STT 200 Spring 2009 Lecture Outline 1 - 16 - 09 Spring 2009

Estimated Margin of Error for $\hat{p}_1 - \hat{p}_2$. Consult page 567 and the supporting readings pp. 557-563.

Random page sampling. In the posted outline for lecture 1-12-09 we randomly sampled 36 page numbers from 001 to 767.

(716	32	463			
473	200	731			
727	39	759			
"(skip 944)"	43	"(skip 890 and 877)"			
764	364	132			
512	678	98			
181	27	133			
622	"(skip 922)"	666			
310	"(skip 844)"	720			
"(skip 945)"	639	112			
285	"(skip duplicate 112)"	429			
471	"(skip duplicate 112)"	647			
"(skip 770)"	183	71			
359	412	585			
428	42)			

Every page of the book had the same chance of making it into this sample of n = 36 pages. I've highlighted in **bold** those sample pages having a picture or graphic.

Here are the 36 sample pages sorted:

{**27**, **32**, 39, **42**, 43, 71, **98**, **112**, **132**, 133, **181**, **183**, **200**, **285**, **310**, 359, **364**, 412, 428, 429, 463, **471**, 473, 512, **585**, **622**, 639, **647**, **666**, 678, 716, **720**, **727**, 731, 759, **764**}

A Question. Some pages of our book have a picture or graphic. How do the frequencies of such pages compare in the first half of the book versus the last half?

Our solution. We'll estimate the difference $p_1 - p_2$ between the probabilities:

 p_1 = probability that a page < 384 has a picture or graphic

 p_2 = probability that a page > 383 has a picture or graphic using the data above.

Examining the data we find

a. Sample pages < 384 vs > 383 total 17 early, 19 late.

b. Sample pages total 20 with picture/graphic, 16 without.

Try to be careful in the presence of such a *coincidence*. It will happen from time to time and can be a source of major error if we're not observant.

It helps to organize these counts in a *contingency table*:

		< 384	> 383	total
Contingency counts for 36 random pages:	with p/g	12	8	20
	without	5	11	16
	total	17	19	36

* We may regard the 17 sample pages < 384 as a random sample of 17 pages from the first half of the book (383 pages).

* Likewise, we may regard the 19 sample pages > 383 as a random sample of 19 pages from the second half of the book (384 pages).

* The sample of 17 pages from the first half is *statistically independent* of the sample of 19 pages from the second half in the sense that *neither can tell us anything about the other that we would not know anyway*.

Statistical independence is a backbone concept in statistics, and is largely responsible for the fabled "Law of Averages" which we study later.

Recall the Question: Some pages of our book have a picture or graphic. How do the frequencies of such pages compare between the first half of the book and the last half?

Recall our solution. We'll estimate the difference $p_1 - p_2$ between the probabilities:

 p_1 = probability that a page < 384 has a picture or graphic (of 383 pages)

 p_2 = probability that a page > 383 has a picture or graphic (of 384 pages) using the data from the contingency table above.

1a. Needed estimates.

Point estimate of p_1 is $\frac{12}{17} \sim 0.70588$

(this is \hat{p}_1 , we selected 17 pages < 384 of which 12 had a picture or graphic).

Point estimate of p_2 is $\frac{8}{19} \sim 0.42105$

(this is \hat{p}_2 , we selected 19 pages > 383 of which 8 had a picture or graphic).

Our point estimate of $p_1 - p_2$ is $\hat{p}_1 - \hat{p}_2 \sim 0.70588 - 0.42105 \sim 0.28483$ (this seems to be a fairly large difference, but what about the estimated margin of error of $\hat{p}_1 - \hat{p}_2$)? 1b. Estimated margin of error of the estimator $\hat{p}_1 - \hat{p}_2 =$

$$1.96 \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} \frac{N_1-n_1}{N_1-1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2} \frac{N_2-n_2}{N_2-1}}$$

= 1.96 $\sqrt{\frac{.70588 (1-.70588)}{17} \frac{383-17}{383-1} + \frac{.42105 (1-.42105)}{19} \frac{384-19}{384-1}}$
~ 0.303185

1c. Claim made for estimated margin of error: Provided n_1 , N_1 - n_1 , n_2 , N_2 - n_2 are all "large enough"

Around 95% of random samples of 17 from 383 and 19 from 384 have

 $\hat{p}_1 - \hat{p}_2 \pm \text{estimated margin of error}$

that will cover the actual value of $p_1 - p_2$.

Our $n_1 = 17$ and $n_2 = 19$ are on the small side so we'll have to say the confidence level will not so closely approximate 95%. But let's press on snce the data are still informative.

Our random sample of 17 from 383 and 19 from 384 has produced the interval

$$\hat{p} \pm \text{estimated margin of error} = 0.28483 \pm 0.303185$$

= [-0.01835, 0.58801]

This 95% confidence interval for $p_1 - p_2$ just contains 0, suggesting that we cannot confidently exclude the possibility that $p_1 = p_2$. It is within the estimated margin of error of our point estimate $\hat{p}_1 - \hat{p}_2 = 0.28483$ of $p_1 - p_2$.