Here is the list of exam 2 scores arranged by size.

Your raw score (number correct) on exam 2 will be the last score in the scores reported to you by the registrar in a mailing that should come to you later today.

Here is the formula for converting your raw score into a GRADE.

exam 2 GRADE = 2.0 + 0.4 (exam 2 raw score - 12)

Questions 1 through 4 refer to the figure below. The distribution of (x, y) is 2 - dimensional normal (bi - variate normal) vaguely represented by a modest - sized sample of points (x, y). All curves plotted are for the population not for the sample. TXAM 2

a) 2

b) 5 c) 4

d) 1

5 OMT NO 4 14

> 5*OMT NO 0 DIFF

0 DIFF 5 0 DISC 14

0 100

3. Use the regression line to predict y conditional on x = 32 (choose φ

b) 8

c) 6

d) 5

4. Determine standard deviation of error of prediction at x = 20 (not a type). b) 4.4 c) 1.4 d) 2.4 e) 0.4

a) 3.4

(choose closest answer)

TEST 7300 09 10 15 3 * 0 DISC 68

Questions 5-8 assume that score x in a partic mean 10 and standard deviation 4.	cular population is distributed as normal with
5. Determine the standard score z of a person has a) 1.46 b) 0.9 c) 0.2 d) 1.25 e) 0.75	ving x score 15. 1 2 3 4* 5 0MT NO 105 1 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
6. Determine P(x < 15) (choose nearest answer) a) 0.94 b) 0.52 c) 0.89 d) 0.97 e) 0.6	1 4 4
7. Find the 90th percentile of standard normal z a) 1.28 b) 1.04 c) 0.86 d) 0.71 e) 0.5	••• · · · · · · · · · · · · · · · · · ·
8. Using #7 find the 90th percentile of x. a) 10.61 b) 13.03 c) 15.12 d) 11.71 e)	1* 2 3 4 5 0MT NO 105 U100 0 0 0 0 0 0 DIFF 25 L 32 14 29 11 14 0 DISC 68 1 2 3* 4 5 0MT NO 105
Questions 9 through 11 deal with algebraic pateriation and correlation.	U 0 4 96 0 0 0 DIFF 31 L 11 29 21 29 7 4 DISC 75
9. If sample mean of a list y is 5 what is the samp a) 13 b) 15 c) 3 d) 1 e) 10	ITEM 9 TEST 7300 09 10 15 1* 2 3 4 5 OMT NO 105 U 89 11 0 0 0 0 DIFF 13 L 71 14 0 11 4 0 DISC 18
10. If s_x (of list x) is equal to 2 what is the sample (a) 2 b) 0.33 c) 8 d) 10 e) 6	e standard deviation of the list 3x + 4? ITEM 10 TEST 7300 09 10 15 1 2 3 4 5*ONT NO 105
1. If correlation between (x, y) is 0.3 what is the 0.9 b) 4.9 c) 0.6 d) 0.3 e) none of t	u 0 0 0 7 93 0 DIFF 39 L 54 0 4 29 14 0 DISC 79 correlation between (x+4, 3y+2)? he others
	ITEM 11 TEST 7300 09 10 15 1 2 3 4* 5 OMT NO 105 U 0 0 0 100 0 0 DIFF 10 L 7 0 11 71 11 0 DISC 29

Questions 12 through 15 are about calculations of means, standard deviations, correlation in rerlation to the following data of (x, y) pairs (column means are recorded at the bottom):

ı	K	Y	X2	y	XY	1
	O	Ō	Ö -	0	0	
	9	3	81	3	27	
	9	9	81	81	91	
	220	10021	and a second		Years	
	6.	4.	54.	.OE	36.	j

12. Which of the five lines is the regression line?

13. Is the least squares line for this data the same as the regression line?

a) Yes b) No

0 DIFF 0 DISC 39

- 14. Calculate the sample standard deviation S_{χ} .
- a) 3.812
- b) 2.798
- c) 1.638
- d) 5.196 e) 3.894

15. Calculate the correlation R for the sample data.

- a) 0.58
- b) 0.76
- c) 0.47
- d) 0.69
- e) 0.61

ITEM 15 0 DISC 82

Questions 16 through 20 concern T and z based confidence intervals and the margin error. Unless specified in a problem, the population scores are "not assumed" to be norn distributed. Suppose with-replacement equal-probability sampling and						
	c =48	$s_x = 6$		N=800.		
16. Give the a) 1.1 b)	e estimated 1.6 c)	margin of erro	r for the sample) e) 1.2	e mean. ITEM 16 TEST 7300 09 10 15 1 2 3 4* 5 OMT NO 105 U 0 0 0 100 0 0 DIFF 31 L 4 18 32 36 11 0 DISC 64		

17. Give the *right endpoint* of the 95% confidence interval for μ_x based on this data (choose the closest value).

a) 49.1 b) 49.2 c) 49.3 d) 49.4 e) 49.5

1 2 3 4* 5 OMT NO 105
1 2 3 4* 5 OMT NO 105
U 0 4 0 96 0 0 DIFF 47
L 18 29 21 18 14 0 DISC 75

18. If instead of sampling with-replacement we sampled without-replacement what would be the right endpoint of the 95% confidence interval for μ_x based on this data (choose the closest value)?

a) 49.10 b) 49.21 c) 49.34 d) 49.46 e) 49.58

THEM 18 TEST 7300 09 10 15

1 2 3* 4 5 OMT NO 105

U 4 21 68 7 0 0 DIFF 54

L 14 18 18 32 18 0 DISC 50

19. If instead we had this same data but from a sample of only n = 10 and if the population distribution is known to be close to normal (making N essentially infinite) what number would we use in place of the z-score when calculating a 95% confidence interval for μ_x ?

a) 2.63 b) 2.87 c) 3.05 d) 2.26 e) 2.48

1 2 3 4* 5 0MT NO 105 U 0 4 0 96 0 0 DIFF 36 L 25 11 14 32 18 0 DISC 64

20. If the data above refer to a sample of n = 10 from a normal population give the right endpoint of a 95% confidence interval for the population mean.

a) 61.6 b) 49.4 c) 52.3 d) 62.9 e) 58.4

1 2 3* 4 5 OMT NO 105 U 0 7 86 4 4 0 DIFF 51