂w(x).

By Fubini, the fact that the variance is bounded above by the second moment, and by (f1), (k)
and (m1), one obtains that

EC̃n21(θ0) ≤ n−1

∫
EK2

h(x−X)m2
θ0

(X)dϕ(x) = O((nhd)−1).(3.8)

Hence Cn21(θ0) = Op((nhd)−1) follows from (2.1). Similarly, one can obtain that Cn22(θ0) =
Op((nhd)−1). The claim Cn23(θ0) = o(1) follows from the continuity of mθ0 and f . This completes
the proof of (3.5), and hence that of (3.2) and the corollary. 2

Before stating the next result we give a fact that is often used in the proofs below. Under (f1),
(k), and (h2),

∫
E

[
n−1

n∑

i=1

Kh(x−Xi)α(Xi)

]2

dϕ(x)(3.9)

= n−1

∫
EK2

h(x−X)α2(X)dϕ(x) +
∫

[EKh(x−X)α(X)]2dϕ(x)

= o(1) + O(1) = O(1), for any continuous function α on I.

We now proceed to state and prove

Theorem 3.1 Under H0, (e1), (e2), (f1), (k), (m1) - (m3), (h1), and (h2),

θ̂n −→ θ0, in probability.

Proof. We shall again use part (b) of Lemma 3.1 with ν(x) ≡ mθ0(x), νn(x) ≡ mθ̂n
(x). Then by

(m2), θ̂n = M(νn), θ0 = M(ν), uniquely. It thus suffices to show that

ρ(mθ̂n
,mθ0) = op(1).(3.10)
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But observe that

ρ(mθ̂n
,mθ0) ≤ 2[ρ(m̂n,mθ̂n

) + ρ(m̂n,mθ0)].

Thus, in view of (3.2), it suffices to show that

T ∗n(θ̂n) ≡ ρ(m̂n,mθ̂n
) = op(1).(3.11)

But this will be implied by the following result:

sup
θ
|Tn(θ)− T ∗n(θ)| = op(1).(3.12)

For, (3.12) implies that

T ∗n(θ̂n) = Tn(θ̂n) + op(1), T ∗n(θ∗n) = Tn(θ∗n) + op(1),

T ∗n(θ̂n)− T ∗n(θ∗n) = Tn(θ̂n)− Tn(θ∗n) + op(1).(3.13)

By the definitions of θ̂n and θ∗n, for every n, the left hand side of (3.13) is nonnegative, while the
first term on the right hand side is nonpositive. Hence,

T ∗n(θ̂n)− T ∗n(θ∗n) = op(1).

This together with the fact that T ∗n(θ∗n) ≤ T ∗n(θ0) and (3.2) then proves (3.11).
We now focus on proving (3.12). Add and subtract µn(x, θ)/f̂w(x) inside the parenthesis of

T ∗n(θ), expand the quadratic, and use the Cauchy-Schwarz inequality on the cross product, to
obtain that the left hand side of (3.12) is bounded above by

sup
θ

Cn2(θ) + 2 sup
θ

(Cn2(θ)Tn(θ))1/2.

It thus suffices to show that

sup
θ

Cn2(θ) = op(1), sup
θ

Tn(θ) = Op(1).(3.14)

Recall (3.6) and (3.7). Using the same argument as for (3.8), and by the boundedness of m on
I ×Θ, one obtains that

sup
θ

EC̃n21(θ) = o(1) = sup
θ

EC̃n22(θ).

By the continuity of mθ and f , one also readily sees that C̃n23(θ) = o(1), for each θ ∈ Θ. In view
of an inequality like (3.6) for C̃n2, we thus obtain that C̃n2(θ) = op(1), for each θ ∈ Θ. This and
(2.1) in turn imply that

Cn2(θ) ≤ sup
x∈I

f2(x)

f̂2
w(x)

C̃n2(θ) = op(1), ∀ θ ∈ Θ.(3.15)

Finally, by (m3),

|Cn2(θ2)− Cn2(θ1)| ≤ 2‖θ2 − θ1‖ sup
x∈I

f2(x)

f̂2
w(x)

[ ∫ [
n−1

n∑

i=1

Kh(x−Xi)`(Xi)
]2

dϕ(x)

+
∫

[f̂∗h(x)`(x)]2dϕ(x)
]
.
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But (3.9) applied once with α ≡ ` and once with α ≡ 1 implies that the third factor of this bound
is Op(1). This bound and (2.1) together with the compactness of Θ and (3.15) completes the proof
of the first part of (3.14).

To prove the second part of (3.14), note that by adding and subtracting mθ0(Xi) to the ith

summand in Tn(θ), we obtain

Tn(θ) ≤ 2 sup
x∈I

(f(x)/f̂w(x))2
(∫

U2
n(x)dϕ(x) +

∫
Z2

n(x, θ)dϕ(x)
)

.

But, by the boundedness of m over I ×Θ and by (3.9) applied with α ≡ 1,

sup
θ

∫
Z2

n(x, θ)dϕ(x) ≤ C

∫ (
f̂h(x)

)2
dϕ(x) = Op(1).(3.16)

This together with (3.4) then completes the proof of the second part of (3.14), and hence that of
the Theorem 3.1. 2

4 Asymptotic distribution of θ̂n

In this section we shall prove the asymptotic normality of n1/2(θ̂n − θ0). Let

µ̇h(x) := Eµ̇n(x, θ0) = EKh(x−X)ṁθ0(X), Sn :=
∫

Un(x)µ̇h(x)dϕ(x).(4.1)

We shall prove the following

Theorem 4.1 Assume that H0, (e1), (e2), (e3), (f1), (f2), (g), (k), (m1) - (m5), and (h3) hold.
Then,

n1/2(θ̂n − θ0) = Σ−1
0 n1/2Sn + op(1),(4.2)

Consequently, n1/2(θ̂n − θ0) −→d Nq(0,Σ−1
0 ΣΣ−1

0 ), where Σ0 is as in (3.1) and

Σ = limh→0

∫ ∫
EKh(x−X)Kh(y −X) σ2(X)µ̇h(x)µ̇T

h (y)dϕ(x)dϕ(y)(4.3)

=
∫

σ2(x)ṁθ0(x)ṁT
θ0

(x)g2(x)
f(x)

dx.

Proof. The proof consists of several steps. The first is to show that

nhd‖θ̂n − θ0‖2 = Op(1).(4.4)

Recall the definition of Zn from (3.1) and let Dn(θ) :=
∫

Z2
n(x, θ)dϕ(x). We claim

nhdDn(θ̂n) = Op(1).(4.5)

To see this, observe that

nhdTn(θ0) = nhd

∫ (
n−1

n∑

i=1

Kh(x−Xi)εi

)2

dϕ̂w(x)

≤ nhd

∫
U2

n(x)dϕ(x) + nhd

∫
U2

n(x)dϕ(x) sup
x∈I

|f2(x)/f̂2
w(x)− 1|

= Op(1),
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by (3.3) and (2.1). But, by definition, Tn(θ̂n) ≤ Tn(θ0), implying that nhdTn(θ̂n) = Op(1). These
facts together with the inequality Dn(θ) ≤ 2[Tn(θ0) + Tn(θ̂n)] proves (4.5).

Next, we shall show that for any 0 < a < ∞, there exists an Na such that

P

(
Dn(θ̂n)/‖θ̂n − θ0‖2 ≥ a + inf

‖b‖=1
bT Σ0b

)
> 1− a, ∀ n > Na,(4.6)

where Σ0 is as in (3.1). The claim (4.4) will then follow from this, (4.5), the positive definiteness
of Σ0, and the fact

nhdDn(θ̂n) = nhd‖θ̂n − θ0‖2 [Dn(θ̂n)/‖θ̂n − θ0‖2].

To prove (4.6), let

un := (θ̂n − θ0), dni := mθ̂n
(Xi)−mθ0(Xi)− uT

n ṁθ0(Xi), 1 ≤ i ≤ n.(4.7)

We have

Dn(θ̂n)

‖θ̂n − θ0‖2
=

∫ [
n−1

n∑

i=1

Kh(x−Xi)
(

dni

‖un‖
)]2

dϕ(x) +
∫ [

u′n µ̇n(x, θ0)
‖un‖

]2

dϕ(x)

= Dn1 + Dn2, say.

By the assumption (m4) and the consistency of θ̂n, one verifies by a routine argument that Dn1 =
op(1). For the second term we notice that

Dn2 ≥ inf
‖b‖=1

Σn(b),(4.8)

where
Σn(b) :=

∫ [
bT µ̇n(x, θ0)

]2
dϕ(x), b ∈ Rd.

By the usual calculations one sees that for each b ∈ Rd, Σn(b) → bT Σ0b, in probability. Also, note
that for any δ > 0, and any two unit vectors b, b1 ∈ Rd, ‖b− b1‖ ≤ δ, we have

|Σn(b)− Σn(b1)| ≤ δ(δ + 2)

[∫
n−1

n∑

i=1

Kh(x−Xi) ‖ṁθ0(Xi)‖dϕ(x)

]2

.

But the expected value of the r.v.’s inside the square of the second factor tends to
∫ ‖ṁθ0(x)‖

f(x)dϕ(x), and hence this factor is Op(1). From these observations and the compactness of the set
{b ∈ Rd; ‖b‖ = 1}, we obtain that

sup
‖b‖=1

|Σn(b)− bT Σ0b| = op(1).

This fact together with (4.8) implies (4.6) in a routine fashion, and also concludes the proof of
(4.4).

The remaining proof is classical in nature. Recall the definitions (3.1) and (4.7), and let

Ṫn(θ) := −2
∫

Un(x, θ) µ̇n(x, θ)dϕ̂w(x).
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Since θ0 is an interior point of Θ, by the consistency, for sufficiently large n, θ̂n will be in the
interior of Θ and Ṫn(θ̂n) = 0, with arbitrarily large probability. But the equation Ṫn(θ̂n) = 0 is
equivalent to

∫
Un(x) µ̇n(x, θ̂n)dϕ̂w(x) =

∫
Zn(x, θ̂n) µ̇n(x, θ̂n)dϕ̂w(x).(4.9)

In the final step of the proof we shall show that n1/2× the left hand side of this equation converges
in distribution to a normal r.v., while the right hand side of this equation equals Rn(θ̂n − θ0), for
all n ≥ 1, with Rn = Σ0 + op(1).

To establish the first of these two claims, rewrite this r.v. as the sum Sn + Sn1 + gn1 + gn2 +
gn3 + gn4, where Sn is as in (4.1) and

Sn1 =
∫

Un(x)µ̇h(x)(f̂−2
w (x)− f−2(x))dG(x),

gn1 =
∫

Un(x) [µ̇n(x, θ0)− µ̇h(x)] dϕ(x),

gn2 =
∫

Un(x) [µ̇n(x, θ0)− µ̇h(x)] (f̂−2
w (x)− f−2(x))dG(x),

gn3 =
∫

Un(x)
[
µ̇n(x, θ̂n)− µ̇n(x, θ0)

]
dϕ(x)

gn4 =
∫

Un(x)
[
µ̇n(x, θ̂n)− µ̇n(x, θ0)

]
(f̂−2

w (x)− f−2(x))dG(x).

We need the following lemmas.

Lemma 4.1 Suppose H0, (e1), (e2), (f1), (k), (m1) - (m5), (h1) and (h2) hold.
(A) If, additionally, (e3) and (g) hold, then, n1/2Sn −→d Nq(0,Σ).
(B) If, additionally, (f2) and (h3) hold, then

n1/2|Sn1| = op(1).(4.10)

Lemma 4.2 Under H0, (e1), (e2), (f1), (k), (m1), (m2), (m4), (m5), (h1), (h2),

(a) n1/2gn1 = op(1), (b) n1/2gn2 = op(1).(4.11)

(c) n1/2gn3 = op(1), (d) n1/2gn4 = op(1).(4.12)

The proof of (4.10) is facilitated by the following lemma, which along with its proof appears as
Theorem 2.2 part (2) in Bosq (1998).

Lemma 4.3 Let f̂w be the kernel estimate associate with a kernel K∗ which satisfies a Lipschitz
condition. If (f2) holds and wn = an (log n/n)

1
d+4 , where an → a0 > 0, then

(logk n)−1 (n/ log n)
2

d+4 sup
x∈I

|f̂w(x)− f(x)| −→ 0, a.s., ∀ k > 0, integer.

Proof of Lemma 4.1. For convenience, we shall give the proof here only for the case d = 1, i.e.,
when µ̇h(x) is one dimensional. For multidimensional case, the result can be proved by using linear
combination of its components instead of µ̇h(x), and applying the same argument.
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Let sni :=
∫

Kh(x−Xi)εiµ̇h(x)dϕ(x), and rewrite

n1/2Sn = n−1/2
n∑

i=1

sni.

Note that {sni, 1 ≤ i ≤ n} are i.i.d. centered r.v.’s for each n. By the L-F C.L.T., it suffices to
show that as n →∞,

Es2
n1 → Σ,(4.13)

E
{

s2
n1I(|sn1| > n1/2η)

}
−→ 0, ∀ η > 0.(4.14)

But, by Fubini,

Es2
n1 =

∫ ∫
EKh(x−X)Kh(y −X)σ2(X)µ̇h(x)µ̇h(y)dϕ(x)dϕ(y).

By the transformation x − z = uh, y − z = vh, z = t, taking the limit, and using the assumed
continuity of σ2, f, and g, we obtain

Σ = lim
h→0

∫ ∫ ∫
K(u)K(v)σ2(t)µ̇h(x + uh)µ̇h(x + vh)f(x)

× g(x + uh)g(x + vh)
f2(x + uh)f2(x + vh)

du dv dx

=
∫

σ2(x)ṁ2(x, θ0)g2(x)
f(x)

dx.

Hence (4.13) is proved.
To prove (4.14), note that by the Hölder inequality, the L.H.S. of (4.14) is bounded above by

λ−δ
d n−δ/2E(sn1)2+δ ≤ λ−δ

d n−δ/2E

[(∫
(Kh(x−X)µ̇h(x))

2+δ
2 dϕ(x)

)2

|ε|2+δ

]

= O((nhd)−δ/2) = o(1),

thereby proving (4.14).
To prove (4.10), by the Cauchy-Schwarz inequality, the boundedness of µ̇h(x), (3.4), and by

Lemma 4.3, we obtain

nS2
n1 ≤ Cn

∫
(Un(x)µ̇h(x))2dϕ(x) sup

x∈I

∣∣∣f2(x)/f̂2
w(x)− 1

∣∣∣
2

= nOp((nhd)−1) Op((logk n)2(log n/n)
4

d+4 )

= Op

(
(logk n)2(log n)

4
d+4 nad− 4

d+4

)
= op(1), by (h3).

This completes the proof of Lemma 4.1. 2

Proof of Lemma 4.2. By the Cauchy-Schwarz inequality,

∥∥∥n1/2gn1

∥∥∥
2
≤

(
n1/2

∫
U2

n(x)dϕ(x)
)(

n1/2

∫
‖µ̇n(x, θ0)− µ̇h(x)‖2dϕ(x)

)
.
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By (3.3) and (h2),

En1/2

∫
U2

n(x)dϕ(x) = O(n−1/2h−d) = o(1).

To handle the second factor, first note that µ̇n(x, θ0)− µ̇h(x) is an average of centered i.i.d. r.v.’s.
Using Fubini, and the fact that variance is bounded above by the second moment, we obtain that
the expected value of the second factor of the above bound is bounded above by

n−1/2

∫
E‖Kh(x−X)ṁθ0(x)‖2 dϕ(x) = O(n−1/2h−d) = o(1).(4.15)

This completes the proof of (4.11)(a). This together with (2.1) implies (4.11)(b).

To prove (c), similarly,

∥∥∥n1/2gn3

∥∥∥
2
≤ n

∫
U2

n(x)dϕ(x)
∫ ∥∥∥µ̇n(x, θ̂n)− µ̇n(x, θ0)

∥∥∥
2
dϕ(x).

But the second integral is bounded above by

max
1≤i≤n

‖ṁθ̂n
(Xi)− ṁθ0(Xi)‖2

∫ (
f̂h(x)

)2
dϕ(x) = op(hd)×Op(1),

by (4.4) and the assumption (m5), and by (3.9) applied with α ≡ 1. This together with (3.3)
proves (4.12)(c). The proof of (4.12)(d) uses (4.12)(c) and is similar to that of (4.11)(b), thereby
completing the proof of the Lemma 4.2. 2

Next, we shall show that the right hand side of (4.9) equals Rn(θ̂n − θ0), where

Rn = Σ0 + op(1).(4.16)

Again, recall the definitions (3.1) and (4.7). The right hand side of (4.9) can be written as the
sum Wn1 + Wn2, where

Vn :=
∫

µ̇n(x, θ̂n)

[
n−1

n∑

i=1

Kh(x−Xi)
dni

‖un‖

]
dϕ̂w(x),

Wn1 :=
∫ [

µ̇n(x, θ̂n) n−1
n∑

i=1

Kh(x−Xi)dni

]
dϕ̂w(x) = VnuT

nun,

Wn2 :=
∫

µ̇n(x, θ̂n)µ̇T
n (x, θ0) dϕ̂w(x) un = Ln un say,

so that the right hand side of (4.9) equals [Vn uT
n + Ln]un. But,

‖Vn‖ ≤ max
1≤i≤n

|dni|
‖un‖ Vn1,

Vn1 :=
∫

f̂h(x) ‖µ̇n(x, θ̂n)‖dϕ̂w(x)

≤ max
1≤i≤n

‖ṁθ̂n
(Xi)− ṁθ0(Xi)‖

∫
f̂h(x)dϕ̂w(x) +

∫
f̂h(x)‖µ̇h(x, θ0)‖dϕ̂w(x)

= op(1) + Op(1),
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by (2.1), the assumption (m5), and by (4.4). This together with (m4) then implies that ‖Vn‖ =
op(1), and by the consistency of θ̂n, we also have ‖VnuT

n‖ = op(1).
Next, consider Ln. We have

Ln =
∫

µ̇n(x, θ0)[µ̇n(x, θ̂n)− µ̇n(x, θ0)]T dϕ̂w(x) +
∫

µ̇n(x, θ0)µ̇T
n (x, θ0)dϕ̂w(x)

= Ln1 + Ln2, say.

But, by (2.1) and (m5), ‖Ln1‖ = op(1), while
∥∥∥Ln2 −

∫
µ̇h(x, θ0)µ̇T

h (x, θ0)dϕ̂w(x)
∥∥∥

≤
∫
‖µ̇n(x, θ0)− µ̇h(x, θ0)‖2dϕ̂w(x) + 2

∫
‖µ̇n(x, θ0)− µ̇h(x, θ0)‖ ‖µ̇h(x, θ0)‖dϕ̂w(x).

But, by (2.1) and (4.15), this upper bound is op(1). Moreover, by usual calculations and using (2.1),
one also obtains ∫

µ̇h(x, θ0)µ̇T
h (x, θ0)dϕ̂w(x) = Σ0 + op(1).

This then proves the claim (4.16), thereby also completing the proof of Theorem 4.1. 2

Remark 4.1 Upon choosing g ≡ f , one sees that

Σ =
∫

σ2(x)ṁθ0(x)ṁT
θ0

(x)f(x)dx, Σ0 =
∫

ṁθ0(x)ṁT
θ0

(x)f(x)dx.

It thus follows that in this case the asymptotic distribution of n1/2(θ̂n − θ0) is the same as that of
the least square estimator. This analogy is in flavor similar to the one observed by Beran (1977)
when pointing out that the minimum Hellinger distance estimator in the context of density fitting
problem is asymptotically like the maximum likelihood estimator.

Remark 4.2 Choice of G. Suppose d = 1 and σ(x) ≡ σ, a constant. Then the asymptotic variance
of n1/2(θ̂n − θ0) is

v := σ2

∫
ṁ2

θ0

g2

f

/(∫
ṁ2

θ0
g

)2

.

Assuming f = 0 implies g = 0, by the Cauchy-Schwarz inequality we obtain
(∫

ṁ2
θ0

g

)2

=
(∫

ṁθ0

g√
f

ṁθ0

√
f

)2

≤
∫

ṁ2
θ0

g2

f
·
∫

ṁ2
θ0

f,

with equality if and only if g ∝ f . This in turn implies that v ≥ σ2/
∫

ṁ2
θ0

f , i.e., the lower
bound on the asymptotic variance of n1/2(θ̂n − θ0) is at that of the least square estimator. This in
turn suggests that as far the estimator θ̂n is concerned one may use g = f̂w in practice. Such an
estimator would have the smallest asymptotic variance among this class of estimators as G varies.
Its asymptotics can be derived using the methods developed here. A similar fact holds for d > 1.

Another interesting data dependent choice of G is obtained when the density g = f̂2
w on I. In

other words, there now is no f̂2
w in the denominator of the integrand in Tn and the integrating

measure is simply dx. In this case the asymptotic theory is relatively simpler and

Σ =
∫

I
ṁθ0(x)ṁT

θ0
(x)f3(x)dx, Σ0 =

∫

I
ṁθ0(x)ṁT

θ0
(x)f2(x)dx.
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Remark 4.3 Linear regression. Consider the linear regression model, where q = d + 1, Θ =
Rd+1, and µθ(x) = θ1+θ′2x, with θ1 ∈ R, θ2 ∈ Rd. Because now the parameter space is not compact
the above results are not directly applicable to this model. But, now the estimator has a closed
expression and this regression function satisfies the conditions (m1) - (m5) trivially. The same
techniques as above yield the following result.

With the notation in (3.1) and (4.1), in this case

µ̇n(x, θ) ≡ µ̇n(x) ≡
(

f̂h(x)
n−1

∑n
i=1 Kh(x−Xi)Xi

)
, µ̇h(x) ≡

(
EKh(x−X)

EKh(x−X)X

)

Σ0 =
∫ (

1 x′

x xx′

)
g(x)dx, Σn =

∫
µ̇n(x)µ̇n(x)′dϕ̂w(x),

Σ =
∫ (

1 x′

x xx′

)
σ2(x)g2(x)

f(x)
dx,

Tn(θ) =
∫

[Un(x)− (θ − θ0)′µ̇n(x)]2dϕ̂w(x).

The positive definiteness of Σn and direct calculations thus yield

(θ̂n − θ0) = Σ−1
n

∫
µ̇n(x) Un(x)dϕ̂w(x).

From the fact that Σn −→ Σ0, in probability, parts (a) and (b) of Lemma 4.2, and from
Lemma 4.1 applied to the linear case, we thus obtain that if (e1)-(e2), (f1), (f2), (k) and (h3)
hold, if the regression function is a linear parametric function, and if

∫ ‖x‖2dG(x) < ∞, then
n1/2(θ̂n − θ0) = Σ−1

0

∫
Un(x)µ̇h(x)dϕ(x) + op(1) →d Nq(0, Σ−1

0 ΣΣ−1
0 ).

5 Asymptotic distribution of the minimized distance

This section contains a proof of the asymptotic normality of the minimized distance Tn(θ̂n). To
state the result precisely, recall the definitions of C̃n, Ĉn, Γ, Γ̂n from (1.1) and that T̃n is Tn with
f̂w replaced by f . The main result proved in this section is the following

Theorem 5.1 Suppose H0, (e1), (e2), (e4), (f1), (f2), (g), (h3), (k), and (m1)-(m5) hold. Then,
nhd/2(Tn(θ̂n)− Ĉn) −→d N1(0, Γ). Moreover, |Γ̂nΓ−1 − 1| = op(1).

Consequently, the test that rejects H0 whenever Γ̂−1/2
n nhd/2|Tn(θ̂n) − Ĉn| > zα/2, is of the

asymptotic size α, where zα is the 100(1− α)% percentile of the standard normal distribution.
Our proof of this theorem is facilitated by the following five lemmas.

Lemma 5.1 If H0, (e1), (e2), (e4), (f1), (g), (h1), (h2), and (k) hold, then

nhd/2(T̃n(θ0)− C̃n) −→d N1(0, Γ).

Lemma 5.2 Suppose H0, (e1), (e2), (f1), (k), (m3) - (m5), (h1), and (h2) hold. Then

nhd/2
∣∣∣Tn(θ̂n)− Tn(θ0)

∣∣∣ = op(1).
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Lemma 5.3 Under H0, (e1), (e2), (f1), (f2), (k), (m3) - (m5), and (h3),

nhd/2
∣∣∣Tn(θ0)− T̃n(θ0)

∣∣∣ = op(1).

Lemma 5.4 Under the same conditions as in Lemma 5.3,

nhd/2(Ĉn − C̃n) = op(1).

Lemma 5.5 Under the same conditions as in Lemma 5.2, Γ̂n − Γ = op(1). Consequently, Γ > 0
implies |Γ̂nΓ−1 − 1| = op(1).

The proof of the Lemma 5.1 is facilitated by Theorem 1 of Hall (1984) which is reproduced here
for the sake of completeness.

Theorem 5.2 Let X̃i, 1 ≤ i ≤ n, be i.i.d. random vectors, and let

Un :=
∑

1≤i<j≤n

Hn(X̃i, X̃j), Gn(x, y) = EHn(X̃1, x)Hn(X̃1, y),

where Hn is a sequence of measurable functions symmetric under permutation, with

EHn(X̃1, X̃2)|X̃1) = 0, a.s., and EH2
n(X̃1, X̃2) < ∞, for each n ≥ 1.

If [
EG2

n(X̃1, X̃2) + n−1EH4
n(X̃1, X̃2)

] /[
EH2

n(X̃1, X̃2)
]2
−→ 0,

then Un is asymptotically normally distributed with mean zero and variance
n2 EH2

n(X̃1, X̃2)/2.

Proof of Lemma 5.1. Note that T̃n(θ0) can be written as the sum of C̃n and Mn2, where

Mn2 = n−2
∑

i6=j

∫
Kh(x−Xi)Kh(x−Xj) εiεj dϕ(x),

so that T̃n(θ0)− C̃n = nhd/2Mn2. Let

Γn := 2hd

∫ ∫ [
EKh(x−X)Kh(y −X)σ2(X)

]2
dϕ(x)dϕ(y).

It suffices to prove that

Γn −→ Γ, and Γ−1
n nhd/2Mn2 −→d N1(0, 1).(5.1)

Apply Theorem 5.2 to X̃i = (XT
i , εi)T and

Hn(X̃i, X̃j) = n−1hd/2

∫
Kh(x−Xi)Kh(x−Xj) εiεjdϕ(x),

so that
(1/2)nhd/2Mn2 =

∑

1≤i<j≤n

Hn(X̃i, X̃j).
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Observe that this Hn(X̃1, X̃2) is symmetric, E(Hn(X̃1, X̃2)|X̃1) = 0, and

EH2
n(X̃1, X̃2)

= n−2hd

∫ ∫ [
EKh(x−X1)Kh(y −X1)σ2(X1)

]2
dϕ(x)dϕ(y)

= (n2hd)−1

∫ ∫ [∫
K(u)K(

y − x

h
+ u)σ2(x− uh)f(x− uh)du

]2

dϕ(x)dϕ(y)

< ∞, for each n ≥ 1.

Hence, in view of Theorem 5.2, we only need to show that

EG2
n(X̃1, X̃2)

/[
EH2

n(X̃1, X̃2)
]2

= o(1),(5.2)

n−1EH4
n(X̃1, X̃2)

/[
EH2

n(X̃1, X̃2)
]2

= o(1).(5.3)

To prove (5.2) and (5.3), it suffices to prove the following three results:

EG2
n(X̃1, X̃2) = O(n−4hd),(5.4)

EH4
n(X̃1, X̃2) = O(n−4h−d),(5.5)

EH2
n(X̃1, X̃2) = O(n−2).(5.6)

To prove (5.4), write a t ∈ Rd+1 as tT = (tT1 , t2), with t1 ∈ Rd. Then, for any t, s ∈ Rd+1,

Gn(t, s) = n−2hd

∫ ∫
Kh(x− t1)Kh(z − s1)t2s2

×E
[
Kh(x−X1)Kh(z −X1)σ2(X1)

]
dϕ(x)dϕ(z).

For the sake of brevity write dϕxzwv = dϕ(x)dϕ(z)dϕ(w)dϕ(v), and

EKh(x−X1)Kh(z −X1)σ2(X1) =
∫

Kh(x− t)Kh(z − t)σ2(t)f(t)dt

= h−d

∫
K(u)K(

z − x

h
+ u)σ2(x− uh)f(x− uh)du

= Bh(z − x), say.

Then, by expanding square of the integrals and changing the variables, one obtains that

EG2
n(X̃1, X̃2) = n−4h2d

∫ ∫ ∫ ∫
Bh(x− w)Bh(z − x)Bh(z − v)Bh(v − w) dϕxzwv

= O(n−4hd).

This proved (5.4). Similarly, one obtains

EH4
n(X̃1, X̃2)

= n−4h2dE

(∫
Kh(x−X1)Kh(x−X2)ε1ε2 dϕ(x)

)4

= n−4h2d

∫ ∫ ∫ ∫ (
EKh(x−X1)Kh(y −X1)Kh(s−X1)Kh(t−X1)σ4(X1)

)2
dϕxyst

= O(n−4h−d),
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and

EH2
n(X̃1, X̃2)

= n−2hdE

∫ ∫
Kh(x−X1)Kh(x−X2)Kh(y −X1)Kh(y −X2)ε2

1ε
2
2 dϕ(x)dϕ(y)

= n−2hd

∫ ∫ [
EKh(x−X1)Kh(y −X1)σ2(X1)

]2
dϕ(x)dϕ(y) = n−2(Γn/2)(5.7)

= O(n−2),

thereby verifying (5.5) and (5.6). This completes the proof of (5.1).
By (5.7),

(1/2)n2EH2
n(X̃1, X̃2) = Γn/4

= (1/2)hd

∫ ∫ (∫
K(u)h−dK(

y − x

h
+ u)σ2(x− uh)f(x− uh)

)2

dϕ(x)dϕ(y)

−→ (1/2)
∫

(σ2(x))2g(x)dϕ(x)
∫

(
∫

K(u)K(v + u)du)2 dv = Γ/4,

by the continuity of σ2 and f . This complete the proof of Lemma 5.1. 2

Remark 5.1 Let en := E
∫

K2
h(x − X1) ε2

1 dϕ(x). Note that ET̃n(θ0) = n−1en. Then, by routine
calculations,

E
(
nhd/2(C̃n − ET̃n(θ0))

)2

= E

(
n−1hd/2

n∑

i=1

[∫
K2

h(x−Xi)ε2
i dϕ(x)− en

])2

≤ n−1hdE

(∫
K2

h(x−X1)ε2
i dϕ(x)

)2

= n−1hdE

[(∫
K2

h(x−X1) dϕ(x)
)2

ε4
1

]
= O((nhd)−1) = o(1).

Combining this with Lemma 5.1, one obtains nhd/2(T̃n(θ0)− ET̃n(θ0)) −→d N1(0, Γ).

Proof of Lemma 5.2. Recall the definitions of Un and Zn from (3.1). Add and subtract mθ0(Xi)
to the ith summand inside the squared integrand of Tn(θ̂n), to obtain that

Tn(θ0)− Tn(θ̂n) = 2
∫

Un(x)Zn(x, θ̂n) dϕ̂w(x)−
∫

Z2
n(x, θ̂n) dϕ̂w(x)

= 2Q1 −Q2, say.

It thus suffices to show that

(i) nhd/2Q1 = op(1), (ii) nhd/2Q2 = op(1).(5.8)

By subtracting and adding (θ̂n− θ0)T ṁθ0(Xi) to the ith summand of Zn(x, θ̂n), we can rewrite

Q1 =
∫

Un(x)

[
n−1

n∑

i=1

Kh(x−Xi)dni

]
dϕ̂w(x) + (θ̂n − θ0)T

∫
Un(x)µ̇n(x, θ0)dϕ̂w(x)

= Q11 + Q12, say,
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where dni are as in (4.7). By (4.4), for every η > 0, there is a k < ∞, N < ∞, such that
P (An) ≥ 1 − η, for all n > N , where An := {(nhd)1/2‖θ̂n − θ0‖ < k}. By the Cauchy-Schwarz
inequality, (2.1), (3.4) and the fact that

∫
f̂2

h(x)dϕ̂w(x) = Op(1),(5.9)

we obtain that nhd/2|Q11| is bounded above by

n1/2‖θ̂n − θ0‖(nhd)1/2 ·Op((nhd)−1/2) ·max
i

|dni|
‖θ̂n − θ0‖

.

But, by (m4), on An, the last factor in this bound is op(1), and in view of Theorem 4.1, this entire
bound in turn is op(1). Hence, to prove (5.8)(i), it remains to prove that nhd/2|Q12| = op(1).

But Q12 can be rewritten as

(θ̂n − θ0)T

∫
Un(x)µ̇n(x, θ̂n)dϕ̂w(x)− (θ̂n − θ0)T

∫
Un(x)

[
µ̇n(x, θ̂n)− µ̇n(x, θ0)

]
dϕ̂w(x)

= Q121 −Q122, say.

Arguing as above, on the event An, (nhd/2|Q122|)2 is bounded above by

n2hd‖θ̂n − θ0‖2 max
1≤i≤n

‖ṁθ̂n
(Xi)− ṁθ0(Xi)‖2 Op((nhd)−1) = op(1),

by (2.1), (3.4), (5.9), and assumptions (m5) and (h2).
Next, note that the integral in Q121 is the same as the expression in the left hand side of (4.9).

Thus, it is equal to

(θ̂n − θ0)T

∫
Zn(x, θ̂n)µ̇n(x, θ̂n)dϕ̂w(x)(5.10)

= (θ̂n − θ0)T

∫
Zn(x, θ̂n)µ̇n(x, θ0)dϕ̂w(x)

+(θ̂n − θ0)T

∫
Zn(x, θ̂n)

[
µ̇n(x, θ̂n)− µ̇n(x, θ0)

]
dϕ̂w(x)

= D1 + D2, say,

But, by the Cauchy-Schwarz inequality, (2.1), (3.16), and (5.9), nhd/2|D1| is bounded above by

nhd/2‖θ̂n − θ0‖2Op(1) = op(1),

by Theorem 4.1 and the assumption (m5) and (h2). Similarly, one shows nhd/2|D2| is bounded
above by

nhd/2‖θ̂n − θ0‖2op(1) = op(1).

This completes the proof of (5.8)(i).
The proof of (5.8)(ii) similar. Details are left out for the sake of brevity. 2

Proof of Lemma 5.3. Note that

nhd/2|Tn(θ0)− T̃n(θ0)| ≤ nhd/2

∫
U2

n(x)dϕ(x) sup
x∈I

|f2(x)/f̂2
w(x)− 1|

= nhd/2Op((nhd)−1)Op((logk n)(log n/n)
d

d+4 ) = op(1),
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by (3.3) and Lemma 4.3. Hence the lemma. 2

Proof of Lemma 5.4. Let

ti = mθ̂n
(Xi)−mθ0(Xi), ∆w(x) := f2(x)

(
f̂−2

w (x)− f−2(x)
)

.

Then,

Ĉn = n−2
n∑

i=1

∫
K2

h(x−Xi)(εi − ti)2dϕ̂w(x)

= n−2
n∑

i=1

∫
K2

h(x−Xi)(εi − ti)2dϕ(x) + n−2
n∑

i=1

∫
K2

h(x−Xi)(εi − ti)2∆w(x)dϕ(x)

= An1 + An2, say.

In order to prove the lemma it suffices to prove that

(a) nhd/2(An1 − C̃n) = op(1), and (b) nhd/2An2 = op(1).(5.11)

By expanding the quadratic term in the integrand, An1 can be written as the sum of C̃n, An12, and
An13, where

An12 = n−2
n∑

i=1

∫
K2

h(x−Xi)t2i dϕ(x), An13 = −2n−2
n∑

i=1

∫
K2

h(x−Xi)εitidϕ(x).

But |An12| ≤ max1≤i≤n |ti|2n−2
∑n

i=1

∫
K2

h(x−Xi)dϕ(x). By (m4) and (4.4), one obtains that
maxi≤n |ti|2 = Op((nhd)−1). Moreover, by the usual calculation, one obtains that

n−2
n∑

i=1

∫
K2

h(x−Xi)dϕ(x) = Op((nhd)−1).

Hence,

|An12| = Op((nhd)−1)Op((nhd)−1) = Op((nhd)−2).

Similarly,

|An13| ≤ 2max
i≤n

|ti|n−2
n∑

i=1

∫
K2

h(x−Xi)|εi|dϕ(x)

= Op((nhd)−1/2)Op((nhd)−1) = Op((nhd)−3/2).

Hence

|nhd/2(An1 − C̃n)| = nhd/2
(
Op((nhd)−2) + Op((nhd)−3/2)

)

= Op((nh−3d/2)−1) + Op((nh2d)−1/2) = op(1).

To prove the part (b) of (5.11), note that An2 can be written as the sum of An21, An22, and
An23, where

An21 = n−2
n∑

i=1

∫
K2

h(x−Xi)ε2
i ∆w(x)dϕ(x),
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An22 = n−2
n∑

i=1

∫
K2

h(x−Xi)t2i ∆w(x)dϕ(x),

An23 = −2n−2
n∑

i=1

∫
K2

h(x−Xi)εiti∆w(x)dϕ(x).

By taking the expected value and the usual calculation, one obtains that

n−2
n∑

i=1

∫
K2

h(x−Xi)ε2
i dϕ(x) = Op((nhd)−1).

Hence

|nhd/2An21| ≤ sup
x∈I

|∆w(x)|n−2
n∑

i=1

∫
K2

h(x−Xi)ε2
i dϕ(x)

= nhd/2Op(logk n (log n/n)
2

d+4 )Op((nhd)−1)

= Op(h−d/2 logk n (log n/n)
2

d+4 ) = op(1),

by Lemma 4.3 and (2.1). Similarly, one obtains that

|nhd/2An22| ≤ sup
x∈I

|∆w(x)| max
1≤i≤n

|ti|2n−2
n∑

i=1

∫
K2

h(x−Xi)dϕ(x)

= nhd/2Op(logk n (log n/n)
2

d+4 )Op((nhd)−1)Op((nhd)−1)

= op((nh3d/2)−1) = op(1),

and

|nhd/2An23| ≤ 2 sup
x∈I

|∆w(x)|max
i≤n

|ti|n−2
n∑

i=1

∫
K2

h(x−Xi)|εi|dϕ(x)

= nhd/2Op(logk n (log n/n)
2

d+4 )Op((nhd)−1/2)Op((nhd)−1)

= op((nh2d)−1/2) = op(1),

thereby completing the proof of the part (b) of (5.11), and hence that of the lemma. 2.
Proof of Lemma 5.5. Define

Γ̃n := hdn−2
∑

i6=j

(∫
Kh(x−Xi)Kh(x−Xj)εiεjdϕ(x)

)2

=
∑

i 6=j

H2
n(X̃i, X̃j),

∆h(x) := f2(x)(f̂−2
h (x)− f2(x)).

We shall first prove

Γ̂n − Γ̃n = op(1),(5.12)

Γ̃n − Γn = op(1).(5.13)

The claim of this lemma follows from these results and the fact that Γn −→ Γ.
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For the sake of convenience, write Kh(x − Xi) by Ki(x). Now, rewrite Γ̂n as the sum of the
following terms:

B1 = hdn−2
∑

i 6=j

(∫
Ki(x)Kj(x)(εi − ti)(εj − tj)dϕ(x)

)2

,

B2 = hdn−2
∑

i 6=j

(∫
Ki(x)Kj(x)(εi − ti)(εj − tj)∆h(x)dϕ(x)

)2

,

B3 = −2
hd

n2

∑

i6=j

(∫
Ki(x)Kj(x)(εi − ti)(εj − tj)dϕ(x)

)

×
(∫

Ki(x)Kj(x)(εi − ti)(εj − tj)∆h(x)dϕ(x)
)

.

In order to prove (5.12), it suffices to prove that

B1 − Γ̃n = op(1), B2 = op(1), and B3 = op(1).(5.14)

By taking the expected value, Fubini, and usual calculation one obtains that

hdn−2
∑

i6=j

(∫
Ki(x)Kj(x)|εi||εj |dϕ(x)

)2

= Op(1),(5.15)

hdn−2
∑

i6=j

(∫
Ki(x)Kj(x)|εi|dϕ(x)

)2

= Op(1),(5.16)

hdn−2
∑

i 6=j

(∫
Ki(x)Kj(x)dϕ(x)

)2

= Op(1).(5.17)

Furthermore,

sup
x∈I

|∆h(x)| = op(1), by (2.1),(5.18)

max
i≤i≤n

|ti| = op(1). by (m4) and (4.4).(5.19)

Note that by expanding (εi − ti)(εj − tj) and the quadratic terms, |B1 − Γ̃n| is bounded above
by the sum of B12 and B13, where

B12 = hdn−2
∑

i6=j

(∫
Ki(x)Kj(x)(|titj |+ |εiti|+ |tiεj |)dϕ(x)

)2

,

B13 = hdn−2
∑

i6=j

(∫
Ki(x)Kj(x)|εiεj |dϕ(x)

)

×
(∫

Ki(x)Kj(x)(|titj |+ |εiti|+ |tiεj |)dϕ(x)
)

.

But B12 = op(1) by (5.16), (5.17), (5.19), and the fact that {ti} are free of x. It further implies
that B13 = op(1) by (5.15) and applying the Cauchy-Schwarz inequality to the double sum. Hence
|B1 − Γ̃n| = op(1).
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Note that

B2 ≤ sup
x∈I

|∆h(x)|hdn−2
∑

i6=j

(∫
Ki(x)Kj(x)|εi − ti||εj − tj |dϕ(x)

)2

= op(1)Op(1) = op(1),

by the inequality
|εi − ti||εj − tj | ≤ |εiεj |+ (|titj |+ |εiti|+ |tiεj |),

and expanding the quadratic terms, and by (5.18), (5.15), and the result that B12 and B13 are both
op(1). Finally, again an application of the Cauchy-Schwarz inequality to the double sum yields
B3 = op(1). This completes the proof of (5.14), and hence that of (5.12).

To prove (5.13), note that Γn = EΓ̃n. Hence

E
(
Γ̃n − Γn

)2
≤

∑

i 6=j

EH4
n(X̃i, X̃j) + c

∑

i6=j 6=k

EH2
n(X̃i, X̃j)H2

n(X̃j , X̃k)

≤ (n2 + cn3)EH4
n(X̃1, X̃2)

for some constant c by expanding the quadratic terms and the fact that the variance is bounded
above by the second moment. But by (5.5), this upper bound is O((nhd)−1) = o(1). Hence (5.13)
is proved, and so is the Lemma 5.5. 2

Remark 5.2 Choice of G. The choice of G in connection with θ̂n was discussed in Remark 4.2. As
far as the MD test statistic Tn(θ̂n) is concerned, the choice of G will depend on the alternatives. In
a simulation study in the next section we simulated the power of the test corresponding to g = f̂2

w

and found this test competes well with some other tests against the selected alternatives.
Another data dependent choice would be the empirical d.f. Gn of X1, · · · , Xn. But to avoid

edge effects, one may use the empirical of the middle 100(1−αn) percent of the data only, where αn

is another sequence of window widths. The asymptotics of such a statistic needs to be investigated
separately.

6 Simulations

This section reports on two simulation studies. The first investigates the behavior of the empirical
size and power of the MD test statistic Dn := nh(Tn(θ̂n)− C̃n) at 4 alternatives in the case d = 2,

and when fitting the linear model θ′x, θ, x ∈ R2. In this simulation two types of designs are
considered. In one the two coordinates of X are i.i.d. normal and in the second, bivariate normal
with correlation 0.36.

In the second simulation study a comparison of the Monte Carlo levels and powers of an MD
test is made with two other tests based on a partial sum process. All simulations are based on 1000
replications.

Case d = 2. Here the model fitted is θ1x1 + θ2x2 with θ0 = (0.5, 0.8)T . In other words the
model from where data is simulated has the regression function mθ0(x) := 0.5x1 +0.8x2. The errors
have N1(0, (0.3)2) distribution.
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To study the empirical size and power of the test, the following five models are chosen:

model 0. Yi = mθ0(Xi) + εi,

model 1. Yi = mθ0(Xi) + 0.3(X1i − 0.5)(X2i − 0.2) + εi,

model 2. Yi = mθ0(Xi) + 0.3X1iX2i − 0.5 + εi,

model 3. Yi = mθ0(Xi) + 1.4(e−0.2X2
1i − e0.7X2

2i) + εi,

model 4. Yi = I{X2i>0.2}X1i + εi,

Design variables {Xi} are i.i.d. bivariate normal N2(0, Σj), j = 1, 2, with

Σ1 =

(
0.49 0
0 1

)
, Σ2 =

(
1 0.36

0.36 1

)
.

The sample sizes used are 30, 50, 100, and 200, and the nominal level used is α = 0.05. Data
from model 0 are used to study the empirical size while from models 1 to 4 are used to study the
empirical power of the test. The empirical size (power) is computed by the relative frequency of
the event (|D2

n| > 1.96) where D2
n := Γ̂−1/2

n nh(Tn(θ̂n)− Ĉn).
The bandwidths taken are h = n−1/4.5 and w = (log n/n)1/(d+4), d = 2. Note that the upper

bound min{1/2d, 4/(d(d + 4))} on the exponent a in n−a of (h3) in the current case is 1/4. Hence
the choice of a = 1/4.5. The choice of w is dictated by Lemma 4.3. The measure G is a measure
with Lebesgue density g(x) = 1 on [−1, 1], while the kernel K(u, v) ≡ K1(u)K1(v), K∗ ≡ K1, with

K1(u) :=
3
4
(1− u2)I{|u| ≤ 1}.(6.1)

Tables 1 and 2 give the empirical sizes and powers for testing model 0 against models 1 to 4 for
two different design distributions. From table 1, one sees that the Monte Carlo power of the MD
statistic D2

n is quite high against the alternative 2 for all sample sizes and the two chosen designs.
Secondly, when the design vector has the covariance matrix Σ1 (i.i.d. coordinates), one sees that
the MD test performs well for samples of sizes 100 and 200 at all alternatives. For the alternatives
2 and 3, this power is above 97% even for the sample size 50. However, the Monte Carlo level seems
to aproximate the asymptotic level only for the sample size of 200. From Table 2, i.e., when design
coordinates have covariance matrix Σ2 (dependent coordinates), one sees that the power and the
level behavior is affected by the dependence in the design variable coordinates.

Even though the theory of the present paper is not applicable to the model 4, it was included
to see the effect of the discontinuity in the regression function on the power of the MD test. The
Monte Carlo power is clearly lower for n = 30, 50 compared to other models, but is quite good for
n = 100, 200 at the N1(0, Σ1) design while the same is true at the other design for n = 200. Thus,
not unexpectedly, the discontinuity of the regression function has an effect on this power of MD
test.

Power Comparison. Here we make a comparison of the Monte Carlo level and power of one
of the proposed MD tests corresponding to g = f̂2

w with the two other tests based on a certain
partial sum process when fitting the simple linear regression model mθ(x) = θx with θ0 = 0.8. The
error distribution is taken to be either N1(0, (0.1)2) or double exponential, and the design density
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Table 1: Empirical sizes and powers for testing model 0 vs. models 1 to 4 with X ∼ N2(0,Σ1).

n = 30 n=50 n=100 n=200
model 0 0.005 0.022 0.036 0.049
model 1 0.003 0.062 0.670 0.895
model 2 0.931 0.999 1.000 1.000
model 3 0.461 0.975 1.000 1.000
model 4 0.035 0.368 0.977 1.000

Table 2: Empirical sizes and powers for testing models 0 vs. model 1 to 4 with X ∼ N2(0,Σ2).

n = 30 n=50 n=100 n=200
model 0 0.002 0.012 0.030 0.040
model 1 0.001 0.007 0.024 0.108
model 2 0.848 0.999 1.000 1.000
model 3 0.033 0.220 0.828 0.999
model 4 0.007 0.079 0.569 0.983

is N1(0, (1/6)2). The sample sizes used are n = 50, 100, 200, and 500, α = 0.05. The three models
chosen are:

model 1. Yi = mθ0(Xi) + εi,

model 2. Yi = mθ0(Xi)− 1.2 exp(−X2
i )Xi + 0.1 + εi,

model 3. Yi = mθ0(Xi) + 0.5(Xi − 0.5)2 − 0.3(Xi − 0.5)3 + εi.

The three tests are those of An and Cheng (AC) (1991), Stute, Thies and Zhu (STZ) (1998),
and the MD test. The data from model 1 are used to study the empirical size, and from models 2
and 3 are used to study the empirical power of these tests.

1. STZ test. Let θlse denote the least square estimator, ε̂i := Yi − θlseXi, σ2
n := n−1

∑n
i=1 ε̂2

i ,
and let

An(x) :=
1
n

n∑

i=1

X2
i I(Xi ≥ x), Gn(x) :=

1
n

n∑

i=1

I(Xi ≤ x).

Sn(x) =
1√
n

n∑

i=1

[
I(Xi ≤ x) − 1

n

n∑

j=1

XjXi

An(Xj)
I(Xj ≤ Xi ∧ x)

]
ε̂i.

The test statistic is

T 1
n = sup

x≤x0

|Sn(x)|
σn

√
Gn(x0)

,
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where x0 = 99th percentile of the sample X1, ..., Xn. The limiting null distribution of T 1
n is the

same as that of sup0<t<1 |B(t)|, where B is the standard Brownian motion. The 95th percentile of
this distribution is approximately equal to 2.2414.

2. AC test: This test statistic is K̂n = supt |K̂n(t)|, where

K̂n(t) =
1√

mσ̂2
N

m∑

i=1

ε̂iI(Xi ≤ t),

where m = m(n) is a subsequence of n such that m/n ≈ 0.75. The limiting null distribution of this
statistic is the same as that of the above STZ statistic.

3. MD test: The K, K∗ are as before. The statistic Tn when g = f̂2
w is

Tn(θ) :=
∫ 1

−1
[
1
n

n∑

i=1

Kh(x−Xi)(Yi −mθ(Xi))]2dx, θ̂n := argminθ Tn(θ).

Let εni ≡ Yi − θ̂nXi,

Dn =
nh1/2

Γ̂1/2
n

[ ∫ 1

−1

(
1
n

n∑

i=1

Kh(x−Xi)εni

)2

dx− 1
n2

n∑

i=1

∫ 1

−1
K2

h(x−Xi) ε2
nidx

]
.

where

Γ̂n = 4
∫ 1

−1

(
1
n

n∑

i=1

Kh(x−Xi)ε2
ni

)2

dx

∫ (∫
K ∗K(v)

)2

dv.

Here K = K1 and h = n−1/4. The results of this simulation are shown in Tables 3 to 7.
The Tables 3 and 4 give the empirical sizes and powers of the three tests for testing model 1

against model 2, and for the error distributions double exponential and N(0, (0.1)2), respectively.
Table 5 gives a similar data when testing model 1 against model 3 with the error distribution
N(0, (0.1)2).

From Table 3, one sees that when testing model 1 vs. model 2 with the double exponential
errors, the STZ test appears to have better power for n = 50, 100, 200, while for n = 500, MD test
appears to have slight advantage. Note that the empirical size of these two tests is also comparable.
The AC test seems to be worse of the three in this case.

From Table 4 one sees that when testing model 1 vs. model 2 with N(0, (0.1)2) errors, the
power of all three tests is the same for n = 100, 200, 500, while the STZ test has an edge with
regards to the size. From Table 5, one observes that the empirical power of the MD test is better
than or equal to that of AC and STZ tests when testing model 1 vs. model 3 with N(0, (0.1)2)
for n = 100, 200, 500. Moreover, in this case the AC test has better power than the STZ test for
n = 100, 200, 500.

In summary, this simulation shows none of these tests dominate the other, though the STZ test
seems to approximate the asymptotic size somewhat better than the MD test. The AC test appears
to perform worse of the three with regards to the Monte Carlo size.

Tables 6 and 7 list the mean and standard deviation of θ̂n under H0 with double exponential
and N1(0, (0.1)2) errors, respectively. From these tables one can see that the bias in θ̂n is relatively
smaller at the double exponential errors than at the normal errors for n = 50, 100.
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Table 3: Tests for model 1 v.s. model 2, double exponential errors
.

n = 50 n=100 n=200 n=500
tests size power size power size power size power
AC 0.059 0.027 0.308 0.209 0.132 0.789 0.128 0.934
STZ 0.072 0.137 0.064 0.446 0.054 0.837 0.051 0.990
MD 0.012 0.111 0.043 0.406 0.045 0.824 0.050 0.999

Table 4: Tests for model 1 against model 2, the N(0, (0.1)2) errors
.

n = 50 n=100 n=200 n=500
tests size power size power size power size power
AC 0.010 0.867 0.022 0.999 0.025 1.000 0.034 1.000
STZ 0.029 0.998 0.036 1.000 0.042 1.000 0.049 1.000
MD 0.011 0.659 0.019 1.000 0.023 1.000 0.044 1.000

Table 5: Tests for model 1 against model 3, N(0, (0.1)2) errors
.

n = 50 n=100 n=200 n=500
tests size power size power size power size power
AC 0.019 0.372 0.019 0.947 0.025 1.000 0.029 1.000
STZ 0.013 0.554 0.071 0.777 0.059 0.871 0.046 1.000
MD 0.011 0.421 0.021 0.982 0.035 1.000 0.049 1.000
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Table 6: Mean and s.d.(θn) under model 1, double exponential errors
.

sample size n=50 n=100 n=200 n=500
mean 0.82 0.809 0.807 0.802
stdev 0.0963 0.0777 0.0533 0.0339

Table 7: Mean and s.d(θn) under model 1, N(0, (0.1)2) errors
.

sample size n=50 n=100 n=200 n=500
mean 0.845 0.821 0.813 0.807
stdev 0.0957 0.0682 0.0475 0.0306
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