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Abstract

This paper proposes some tests for fitting a regression model with a long mem-

ory covariate process and with errors that form either a martingale difference

sequence, or a long memory moving average process, independent of the covari-

ate. The tests are based on a partial sum process of the residuals from the fitted

regression. The asymptotic null distribution of this process is discussed in some

detail under each set of these assumptions. The proposed tests are shown to have

known asymptotic null distributions in the case of martingale difference errors,

and in the case of fitting a polynomial of a known degree through the origin when

the errors have long memory. The theory is then illustrated with some examples

based on the forward premium anomaly where a squared interest rate differential

proxies a time dependent risk premium. The paper also shows that the proposed

test statistic converges weakly to non-standard distributions in some cases.

1 Introduction

A discrete time, stationary stochastic process, is said to have long memory if its autocorre-

lations tend to zero hyperbolically in the lag parameter, as the lag tends to infinity. The

importance of long memory processes in econometrics, hydrology and various other physical

sciences is abundantly demonstrated by Beran (1992, 1994), Baillie (1996), and the references

therein.
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This paper investigates the problem of fitting a parametric model to the regression func-

tion, when the explanatory variable has long memory, and when the errors either form a

martingale differences, or a long memory process. Several previous studies have emphasized

the importance of regression model fitting; not only in econometrics, but also in more general

statistical applications; see, e.g., Bates and Watts (1989) and Seber and Wild (1989). How-

ever, the analysis is often limited to the least squares methodology when the explanatory

variables are either non-random or i.i.d. and/or weakly dependent.

To proceed further, let q be a positive integer, X, Y be random variables, with X rep-

resenting a covariate variable, and Y the response variable with E|Y | < ∞. Let µ(x) :=

E(Y |X = x) denote the regression function, hj, j = 1, · · · , q, be some known functions of

X, and let h′ := (h1, · · · , hq). The problem of interest here is to test

H0 : µ(x) = β′h(x), ∀x ∈ R, for some β ∈ Rq ,

against the alternative H0 is not true, based on the T observations (Xt, Yt), t = 1, . . . , T .

This is a classical problem and literature is full of tests that have been investigated under

various weak dependence assumptions, see, e.g., the review paper by MacKinnon (1992).

Here we are interested in investigating the large sample behavior of tests based on the

partial sum process

V̂T (x) :=
T∑

t=1

(
Yt − β̂′h(Xt)

)
I(Xt ≤ x), x ∈ R,

when {Xt} forms a long memory moving average, and when the errors {εt := Yt − β′h(Xt)}
either form a homogeneous martingale difference sequence or a long memory moving average

process. In both cases the error process {εt} is assumed to be independent of the covariate

process {Xt}. For the convenience of the exposition we take β̂ to be the least squares

estimator of β under H0 throughout this paper. The process V̂T has its roots in the CUSUM

process of the one sample model. It is also known as a marked process with marks being the

residuals {Yt − β̂′h(Xt)}. In the decade of the 1990’s, several authors proposed tests based

on this process for regression and autoregressive model checking. See, e.g., An and Cheng

(1991), Su and Wei (1991), Stute (1997), Stute, González Manteiga and Presedo Quindimil

(1998), Stute, Thies and Zhu (1998), Diebolt and Zuber (1999), Koul and Stute (1999),

among others. Most of these papers deal with either an i.i.d. covariate and errors setup or

an autoregressive framework with i.i.d. errors.

The errors {εt} are said to form a homoskedastic martingale difference sequence if

{εt} are mean zero finite variance martingale differences with E
(
ε2

t |Ft−1

)
≡ σ2

e ,(1.1)
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where Ft := σ − field{εs, s ≤ t} and σ2
e is a constant.

They are said to form a long memory moving average process if

εt :=
∑
j≤t

bjζt−j, bs = s−(1−d)L(s), 1 ≤ t ≤ T, s ≥ 1, for some 0 < d < 1/2,(1.2)

where L is a slowly varying function at infinity and L(s) is positive for all large s, and where

ζt, t ∈ Z := {0,±1,±2, · · · , } are i.i.d. standardized r.v.’s, independent of Xt, t ∈ Z.

Throughout this paper the covariate process Xt, t ∈ Z, will be assumed to be a stationary

long memory moving average of the form

Xt = θ +
∑
s≤t

b1,t−sξs, b1,s := s−(1−d1)L1(s), s ≥ 1, for some 0 < d1 < 1/2,(1.3)

where L1 is another slowly varying function at infinity, L1(k) positive for all large k, and

where ξs, s ∈ Z, are i.i.d. standardized r.v.’s, and independent of {ζs, s ∈ Z}; θ is some

constant. Note that Eε0 = 0, EX0 = θ and

∞∑
s=0

b2
s < ∞,

∞∑
s=0

b2
1,s < ∞,

Cov(εt, εt+k) = k−(1−2d)L̃(k), Cov(Xt, Xt+k) = k−(1−2d1)L̃1(k), ∀ t ∈ Z, k ≥ 1,

where L̃(k), L̃1(k) are slowly varying functions, positive for all large k, and such that

lim
k→∞

L̃(k)

L2(k)
=

∫ ∞

0

(u + u2)−(1−d)du = Beta(1− 2d, d),

lim
k→∞

L̃1(k)

L2
1(k)

=

∫ ∞

0

(u + u2)−(1−d1)du = Beta(1− 2d1, d1).

We shall additionally assume the following:

∣∣Eeiuξ0
∣∣ ≤ C (1 + |u|)−δ, for some C, δ > 0, ∀u ∈ R,(1.4)

E |ξ0|r < ∞, for some r > 2.(1.5)

Throughout this paper, G will denote the distribution function of X0.

In the case when both the errors and the covariates are i.i.d., Stute, Thies and Zhou

(1998) have shown that under the null hypothesis, the sequence of processes T−1/2V̂T con-

verges weakly to a continuous Gaussian process with an unknown and complicated covariance

function, which makes this asymptotic null distribution infeasible. They then proposed a

transformation of the process along the lines of Khmaladze (1981) that converges weakly
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to σeB(G) under H0, where B is a standard Brownian motion on [0, 1]. In this paper, we

find this continues to be the case when the errors form a homogeneous martingale differ-

ence sequence (1.1) having finite fourth moment, and when the explanatory variable is a

long memory process (1.3), having finite third moment and independent of the errors, as

indicated in Section 2 below.

Now consider the case when {Xt} is as in (1.3), and the error process follows the long

memory moving average model (1.2) under H0. In this case the nature of the limiting

null distribution of V̂T depends on the nature of the vector function h and on whether

d + d1 > 1/2 and d + d1 < 1/2. In particular, from Lemma 4.2 below, under a mild moment

condition on h(X0), it follows that (L(T )T d+1/2)−1V̂T (x) converges weakly to J(x)Z, where

Z is N (0, σ2(d)) r.v., with

σ2(d) :=
Beta(1− 2d, d)

d(2d + 1)
, H := Eh(X0)h(X0)

′, ν(x) := Eh(X0)I(X0 ≤ x),

J(x) = G(x)− Eh(X0)
′ H−1 ν(x), x ∈ R.(1.6)

Consequently, when supx |J(x)| 6= 0, e.g., as in the case of fitting a polynomial regression

of order two or higher through the origin, the test that rejects H0 whenever

supx |V̂T (x)|
L(T )T d̂+1/2σ(d̂) supx |ĴT (x)| ≥ zα/2,(1.7)

will be of the asymptotic size α. Here, zα is 100(1−α)% percentile of theN (0, 1) distribution,

ĴT (x) := GT (x)− T−1

T∑
t=1

h(Xt)
′H

−1

T νT (x), GT (x) := T−1

T∑
t=1

I(Xt ≤ x),(1.8)

νT (x) :=
T∑

t=1

h(Xt) I(Xt ≤ x), νT (x) := T−1νT (x), x ∈ R;

HT :=
T∑

t=1

h(Xt)h(Xt)
′, HT := T−1HT .

Also note that if Eh(X0) = 0, then J(x) ≡ G(x), and the test that rejects H0 whenever

1

L(T )T d̂+1/2σ(d̂)
sup

x
|V̂T (x)| ≥ zα/2(1.9)

would also be of the asymptotic size α.

In the above, d̂ is an estimator of d based on the residuals ε̂t such that | log(T )(d̂− d)| =
op(1), e.g., the local Whittle estimator. Theorem 1.2 of Koul and Surgailis (2000) shows that
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in the case of linear regression models with the errors and covariates as in (1.2) and (1.3),

this estimator satisfies the required condition. A similar analysis shows this continues to be

the case under H0.

There are, however, some interesting cases when supx |J(x)| = 0; for example when the

regression model being fitted has a non-zero intercept. From Lemma 4.3 and Corollary

4.1, one obtains the following fact when fitting a simple linear regression model where q =

2, h(x)′ = (1, x). If d + d1 > 1/2, then {L(T )L1(T )T d+d1}−1V̂T (x) converges weakly to

V (x)(Z Z1 − U), where U is as in Corollary 4.1 below,

V (x) := g(x) +
1

σ2

(
K(x)− θG(x)

)
, σ2 = V ar(X0), K(x) := EX0I(X0 ≤ x), x ∈ R,

Z, Z1 are independent mean zero Gaussian r.v.’s with respective variances σ2(d), σ2(d1), and

where g is density of G whose existence is guaranteed by (1.4), cf. Giraitis, Koul and Surgailis

(1996). It is interesting to note that V (x) ≡ 0, if and only if G is N (θ, σ2) distribution. The

distribution of the r.v. ZZ1−U is not easy to characterize, mainly because of the complicated

nature of the r.v. U . This in turn makes implementation of tests based on V̂T relatively

difficult in these cases. The limiting null distribution is even harder to characterize in the

case d + d1 < 1/2. See Lemma 4.4 for some special cases. In general, the Stute, Thies and

Zhu (1998) transformation is not available when the errors follow the long memory model

(1.2).

The testing procedures given by equations (1.7) and (2.6) below are illustrated with

an application to the well known forward premium anomaly in international finance. The

anomaly refers to the fact that the regression of spot exchange rate returns on the lagged

forward premium invariably produces a negative slope coefficient, instead of unity as im-

plied by the theory of uncovered interest rate parity. Several authors including Baillie and

Bollerslev (1994, 2000) and Maynard and Phillips (2001) have documented the long memory

characteristics of the forward premium. While spot returns generally appear to have little

serial correlation, Cheung (1993) has also found empirical evidence for long memory in some

spot returns series. The occurrence of long memory in both spot returns and in the forward

premium then gives rise to the possibility of a balanced regression and some of the moti-

vation and evidence for this is further discussed in section 3 below. On using similar data

to Cheung (1993) we find evidence for long memory behavior in both spot returns and the

forward premium, and in one case for the Canada versus the US, there is also evidence of

long memory in the regression residuals. We show how the tests for mis-specification can be

formed for two of the currencies, which are found to have different regression features.

We now briefly address some aspects of the asymptotic power of the above proposed



6 Koul, Baillie & Surgailis

tests. Let γ be a real valued function on R satisfying

0 < Eγ2(X0) < ∞,(1.10)

∆(x) := Eγ(X0)I(X0 ≤ x)− ν ′(x)H−1Eh(X0)γ(X0) 6= 0, for some x ∈ R.(1.11)

Then the following claims hold. All of the above tests are consistent against any fixed

alternative µ(x) = β′h(x) + γ(x). The test (2.6) that is valid for the martingale difference

errors has nontrivial asymptotic power against the sequence of alternatives µ(x) = β′h(x) +

T−1/2γ(x). The test (1.7), valid under (1.2) and (1.3) when supx |J(x)| 6= 0, has nontrivial

asymptotic power against the sequence of alternatives µ(x) = β′h(x) + L(T )T d−1/2γ(x). In

fact the asymptotic power of this test against these alternatives is

P
(
J(x)Z > zα/2 sup

z
|J(z)|+ ∆(x), for some x ∈ R

)

+P
(
J(x)Z < −zα/2 sup

z
|J(z)|+ ∆(x), for some x ∈ R

)
.

An example where the conditions (1.10)-(1.11) hold is when X0 has six finite moments,

h(x)′ = (x, x2), γ(x) = α x3, α ∈ R. Another class of examples is given by all those γ’s that

satisfy (1.10), have Eh(X0)γ(X0) = 0, and supx |Eγ(X0)I(X0 ≤ x)| 6= 0. An example where

(1.10) does not hold is when γ(x) = a′h(x), a ∈ Rq.

In the sequel, X, ε stand for copies of X0, ε0, respectively and all limits are taken as

T −→∞, unless specified otherwise. By =⇒ we denote the weak convergence in D[−∞,∞]

with respect to the uniform metric, and by −→D the finite dimensional weak convergence.

2 The transformed V̂T process under martingale differ-

ence errors

This section first discusses the weak convergence of the process V̂T under H0 when the

covariate process has the long memory structure (1.3), and when the errors are the martingale

differences (1.1), independent of the covariate process. The distribution of this limiting

process depends on the null model and hence is unknown. Then a transformation T̂T of V̂T

is given such that T̂T converges weakly to σeB(G), where B is the standard Brownian motion

on [0, 1]. Consequently tests based on suitably normalized process T̂T will be asymptotically

distribution free. A computation formula for the specific test based on the supremum norm

is also given.
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Recall the notation from (1.6), (1.8) and let

VT (x) :=
T∑

t=1

εt I(Xt ≤ x), ZT :=
T∑

t=1

h(Xt)εt.

Assume that

HT is almost surely positive definite for all T ≥ q.(2.1)

Then, almost surely, the least squares estimator β̂ satisfies β̂ − β = H−1
T ZT , and we obtain

V̂T (x) =
T∑

t=1

(Yt − β̂′h(Xt)) I(Xt ≤ x)

= VT (x)− (β̂ − β)′
T∑

t=1

h(Xt) I(Xt ≤ x) = VT (x)−Z ′
T H−1

T νT (x)

= VT (x)−Z ′
T H

−1

T νT (x).(2.2)

Under (1.1), (1.3), and the assumed independence between {Xt} and {εt}, the covariance

terms in the variances of VT (x) and ZT will be zero so that the long memory aspect of {Xt}
is dominated by the martingale structure of the errors. Hence,

Cov
(
VT (x),VT (y)

)
= T σ2

e G(x ∧ y), EZTZ ′
T = T σ2

e H.

Moreover, from Lemma 5.4, proved in the last section of this paper, we obtain that T−1/2V̂T

converges weakly to WG, where WG is a Gaussian process on R with mean zero and covari-

ance function σ2
e [G(x ∧ y) − ν(x)′ H−1 ν(y)], x, y ∈ R. Due to the complicated nature of

this covariance function and the fact G is unknown, the close form of the distribution of this

limiting process is unknown. To overcome this we now consider a transformation of V̂T (x)

whose limiting null distribution is like that of σe B(G). Let

H(x) := Eh(X)h(X)′I(X ≥ x), HT (x) := T−1

T∑
t=1

h(Xt)h(Xt)
′I(Xt ≥ x), x ∈ R.

Assume

H(x0) is positive definite for some x0 < ∞.(2.3)

Then, H(x) is positive definite for all x ≤ x0.
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For a real valued function f , define the transform

T f(x) := f(x)−
∫

y≤x

h(y)′H−1(y)
{∫

h(z) I(z ≥ y)f(dz)
}

G(dy),

T̂T (x) := V̂T (x)−
∫

y≤x

h(y)′H
−1

T (y)
{∫

h(z) I(z ≥ y) V̂T (dz)
}

GT (dy), x ≤ x0.

Whenever T is applied to a Brownian motion, the inner integral is to be interpreted as

a stochastic integral. Since T is a linear functional, T B(G) is a centered Gaussian pro-

cess. In fact Stute, Thies and Zhu (1998) observed that T B(G) = B(G), in distribution.

They also proved that in the case of the i.i.d errors and i.i.d. design, T−1/2T̂T converges

weakly to σeB(G), on D[−∞, x0], so that the asymptotic null distribution of the test based

on supx≤x0
|T̂T (x)|/[Ts2

T GT (x0)]
1/2 is known, where s2

T := T−1
∑T

t=1 ε̂2
t . A similar result is

established when fitting an autoregressive model of order 1 in Koul and Stute (1999).

This continues to be true when the errors form martingale differences as in (1.1) and the

process Xt has long memory as in (1.3), independent of the errors. In view of Lemma 5.4

below, the proof of this claim is similar to that in Stute, Thies and Zhu (1998).

A computational formula for T̂T is as follows. Let X(j), 1 ≤ j ≤ T, denote the ordered Xt’s

in an ascending order and η̂t’s denote the corresponding ε̂t’s. Also, let, for 1 ≤ s, j ≤ T − 1,

HsT := HT (X(s)) :=
T∑

t=s

h(X(t))h(X(t))
′ Jjt :=

j∑
s=1

h(X(s))
′H−1

sT h(X(t)).

Then, for all x < X(T ),

T̂T (x) =
T∑

t=1

[
I(Xt ≤ x)− T−1

T∑
s=1

h(Xs)
′H

−1

T (Xs)h(Xt) I(Xs ≤ Xt ∧ x)
]
ε̂t(2.4)

=
T∑

t=1

[
I(X(t) ≤ x)−

T∑
s=1

h(X(s))
′H−1

T (X(s))h(X(t)) I(X(s) ≤ X(t) ∧ x)
]
η̂t.

From (2.4), one sees that if for some 1 ≤ j ≤ T − 1, X(j) ≤ x < X(j+1), then TT (x) ≡ Sj,

where

Sj =

j∑
t=1

[
1−

t∑
s=1

h(X(s))
′H−1

sT h(X(t))
]
η̂t −

T∑
t=j+1

j∑
s=1

h(X(s))
′H−1

sT h(X(t))η̂t

=

j∑
t=1

[
1− Jtt

]
η̂t −

T∑
t=j+1

Jjtη̂t.(2.5)
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We shall now give a further simplification of this formula in the case of fitting a simple

linear regression model: q = 2, h1(x) ≡ 1, h2(x) ≡ x. Let

m1,s :=
T∑

t=s

X(t), m1,s := (T − s + 1)−1m1,s,

m2,s :=
T∑

t=s

X2
(t), m2,s := (T − s + 1)−1m2,s,

τ 2
s := m2,s −

m2
1,s

T − s + 1
, 1 ≤ s ≤ T ; s2

T := T−1

T∑
t=1

ε̂2
t .

Note that τ 2
T = 0. Thus, in calculating the above entities we must stay away from the last

observation. We will compute our test statistics with x0 = X(T−1). Then

Jjt =

j∑
s=1

1

τ 2
s

[
m2,s −X(s)m1,s + (X(s) −m1,s)X(t)

]
,

is well defined for 1 ≤ j ≤ T − 1. Thus the proposed test of the asymptotic level 0 < α < 1

is to reject the null hypothesis of a linear fit if the statistic

DT := T−1/2 max1≤j≤T−1 |Sj|
sT [1− (1/T )]1/2

(2.6)

is larger than bα, the upper 100(1− α)% quantile of the sup{|B(u)|; 0 ≤ u ≤ 1}.

3 Application to the Forward Premium Anomaly

This section considers some applications of the tests (1.7) and (2.6) to the well known forward

premium anomaly in financial economics and international finance. The anomaly refers to

the widespread empirical finding that the returns on most freely floating nominal exchange

rates up until the early 1990’s appear to be negatively correlated with the lagged forward

premium or forward discount. This implies that a non-negative interest rate differential

would on average, result in an appreciating currency for the country with the higher rate of

interest, which violates the important theory of uncovered interest parity. This rejection has

been found to create considerable problems for subsequent modeling and understanding in

international finance. A good survey of the literature on the forward premium anomaly is

provided by Engel (1996). The papers by Baillie and Bollerslev (1994, 2000) and Maynard

and Phillips (2001) have emphasized the role of long memory processes in this context and
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how inappropriate inference that ignores the nature of the long memory aspects may have

been partly responsible for the anomaly.

In the following, St denotes the spot exchange rate at time t, while Ft refers to the forward

exchange rate at time t, for delivery at time t + 1. Corresponding logarithmic values are

denoted by the lower case variables, st, ft, respectively; and all the rates are denominated

with the U.S. dollar as the numeraire currency. The uncovered interest rate parity theory

assumes rational expectations, risk neutrality, free capital mobility and the absence of taxes

on capital transfers. A common test of the theory is to estimate the regression

∆st+1 = α + β(ft − st) + ut+1,(3.1)

and to test the hypothesis that α = 0, β = 1 and ut+1 be serially uncorrelated. However, the

uncovered interest rate parity condition can be derived from a discrete time, consumption

based asset pricing model, which includes a time dependent risk premium. The risk adjusted

real returns over current and future consumption streams of the representative investor are

given by Et[(Ft − St+1)/Pt+1]× U ′(Ct+1)/U
′(Ct) = 0, where U ′(Ct+1)/U

′(Ct) equals the

marginal rate of substitution in terms of utility derived from current and future consumption

and Pt represents the price level. A Taylor series approximation to second order terms implies

the alternative regression function

∆st+1 = α + β(ft − st)− 1

2
V art(st+1) + Covt(st+1, pt+1) + Covt(st+1, qt+1) + ut+1,(3.2)

where qt+1 denotes the logarithm of the intertemporal marginal rate of substitution. Under

the null hypothesis of uncovered interest parity, α = 0, β = 1 and ut+1 is serially uncorre-

lated. Usually, the Jensen inequality terms V art(st+1) and Covt(st+1, pt+1) are considered to

be statistically negligible and are ignored. Importantly, the covariance term Covt(st+1, qt+1)

has the interpretation of being a time dependent risk premium and may have long memory.

To illustrate the above testing procedures, we now consider instances where both the

forward premium and spot returns appear to have long memory characteristics. Baillie

and Bollerslev (2000) and Maynard and Phillips (2001) discuss the case of an unbalanced

regression when spot returns are close to being uncorrelated, while the forward premium is

a long memory process. However, a number of authors including Booth, Kaen and Koveos

(1982), Cheung (1993) and Lo (1991) have argued that asset and exchange rate returns

in general, may exhibit long memory behavior, in which case the regression may not be

unbalanced. In particular, Cheung (1993) provides convincing evidence for the presence of

long memory in spot returns for certain currencies in the initial part of the post Bretton

Woods era of floating exchange rates. He argues that slow adjustments to purchasing power

parity can cause the long memory property of spot returns.
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A more general motivation is to use a model where both the spot and forward rate have

a common stochastic trend term zt = zt−1 + vt, where vt is a long memory process. Then

st = zt + u1t and ft = zt + u2t, where both u1t and u2t are short memory processes. Hence

this type of model defines the spot exchange rate as being determined by fundamentals,

or long run equilibrium value, zt, that follow an integrated process with a long memory

noise component. This is an empirically very reasonable model since it is well known that

price levels and money supplies follow this type of process; e.g. see Baillie, Chung and

Tieslau (1996). The model is also similar to the theoretical formulation of Mussa (1982),

with the vt process partly determining the state of disequilibrium in the goods market and

speed of adjustment coefficient. Hai, Mark and Wu (1997) further consider this model in an

unobserved components framework. The spot returns are then the sum of a short memory,

possibly white noise component and a long memory component. It should be noted that if the

variance of u1t component dominates that of the vt component, the spot returns may appear

approximately uncorrelated in small sample sizes. This would explain the mixed findings

on the order of integration of the spot returns that have been reported in the literature.

However, there is very widespread empirical evidence that forward premiums are invariably

long memory processes and Baillie and Bollerslev (1994, 2000) and Maynard and Phillips

(2001) find them to be well described by ARFIMA(p, d, q) processes, so that (1−L)d(ft−st)

is a stationary and invertible I(0) process. The presence of long memory components in

both the spot returns and forward premium will then suggest the possibility of a balanced

regression.

The regression in equation (3.1) was fitted to a very similar sample period and currencies

to that of Cheung (1993) where some spot returns appeared to exhibit long memory. The

first example uses monthly observations on the Canadian $ - US $ spot and the one-month

forward rate from January 1974 through December 1991, which realizes a total of T = 215 ob-

servations. As expected there is strong evidence of long memory in the forward premium with

the Ljung-Box statistic on the first 20 lags being Q(20) = 803.52; and the first twelve auto-

correlation coefficients of the forward premium series are 0.89, 0.74, 0.63, 0.55, 0.52, 0.50, 0.49,

0.47, 0.43, 0.36, and 0.28, respectively. The application of the local Whittle estimator re-

sulted in an estimated value of .25 for the long memory parameter in the forward premium.3

The monthly Canadian $ - US $ spot returns over the same period also have evidence of

long memory with the d estimate in an ARFIMA(1, d, 0) model being 0.12 and the robust t

3An alternative approach of estimating a parametric ARFIMA model with GARCH errors was also
pursued and the QMLE of the long memory parameter was found to be 0.20 and was statistically significant
at the .05 level.
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statistic being significant at the .05 level. We test the hypothesis H0 with h(x) = (1, x)′, with

x representing the lagged forward premium. The OLS estimates of β were (−2.606,−1.432)′

with standard errors of (0.811, 0.407)′. Hence the regression gives rise to the usual negative

slope coefficient that is consistent with the anomaly. Ljung-Box tests on the autocorrelations

of the standardized residuals and also their squares failed to reject the hypothesis that the

residuals were serially uncorrelated and without ARCH effects. Hence it seemed reasonable

to assume that the errors form a martingale difference sequence. This justifies the application

of the test statistic DT of (2.6) to fit the model (3.1) to this data. For the Canadian forward

premium regression, DT = 5.83, which indicates a clear rejection of the null hypothesis.

A further example of the methodology is provided by the monthly British pound - US

dollar over the same time period. The MLE of the long memory parameter from an ARFIMA

model on spot returns gives a value of 0.293 with standard error of 0.080, which indicates

long memory in spot returns. Consistent with previous studies of Baillie and Bollerslev

(1994) and Maynard and Phillips (2001) and the evidence for Canada above; the British

forward premium also exhibits evidence of long memory, the MLE of the long memory

parameter being 0.45 with a standard error of 0.124. Estimation of the traditional forward

premium anomaly regression (3.1) confirmed evidence of the standard anomalous negative

slope coefficient. Moreover, there is also evidence of substantial, persistent autocorrelation in

the residuals, which can also be represented as a long memory process. An interpretation of

this finding can be seen from equation (3.2) where the last covariance term Covt(st+1, qt+1)

is associated with a time dependent risk premium. Hence variables associated with the

risk premium may give rise to the long memory process in the residuals. While there are

many possible models for a risk premium, for the sake of illustration of the methodology

in this paper, it is worth noting that several authors such as Giovannini and Jorion (1987)

and Hodrick (1989) have used the lagged squared forward premium to represent the risk

premium.

This motivates fitting the second degree polynomial to the British - pound - US dollar

data with long memory errors, i.e., testing for H0 with h(x) = (x, x2)′, where again x

represents the lagged forward premium. The OLS estimates of β were (−2.414,−0.244)′ with

standard errors of (0.835, 0.129)′. To test for further mis-specification of this regression, the

statistic in (1.7), with L(T ) ≡ 1, was calculated to be 6.72, based on the MLE of the long

memory parameter d in the error process equal to 0.262. Thus, again regression also appears

to be misspecified. A possible implication of this result is that further economic variables

terms associated with a risk premium should be included. The value of the statistic in (1.7)

appeared to be relatively stable to alternative semi-parametric estimate of d obtained from
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local Whittle estimation, and still led to a clear rejection of the null hypothesis.

4 Some general results about V̂T - process under long

memory moving average errors

Now, we shall discuss the asymptotic null distribution of V̂T when (1.2) and (1.3) hold.

Towards this goal, we first need to determine the magnitude of V̂T (x). It turns out this

depends on the nature of the vector function h and on whether d+d1 > 1/2 or d+d1 < 1/2.

To make things a bit more precise, we first state some general rate results, then use them to

determine the magnitude of V̂T (x). We need to introduce some more notation:

WT :=
T∑

t=1

(h(Xt)− Eh(Xt)) εt, ST :=
T∑

t=1

εt, UT :=
T∑

t=1

(Xt − θ)εt, µ := Eh(X).

For a given positive sequence aT −→ ∞, by Up(a
−1
T ) (up(a

−1
T )), we mean a sequence of

stochastic processes YT (x), x ∈ R such that aT supx∈R |YT (x)| is bounded (converges to

zero), in probability.

With the above notation, (2.2) can be rewritten as

V̂T (x) = VT (x)− (µST +WT )′H
−1

T νT (x).(4.1)

Recall from Koul and Surgailis (1997) that under (1.4) and (1.5), the distribution function

G and the density g are infinitely differentiable. The last fact together with (4.2) below

implies the infinite differentiability of the functions

µ(u) := Eh(X + u) =

∫

R
h(x)g(x− u)dx, µ := µ(0),

ν(u; x) := Eh(X + u)I(X + u ≤ x) =

∫ x

−∞
h(y)g(y − u)dy, x ∈ R, u ∈ R.

Note that

ν̇(x) :=
∂ν(u; x)

∂u

∣∣∣
u=0

= −
∫ x

−∞
h(y)ġ(y)dy, µ̇ :=

∂µ(u)

∂u

∣∣∣
u=0

= −
∫

R
h(x)ġ(x)dx.

We need the following lemma whose proof can be deduced from the results of Koul and

Surgailis (2002) (see also Ho and Hsing (1996, 1997), Koul and Surgailis (1997), and Giraitis

and Surgailis (1999)).
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Lemma 4.1 Assume conditions (1.2), (1.3), (1.4), and (1.5). Let h(x), x ∈ R, be any

function with values in Rq such that

‖h(x)‖ ≤ C(1 + |x|)λ, for some 0 ≤ λ < (r − 2)/2.(4.2)

Then, there exists a κ > 0 such that

WT = µ̇UT + Op(T
d+d1−κ), if d + d1 > 1/2,(4.3)

= Op(T
1/2), if d + d1 < 1/2.

νT (x) = ν(x) + ν̇(x)(XT − θ) + Up(T
d1−1/2−κ).(4.4)

VT (x) = G(x)ST − g(x)UT + Up(T
d+d1−κ), if d + d1 > 1/2,(4.5)

= G(x)ST + Up(T
1/2), if d + d1 < 1/2.

Moreover,

ST = Op(|L(T )|T d+1/2), XT − θ = Op(|L1(T )|T d1−1/2).(4.6)

UT = Op(|L(T )L1(T )|T d+d1), if d + d1 > 1/2,(4.7)

= Op(T
1/2), if d + d1 < 1/2.

It is also well-known that under conditions (1.2) and (1.3) alone, one has the following

facts:

L(T )−1T−d−1/2ST −→D Z, L1(T )−1T−d1+1/2(XT − θ) −→D Z1,(4.8)

where Z, Z1 are stochastic integrals w.r.t. to independent standard Gaussian white noises

W,W1, respectively:

Z :=

∫ 1

−∞

{∫ 1

0

(τ − x)
−(1−d)
+ dτ

}
W (dx),(4.9)

Z1 :=

∫ 1

−∞

{∫ 1

0

(τ − x)
−(1−d1)
+ dτ

}
W1(dx),

and therefore have independent normal distributions with EZ = EZ1 = 0 and the respective

variances σ2(d), σ2(d1), with σ2(d) as in (1.6).

Lemma 4.2 Assume the conditions of Lemma 4.1. Then,

L(T )−1T−d−1/2V̂T (x) =⇒ J(x) Z, J(x) := G(x)− µ′H−1ν(x), x ∈ R.(4.10)
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Proof. Assume first d+d1 > 1/2. Use (4.1) and Lemma 4.1 (4.3), (4.4), (4.5), (4.7) together

with well-known properties of slowly varying functions to obtain

V̂T (x) = ST (G(x)− µ′H
−1

T ν(x)) + Up(T
d+d1+γ),(4.11)

for any γ > 0. Clearly, by the Ergodic Theorem (ET), HT −→ H, a.s., and in view of (2.1),

we thus have

H
−1

T → H−1, a.s.(4.12)

Now (4.10) clearly follows from (4.11), (4.8), (4.12), as d + 1/2 > d + d1 + γ provided

γ > 0 is sufficiently small. A similar argument with small changes applies also in the case

d + d1 = 1/2.

Next, let d + d1 < 1/2. In this case we have the exact representation

V̂T (x) = ST (G(x)− µ′H−1ν(x))(4.13)

+ST

[
µ′H−1ν(x)− µ′H

−1

T νT (x)
]

+
T∑

t=1

εt

[
I(Xt ≤ x)−G(x)− (h(Xt)− µ)′H−1ν(x)

]

−
( T∑

t=1

εt(h(Xt)− µ)
)′[

H
−1

T νT (x)−H−1ν(x)
]
.

The Glivenko-Cantelli type of argument along with the ET implies

µ′H−1ν(x)− µ′H
−1

T νT (x) = up(1).(4.14)

By (4.14), the second term on the r.h.s. of (4.13) is up(|ST |), and the fourth term is

up(|WT |) = up(T
1/2) = up(|ST |), see (4.4), (4.6). Finally, for the third term one has the

uniform bound

T∑
t=1

εt(I(Xt ≤ x)−G(x)− (h(Xt)− µ)′H−1ν(x))

= νT (x)−G(x)ST −W ′
T H−1ν(x) = Up(|UT |) + Up(T

1/2) = Up(T
1/2) = up(|ST |),

according to (4.5), (4.3). 2

As noted in the Introduction, Lemma 4.2 enables to implement the tests based on V̂T

as soon as we can estimate J and as long as supx |J(x)| is positive, e.g. the asymptotically
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distribution free test (1.7). However, in some cases J is identically zero, as we shall now

show.

Case J(x) ≡ 0. Note J(x) can be written as

J(x) =

∫ x

−∞
(1− µ′H−1h(y))dG(y).

Clearly, J(x) ≡ 0 implies µ′H−1h(y) = 1, G − a.e. Assume also H−1µ 6= 0. These two

relations imply that the functions {1, h1(x), . . . , hq(x)} are linearly dependent G-a.e.. In

other words, there exist some constants k0, k1, . . . , kq not all of them identically zero and

such that

k0 +

q∑
i=1

kihi(x) = 0 G− a.e.(4.15)

If we assume h1, . . . , hq linearly independent, (4.15) implies that one of the functions h1, . . . ,

hq is a constant G−a.e. In other words, we may assume in the sequel h1(x) ≡ 1. Then,

according to Lemma 4.1, we obtain

V̂T (x) = G(x)ST − g(x)UT + Up(T
d+d1−κ)

−ST µ′
[
H−1 + (H

−1

T −H−1)
][

ν(x) + ν̇(x)(XT − θ) + Up(T
d1−1/2−κ)

]

−
[
µ̇UT + Op(T

d+d1−κ)
]′[

H−1 + op(1)
][

ν(x) + up(1)
]
.

After cancellation of the main term (G(x)− µ′H−1ν(x))ST = J(x)ST , this yields

V̂T (x) = −g(x)UT − ST µ′(H
−1

T −H−1)ν(x)− ST (XT − θ)µ′H−1ν̇(x)(4.16)

−UT µ̇′H−1ν(x) + Op(T
d+d1−κ) + op(|UT |)

= ST µ′
[
H−1 −H

−1

T

]
ν(x)− ST (XT − θ)µ′H−1ν̇(x)

−UT

[
g(x) + µ̇′H−1ν(x)

]
+ Op(T

d+d1−κ) + op(|UT |).

The next lemma discusses the particular case q = 2. It is in particular useful in arriving

at the null distribution of tests based on V̂T when fitting a simple linear regression model

with a non-zero intercept, provided Xt is a non-Gaussian process. Let ` be a real valued

function, and let

K(x) := E`(X)I(X ≤ x), µ1 := E`(X), σ2
` := V ar(`(X)),

µ̇1 := ∂E`(X + u)/∂u|u=0, V (x) := g(x) +
µ̇1

σ2
`

(
K(x)− µ1G(x)

)
, x ∈ R.
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Lemma 4.3 Assume d + d1 > 1/2. Let ` be an arbitrary function such that

σ2
` > 0, |`(x)| ≤ C(1 + |x|)λ, for some λ < (r − 2)/4.(4.17)

Assume q = 2, and let

h(x)′ = (1, `(x)), x ∈ R.(4.18)

Then, there exists a κ > 0 such that

V̂T (x) = (ST (XT − θ)− UT )V (x) + Up(T
d+d1−κ).(4.19)

Remark 4.1 In the case `(x) = x, the statement of Lemma 4.3 is valid under the condition

(4.2) instead of (4.17), i.e. provided the moment condition (1.5) holds for some r > 4.

Proof of Lemma 4.3. Return to relation (4.16). Let us first identify the expressions

µ′H−1ν̇(x) and µ̇′H−1ν(x) for the case (4.18). Here,

µ′ = (1, µ1), µ2 := E`2(X), H =

(
1 µ1

µ1 µ2

)
, H−1 = σ−2

`

(
µ2 −µ1

−µ1 1

)
.

Let K̇(x) ≡ − ∫ x

−∞ `(y)ġ(y)dy. Then, ν̇(x)′ = (−g(x), K̇(x)), implying

µ′H−1ν̇(x) = −σ−2
`

(
µ2g(x)− µ2

1g(x) + µ1K̇(x)− µ1K̇(x)
)

= −g(x).(4.20)

Also, in the case of (4.18),

µ̇′ =
(
0,−

∫

R
`(x)ġ(x)dx

)
= (0, µ̇1), ν(x)′ = (G(x), K(x)),(4.21)

implying

µ̇′H−1ν(x) =
1

σ2
`

(
− µ̇1µ1G(x) + µ̇1K(x)

)
=

µ̇1

σ2
`

[K(x)− µ1G(x)].(4.22)

To complete the proof of the lemma, we need to examine the behavior of H
−1

T − H−1.

We have

H
−1

T =
1

s2
T

(
`2 −`

−` 1

)
, ` := T−1

T∑
t=1

`(Xt), `2 := T−1

T∑
t=1

`2(Xt),

s2
T = det(HT ) = `2 − (`)2.
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Then

H
−1

T −H−1 = Q1T + Q2T ,

where

Q1T =
1

s2
T

(
`2 − µ2 −` + µ1

−` + µ1 0

)
, Q2T =

σ2
` − s2

T

s2
T

H−1.

The limiting behavior of `2 − µ2 will depend on the first Appell coefficient

µ̇2 :=
∂E`2(X + u)

∂u

∣∣∣
u=0

= −
∫

R
`2(x)ġ(x)dx.

According to Lemma 4.1, under condition (4.17), we have

`2 − µ2 = T−1

T∑
t−1

(`2(Xt)− E`2(Xt)) = µ̇2(XT − θ) + Op(T
d1−1/2−κ), (∃κ > 0).

Similarly, under the same condition,

`− µ1 = T−1

T∑
t=1

(`(Xt)− E`(Xt)) = µ̇1(XT − θ) + Op(T
d1−1/2−κ), (∃κ > 0).

Hence we obtain

Q1T =
XT − θ

s2
T

(
µ̇2 −µ̇1

−µ̇1 0

)
+ Op(T

d1−1/2−κ), (∃κ > 0).

We also have

s2
T − σ2

` = T−1

T∑
t=1

`2(Xt)−
(
T−1

T∑
t=1

`(Xt)
)2

− σ2
`

= T−1

T∑
t=1

(`2(Xt)− E`2(Xt))− (µ1 + (`− µ1))
2 + µ2

1

= µ̇2(XT − θ)− 2µ1µ̇1(XT − θ) + Op(T
d1−1/2−κ) (∃κ > 0).

Clearly, this implies

1

s2
T

− 1

σ2
`

=
σ2 − s2

T

σ2
` s

2
T

=
2µ1µ̇1 − µ̇2

σ4
`

(XT − θ) + Op(T
d1−1/2−κ) (∃κ > 0).

Hence we obtain, for some κ > 0,

H
−1

T −H−1

=
(XT − θ)

σ2
`

{(
µ̇2 −µ̇1

−µ̇1 0

)
+

2µ1µ̇1 − µ̇2

σ2
`

(
µ2 −µ1

−µ1 1

)}
+ Op(T

d1−1/2−κ).
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Using the last result together with (4.21) and µ′ = (1, µ1), after some algebra and numerous

cancellations, we obtain, for some κ > 0,

ST µ′(H−1 −H
−1

T )ν(x)(4.23)

=
ST (XT − θ)

σ2
`

{
µ̇1[K(x)− µ1G(x)]

}
+ Up(T

d+d1−κ).

Clearly, the lemma follows from (4.16), (4.20), (4.22), and (4.23). 2

The following corollary describes the limiting distribution of the empirical process V̂T

under the conditions of Lemma 4.3.

Corollary 4.1 Under the conditions of Lemma 4.3,

(L(T )L1(T )T d+d1)−1V̂T (x) =⇒ V (x) (Z Z1 − U),

where Z,Z1 are the same as in (4.9) and where U is the stochastic integral (defined on the

same probability space as Z, Z1):

U :=

∫ 1

−∞

∫ 1

−∞

{∫ 1

0

(τ − x)
−(1−d)
+ (τ − x1)

−(1−d1)
+ dτ

}
W (dx)W1(dx1),

with W (dx), W1(dx) being mutually independent Gaussian white noises with zero mean and

variance E(W (dx))2 = E(W1(dx))2 = dx.

Remark 4.2 Recall that Z and Z1 are independent Gaussian r.v.’s, while the double Ito-

Wiener integral U is non-Gaussian and is well-defined iff d + d1 > 1/2. See Avram and

Taqqu (1987) for the weak convergence to the multiple Ito-Wiener integrals of the type U

and Dobrushin and Major (1979) for their characteristic functions.

Lemma 4.4 Assume h is of the form (4.18) and satisfies the conditions of Lemma 4.3, and

let d + d1 < 1/2. Then

T−1/2V̂T (x) −→D G(x),(4.24)

where G(x), x ∈ R, is a Gaussian process with zero mean and covariance

Cov(G(x),G(y))(4.25)

=
∞∑

t=−∞
Cov(ε0, εt)Cov

(
I(X0 ≤ x)−G(x)− (h(X0)− µ)′H−1ν(x),

I(Xt ≤ y)−G(y)− (h(Xt)− µ)′H−1ν(y)
)

=
∞∑

t=−∞
Cov(ε0, εt)Cov

(
I(X0 ≤ x)−G(x)− σ−2

` (`(X0)− µ1)(K(x)− µ1G(x)),

I(Xt ≤ y)−G(y)− σ−2
` (`(Xt)− µ1)(K(y)− µ1G(y)

)
,
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where `, µ1, σ2, K(x) are the same as in Lemma 4.3.

Sketch of a Proof. The lemma follows from (4.13), provided one shows

T−1/2

T∑
t=1

εt(I(Xt ≤ x)−G(x)− (h(Xt)− µ)′H−1ν(x)) =⇒ G(x),(4.26)

ST µ′(H−1ν(x)−H
−1

T νT (x)) = up(T
1/2),(4.27)

( T∑
t=1

εt(h(Xt)− µ)
)′

(H
−1

T νT (x)−H−1ν(x)) = up(T
1/2).(4.28)

From Lemma 4.1 (4.4) and the proof of Lemma 4.3, we have

H
−1

T νT (x)−H−1ν(x)(4.29)

=
[
H−1 + (H

−1

T −H−1)
)(

ν(x) + (νT (x)− ν(x)
)
−H−1ν(x)

= Op

(
‖H−1

T −H−1‖
)

+ Op(sup
x
|νT (x)− ν(x)|)

= Up(|XT − θ|).

Therefore, by (4.6), and the property of slowly varying functions,

ST µ′(H−1ν(x)−H
−1

T νT (x)) = Up(|ST (XT − θ)|) = up(T
d+d1+κ), (∀κ > 0).

As d + d1 < 1/2, this proves (4.27). In a similar way, from (4.3), (4.6) and (4.29), we obtain

( T∑
t=1

εt(h(Xt)− µ)
)′[

H
−1

T νT (x)−H−1ν(x)
]

= Up(|WT (XT − θ)|) = Up(|L1(T )|T 1/2+d1−1/2)

= Up(T
d1+κ), (∀κ > 0).

This proves (4.28), as d1 < 1/2.

The proof of the finite dimensional distributional convergence of the sum in (4.26) can

be carried out using the ideas of Koul and Surgailis (1997) or Ho and Hsing (1997). The

proof of the tightness is carried out along the lines of Dehling and Taqqu (1989) and Koul

and Surgailis (1997). It is important to note that under conditions of Lemma 4.4, the sum

of the covariances in (4.25) is absolutely convergent, for any x, y ∈ R, due to Cov(ε0, εt) =

O(L2(t)t−(1−2d)) and Cov(I(X0 ≤ x) + c̃`(X0), I(Xt ≤ y)) + c`(Xt)) = O(L2
1(t)t

−(1−2d1)), for

any constants c̃, c. 2
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Case V (x) ≡ 0. We shall consider the linear regression case h(x)′ = (1, x) only. Then,

µ̇1 = 1, µ1 = θ, and the condition V (x) ≡ 0 is equivalent to X being normally distributed,

i.e. that

g(x) = (2πσ2)−1/2e−(x−θ)2/2σ2

.

Thus, assume in the rest of this sub-section that the process Xt itself is Gaussian. Here, we

must consider the following two sub-cases:

Sub-case 1: d1 + d2 > 1/2, d1 + 2d2 < 1:

In this case, the leading term in the approximation of the process V̂T (x) has the form:

V̂T (x) =
T∑

t=1

εt(I(Xt ≤ x)−G(x) + g(x)(Xt − θ)) + up(T
1/2).

Using standard Hermite expansions and the ideas in Csörgö and Mielniczuk (1996), one

obtains in this case

T−1/2V̂T (x) =⇒ Ψ(x),

where Ψ(x) is a Gaussian process with mean zero and covariance

Cov(Ψ(x), Ψ(y))

=
∞∑

t=−∞
E(ε0εt)E

(
[I(X0 ≤ x)−G(x) + g(x)X0][I(Xt ≤ y)−G(y) + g(y)Xt]

)
.

Sub-case 2: d1 + d2 > 1/2, d1 + 2d2 > 1:

In this case, similar calculations based on Hermite expansions indicate that

(L(T )L1(T ))T d1+2d2−1/2)−1V̂T (x) =⇒ (1/2)ġ(x)(U1,2 − ZZ2 + 2ZZ2
1 − 2UZ1),

where the stochastic integrals Z,Z1, U are the same as in Corollary 4.1 and U1,2, Z2 are all

defined on the same probability space, and the last two are given by

U1,2 :=

∫ 1

−∞

∫ 1

−∞

∫ 1

−∞

{∫ 1

0

(τ − x)
−(1−d)
+ (τ − x1)

−(1−d1)
+ (τ − x2)

−(1−d1)
+ dτ

}

×W (dx)W1(dx1)W1(dx2),

Z2 :=

∫ 1

−∞

∫ 1

−∞

{∫ 1

0

(τ − x1)
−(1−d1)
+ (τ − x2)

−(1−d1)
+ dτ

}
W1(dx1)W1(dx2).
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5 Proof of the weak convergence of T−1/2V̂T under mar-

tingale difference errors

This section contains the proof of the weak convergence of T−1/2V̂T to a Gaussian process in

the case of the martingale difference errors. The result is stated and proved in Lemma 5.4.

The proof of this lemma is facilitated by Lemmas 5.1-5.3 below.

Recall (1.3), (1.4) and (1.5). Let

Xil :=
l−1∑

k=0

b1,kξi−k, X̃il :=
∞∑

k=l

b1,kξi−k, X̃i0 = Xi,

Gl(x) := P (Xil ≤ x), g
(p)
l (x) :=

dpGl(x)

dxp
, l ≥ 1, p ≥ 0; gl(x) :=

dGl(x)

dx
.

The following two lemmas are analogous to Lemma 5.1 and 5.2 of Koul and Surgailis (2002),

thus their proofs can be deduced from there and Lemma 5.1 of Koul and Surgailis (2001).

Here we only give the proof of the second part of Lemma 5.2.

Lemma 5.1 Under assumptions of (1.4) and (1.5) with r = 3, there exist a positive integer

l0 ≥ 1 and a constant C such that for any l ≥ l0, x ∈ R,

|g(p)(x)|+ |g(p)
l (x)| ≤ C(1 + |x|3)−1, p = 0, 1, 2,

|gl(x)− gl−1(x)| ≤ Cb2
l (1 + |x|3)−1.

Lemma 5.2 Let γ(x) := (1 + |x|3)−1 and f(x), x ∈ R be a real valued function such that

|f(x)| ≤ Cγ(x), |f(x)− f(y)| ≤ C|x− y|γ(x),(5.1)

hold for any x, y ∈ R, |x− y| ≤ 1. Then there exists a constant C1 depending only on C in

(5.1), such that for any x, y ∈ R,

|f(x + y)| ≤ C1γ(x)(1 ∨ |y|3).(5.2)

Moreover, for any x1 < x2,
∣∣∣∣
∫ x2

x1

[f(u + v + w)− f(u + w)]du

∣∣∣∣ ≤ C1(|v| ∨ |v|3)(1 ∨ |w|3)
∫ x2

x1

[1 + |u|3]−1du.(5.3)

Proof. We only prove the (5.3). First, consider |v| ≤ 1, then by (5.1) and (5.2), the LHS of

(5.3) does not exceed

C|v|
∫ x2

x1

(1 + |u + w|3)−1du ≤ C|v|(1 ∨ |w|3)
∫ x2

x1

(1 + |u|3)−1du.
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Next, consider |v| > 1. Then the LHS of (5.3) does not exceed

C

∫ x2

x1

(1 + |u + v + w|3)−1du + C

∫ x2

x1

(1 + |u + w|3)−1du.(5.4)

By (5.2), the first term of this bound does not exceed

C(1 ∨ |v + w|3)
∫ x2

x1

(1 + |u|3)−1du ≤ C|v|3(1 ∨ |w|3)
∫ x2

x1

(1 + |u|3)−1du.

The second term of (5.4) follows similarly. This proves the lemma. 2

To state the next important result we now let

η := 1− 2d1, µ(x, y] :=

∫ y

x

1

1 + |u|3 du, −∞ ≤ x ≤ y ≤ ∞.

Lemma 5.3 Under the assumptions (1.3), (1.4) and (1.5) with r = 3, there exists a constant

C such that

∣∣∣Cov(I(x1 < X0 ≤ x2), I(x2 < Xt ≤ x3))
∣∣∣ ≤ Ct−η µ1/2(x1, x2] µ

1/2(x2, x3],(5.5)

for all positive integers t and for all −∞ ≤ x1 ≤ x2 ≤ x3 ≤ ∞.

Proof. Fix a positive integer i. Let G(x, y) := G(y)−G(x), G0(x); = I(x ≥ 0), and

Ui,l(x2, x3) = Gl−1(x2 − X̃i,l−1, x3 − X̃i,l−1)−Gl(x2 − X̃i,l, x3 − X̃i,l)

= U
(1)
i,l (x2, x3) + U

(2)
i,l (x2, x3),

U
(1)
i,l (x2, x3) = Gl(x2 − X̃i,l−1, x3 − X̃i,l−1)−Gl(x2 − X̃i,l, x3 − X̃i,l),(5.6)

U
(2)
i,l (x2, x3) = Gl−1(x2 − X̃i,l−1, x3 − X̃i,l−1)−Gl(x2 − X̃i,l−1, x3 − X̃i,l−1).

Then one has the telescoping identity:

I(x2 < Xi ≤ x3)−G(x2, x3) =
∞∑

l=1

Ui,l(x2, x3).(5.7)

It thus suffices to show the following where l0 is as in Lemma 5.1:

E
[
Ui,l(x2, x3)

]2

≤ Cµ(x2, x3], l = 1, 2, · · · , l0,(5.8)

E
[
U

(q)
i,l (x2, x3)

]2

≤ C l−1−η µ(x2, x3], l > l0, q = 1, 2.(5.9)
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These bounds together with the orthogonality of (5.7) imply

∣∣∣Cov(I(x1 < X0 ≤ x2), I(x2 < Xt ≤ x3))
∣∣∣ =

∣∣∣
∞∑

l=1

EUt,t+l(x2, x3)U0,l(x1, x2)
∣∣∣

≤
∞∑

l=1

E1/2[Ut,t+l(x2, x3)]
2 E1/2[U0,l(x1, x2)]

2

≤ C

∞∑

l=1

(i + l)−(1+η)/2 l−(1+η)/2µ1/2(x1, x2]µ
1/2(x2, x3],

≤ C t−η µ1/2(x1, x2]µ
1/2(x2, x3].

Proof of (5.8). According to the definition, we have

E
[
Ui,l(x2, x3)

]2

≤ 2[EG2
l−1(x2 − X̃i,l−1, x3 − X̃i,l−1) + EG2

l (x2 − X̃i,l, x3 − X̃i,l)]

≤ 2[EGl−1(x2 − X̃i,l−1, x3 − X̃i,l−1) + EGl(x2 − X̃i,l, x3 − X̃i,l)]

≤ 4G(x2, x3) ≤ C

∫ x3

x2

[1 + |u|3]−1du = C µ(x2, x3].

Proof of (5.9). For q = 1,

U
(1)
i,l (x2, x3) =

∫ x3

x2

[gl(u− blξi−l − X̃i,l)− gl(u− X̃i,l)] du.

Apply Lemmas 5.1 and 5.2, (5.3), to obtain the following inequality

|U (1)
i,l (x2, x3)| ≤ C(|blξi−l| ∨ |blξi−l|3)(1 + |X̃i,l|3)

∫ x3

x2

[1 + |u|3]−1du.

On the other hand, (5.6), the integrability of gl, g′l, which in turn follows from Lemma 5.1,

one also obtains

|U (1)
i,l (x2, x3)| ≤ C(|blξi−l| ∧ 1).

These bounds together with the fact that (x ∨ x3)(x ∧ 1) ≤ x2 + x3, for any x > 0, and the

independence of {ξi} imply that

E
[
U

(1)
i,l (x2, x3)

]2

≤ C(E|blξi−l|2 + E|blξi−l|3)(1 + E|X̃i,l|3)
∫ x3

x2

[1 + |u|3]−1du

≤ Cb2
l µ(x2, x3] ≤ C l−1−ηµ(x2, x3],

Note that here the second inequality follows from E|X̃i,l|3 ≤ C, which in turn follows from

the Rosenthal inequality and (1.5) with r = 3:

E
∣∣∣
∞∑

k=`

bkξk

∣∣∣
3

≤ C

∞∑

k=`

E|bkξk|3 + C
( ∞∑

k=`

E|bkξk|2
)3/2

≤ C.
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This proves (5.9) for q = 1.

For q = 2, apply Lemmas 5.1 and 5.2 to obtain

|U (2)
i,l (x2, x3)| ≤

∣∣∣
∫ x3

x2

[gl(u− X̃i,l−1)− gl−1(u− X̃i,l−1)] du
∣∣∣

≤ C

∫ x3

x2

b2
l (1 + |u− X̃i,l−1|3)−1 du

≤ Cb2
l (1 + |X̃i,l−1|3) µ(x2, x3]

Again, as |U (2)
i,l (x2, x3)| ≤ 2, we obtain (5.9) for q = 2. This completes the proof of (5.5). 2

Now consider the process VT and assume that (1.1) holds. Note that VT (−∞) =

0, VT (∞) =
∑T

t=1 εt. Thus the process T−1/2VT is well defined in D[−∞,∞]. The next

lemma gives the weak convergence of the process T−1/2VT to a continuous Gaussian limit in

D[−∞,∞]. Recall that G stands for the d.f. of X0.

Lemma 5.4 Assume (1.1) with suptEε4
t < ∞, (1.3), (1.4) and (1.5) with r = 3 hold. Then,

T−1/2VT =⇒ σe B ◦G in the space D[−∞,∞],(5.10)

T−1/2V̂T =⇒ WG in the space D[−∞,∞],(5.11)

where B ◦ G is a continuous Brownian motion on R with respect to time G, and WG is a

continuous mean zero Gausian process on R with WG(−∞) = 0, and the covariance function

K(x, y) := σ2
e [G(x ∧ y)− ν(x)′H−1ν(y)], x, y ∈ R.

Proof. Apply the CLT for martingales (Hall and Heyde: 1980, Corollary 3.1) to show that

the finite dimensional distributions converge weakly to the right limit, under the assumed

conditions.

To prove the tightness, fix −∞ < x1 < x2 < x3 < ∞. Let VT ≡ T−1/2VT . Then

[VT (x3)− VT (x2)]
2[VT (x2)− VT (x1)]

2

= T−2

[
T∑

t=1

εtI(x2 < Xt ≤ x3)

]2 [
T∑

t=1

εtI(x1 < Xt ≤ x2)

]2

= T−2
∑

s,t,k,l

YsYjWkWl

where Ys = εsI(x2 < Xs ≤ x3) and Ws = εsI(x1 < Xs ≤ x2).

Now, if the largest index among s, t, k, l is not matched by any other, then E{YsYtWkWl}
= 0. Also, since the two intervals (x2, x3] and (x1, x2] are disjoint, YsWs ≡ 0 for all s, and
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because the errors are homoscedastic martingale differences, see (1.1), independent of Xt’s,

we have E{YsWtY
2
k } = 0, for all s < k, t < k. Hence,

E

{
T−2

∑

s,t,k,l

YsYtWkWl

}
= T−2

∑

s,t<k

[
E{YsYtW

2
k }+ E{WsWtY

2
k }

]
.

But, for a k fixed,

E{YsYtW
2
k } = E(εsεtε

2
k) EI(x2 < Xs ≤ x3, x2 < Xt ≤ x3)I(x1 < Xk ≤ x2)

= 0, s 6= t < k,

= σ4
e EI(x2 < Xs ≤ x3)I(x1 < Xk ≤ x2), s = t < k.

A similar fact is true for E{WsWtY
2
k }. Consequently, summing over k from 1 to T , in view

of the inequality (5.5), we have

E
{
[VT (x3)− VT (x2)]

2[VT (x2)− VT (x1)]
2
}

≤ C T−2
∑

1≤s<k≤T

{
(k − s)−ηµ1/2(x1, x2]µ

1/2(x2, x3] + [G(x2)−G(x1)][G(x3)−G(x2)]
}

≤ C
{

T−ηµ(x1, x3] + [G(x3)−G(x1)]
2
}

.

This together with Theorem 12.1, equations (12.5), (12.10) of Billingsley (1968) and a chain-

ing argument similar to that of Dehling and Taqqu (1989) and Koul and Mukherjee (1993)

yields the tightness of the process VT . Details are left out for the sake of brevity. This

completes the proof of (5.10).

To prove (5.11), first we note that from (2.2) and in view of the Ergodic Theorem, we

obtain that

T−1/2V̂T (x) = T−1/2
[
VT (x)−Z ′

T H−1 ν(x)]− T−1/2Z ′
T [H

−1

T νT (x)−H−1 ν(x)]

= T−1/2

T∑
t=1

εt[I(Xt ≤ x)− h(Xt)
′ H−1 ν(x)] + up(1),

where up(1) is a sequence of stochastic processes on R tending to zero uniformly, in prob-

ability. This together with (5.10) and the uniform continuity of G and ν(x) completes the

proof of (5.11). 2
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