Population: Pop Mean μ (mu) $\mu = \frac{\sum x}{N}$

Sample: Mean \bar{x} $\bar{x} = \frac{\sum x}{n}$

Sample Standard Deviation s_x $s_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$
Look at nice algebraic properties of σ_x calc

Also

$\sigma_x \propto \sqrt{\overline{x^2} - \overline{x}^2}$

If you apply this to sample data you can get σ_x out of it

Just

$\sigma_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$

As

$\sigma_x = \sqrt{\frac{m}{m-1} \frac{1}{n} \overline{x^2} - \overline{x}^2}$

Likewise

$\sigma_y = \sqrt{M_{y^2} - \overline{y}^2}$

$\sigma_y = \sqrt{\frac{m}{m-1} \overline{y^2} - \overline{y}^2}$

So (example) given data $m = 400$

$\overline{x} = 18.2 \quad \overline{x^2} = 500 \quad \sigma_x = \sqrt{\frac{400}{399} \sqrt{500 - 18.2^2}}$
\[y = 2.7 \text{ AVG CLASS LEVEL} \quad y^2 = 11 \text{(Day)} \]

\[y = \sqrt{\frac{400}{399}} \sqrt{11 - 2.7^2} \]

Note: Close to 1. Beware precision issues.

If also \(xy = 65 \) \(\Rightarrow n = \frac{xy - \bar{x} \bar{y}}{\bar{x} \bar{y}} = \frac{65 - (18.2)(2.7)}{\sqrt{500 - 18.2^2} \sqrt{11 - 2.7^2}} \)

All good for \(xy, x^2, y^2, xy \).

\[M_{ax+b} = a \quad M_{x+b} \]

\[\bar{x} \bar{y} = \frac{1}{|a|} \sigma_x \]

\[ax + b, cy + d \quad \text{AVGS.} \]

\[\bar{x}, \bar{y} \quad \text{if} \quad ac > 0 \]
LOOKEE! SAMPLE PLOT M = 10 POINTS GIVES RED SAMPLE REGRESSION

CLOSELY COINCIDES WITH THE POPULATION REGRESSION!!

IMPORTANT! M = 10 PLOT CAN KEEP YOU ON TRACK.

RED LINE IS SAMPLE REGRESSION LINE

POP LINE NAIVE
Now to ch 23 readings (syllabus)

Matter of estimating population mean μ. From random eq. probability with replacement.

"One possible estimator of μ is \bar{x}.

Other possibilities include

Trimmed mean — e.g. toss out $X_{(1)} + X_{(m)}$

(earliest, censored)

And avg $n-2$ remaining.

Non-parametric weights $w_1 \ldots w_n$ on $X_{(1)} \leq X_{(m)}$

Method of assigning

(esp) Margin of error $1.96 \frac{\sigma}{\sqrt{n}}$

Margin of error for \bar{x}

95% confidence interval for μ:

$\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$

Claim: Probability $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$ covers μ is ≈ 0.95.
Why so??

Imagine a pop of scores 16 17 18 19 20

Pop

\[\text{Suppose} \]

\[\mu_x = 17.7 \quad \text{(say)} \]

\[\sigma_x = 1.8 \quad \text{!! (say)} \]

Take \(m = 100 \)

\[\bar{x} \]

\[\pm 1.96 \times \sigma/\sqrt{m} \]

One sample of \(m \)

Random

With REPL

Sample

\[\bar{x}, \sigma_x, m \]

One sample

\[\bar{x} \pm 1.96 \times \sigma/\sqrt{m} \]

\[\bar{x} \]

An est of

Central limit theorem

\[\frac{\bar{x}}{\mu_x} \pm \frac{\sigma}{\sqrt{m}} \]

\[\bar{x} \]

Possible
CENTRAL LIMIT THEOREM

Dist of $\frac{\bar{X} - M_x}{\sigma_{X/Nn}} \rightarrow Z \text{ Distn } N(0,1)$

Also (more useful form):

$(\bar{X} - M_x) / (\sigma_X / \sqrt{n}) \rightarrow Z \text{ Distn}$

Applied:

$P\left(\left| \frac{\bar{X} - M_x}{\sigma_X / \sqrt{n}} \right| < 1.00 \right) \approx P(1.21 < 1.00) = .68$

This is equal to M_x covered by $\bar{X} \pm 1.00 \frac{\sigma_X}{\sqrt{n}}$.
App: proby M_x in
NOTE: If your sample size is without replacement, modify as follows:

\[n' = \frac{n}{1 - \frac{N-n}{N}} \]

Entry covers \(\mu \sim (\text{Table E}) 98\% \)

So, reject \(H_0: \mu = 3.23 \) if \(z > 2.326 \).
Students: How to make do with small n.

Looked at $\frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim Z$ as $n \to \infty$ regardless of form of μ_0n!!

If x_1, \ldots, x_n are from a normal population

If population is (approximately) normal

Think $x_i = \xi_i + \mu$ persists thus thru

$\frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{\bar{z}}{\sigma / \sqrt{n}}$ tabulate this dist N
For \(m = 2, 3, 4 \ldots \text{ad \textit{ad}} \) \(m = \infty \) \textit{back}.

Say \(B_0 \) is normal eq to \(\mu = 100 \), \(\sigma = 15 \)

Sample \(n = 4 \) persons.

\[
\bar{x} = 106 \quad \sigma_x = 13.8 \quad n = 4
\]

Use 95% interval \(\bar{x} \pm t \frac{\sigma_x}{\sqrt{n}} \)

\[
106 \pm \frac{2.776}{2.776} \frac{13.8}{\sqrt{4}}
\]

\(\text{Deg} = n-1 = 3 \)

So \(t-\text{interval} \):

\[
\bar{x} \pm (t \text{ score}) \frac{\sigma_x}{\sqrt{n}} \text{ having proby of exactly proby 95% of cover}
\]