Estimated Margin of Error for difference of sample means

Spring 2009

 $\bar{x}_1 - \bar{x}_2$. This follow-on to lecture 1-14-09 extends the margin of error concept given there for

a single sample average \overline{x} . We require samples sizes n_1 , N_1 - n_1 , n_2 , N_2 - n_2 be all "large enough" so that a bell curve approximation is justified. I will **not** introduce Student's-t at this point, so the readings of pp. 616-619 are relevant except the bottom of 619.

A Question: What is the difference μ_1 - μ_2 where

 μ_1 = average number of graphics per page in pages 1 through 383

 μ_2 = average number of graphics per page in pages 384 through 767

of our textboook?

A solution. Randomly sample 17 pages from 001 through 383. Independently of this sample 19 pages from 383 through 767 (384 pages).

Estimate μ_1 - μ_2 by the difference of sample means \overline{x}_1 - \overline{x}_2 where

 \overline{x}_1 = average (mean) of graphics & picture counts for 17 sample pages in 001-383 \overline{x}_2 = average (mean) of graphics & picture counts for 19 sample pages in 384-767

The estimated margin of error in this setup is

$$1.96 \sqrt{\frac{s_1^2}{n_1} \frac{N_1 - n_1}{N_1 - 1} + \frac{s_2^2}{n_2} \frac{N_2 - n_2}{N_2 - 1}}$$

The samples. I've randomly sampled 36 pages by perusing the table of random digits A-94, skipping over those outside the range 001 to 767 (consult the table). Those in **bold** have graphics and I've indicated the number of graphics in parentheses (graphic sub-components of a graphic display are not counted individually. It is a serious point, needing clarification for serious work, but let's just suppose that we'recounting graphics drawing attention to markedly different parts of the page.

(716	32 (1)	463
473	200 (1)	731
727 (1)	39	759
"(skip 944)"	43	"(skip 890 and 877)"
764 (3)	364 (1)	132 (1)
512	678	98 (3)
181 (3)	27 (1)	133
622 (2)	"(skip 922)"	666 (1)
310 (1)	"(skip 844)"	720 (1)
"(skip 945)"	639	112 (5)
285 (1)	"(skip duplicate 112)"	429
471 (1)	"(skip duplicate 112)"	647 (1)
"(skip 770)"	183 (1)	71
359	412	585 (1)
428	42 (2))

Here are the 36 sample pages sorted:

 $\{27(1), 32(1), 39, 42(2), 43, 71, 98(3), 112(5), 132(1), 133, 181(3), 183(1), 200(1), 285(1), 310(1), 359, 364(1), 412, 428, 429, 463, 471(1), 473, 512, 585(1), 622(2), 639, 647(1), 666(1), 678, 716, 720(1), 727(1), 731, 759, 764(3)\}$

Those sample pages less than 384 number 17 and constitute a random sample of 17 from 383. The others number 19 and constitute a random sample of 19 from the 384 pages 384-767.

1a. The sample average number of graphics per page is (for pages < 384)

$$\overline{x}_{1} = \frac{\sum_{i} x_{1i}}{n_{1}} = \frac{1+1+0+2+0+0+3+5+1+0+3+1+1+1+0+1}{17}$$

~1.23529.

The sample standard deviation s_1 (see page 64) is

$$s_1 \sim 1.14564.$$

The sample average number of graphics per page is (for pages > 383)

$$\overline{x}_{2} = \frac{\sum_{i} x_{2i}}{n_{2}} = \frac{0 + 0 + 0 + 0 + 1 + 0 + 0 + 1 + 2 + 0 + 1 + 1 + 0 + 0 + 1 + 1 + 0 + 0 + 3}{19}$$

~ 0.656347

The sample standard deviation s (see page 64) is

```
s_2 \sim 0.781736.
```

The difference of sample means is

$$\bar{x}_1$$
- $\bar{x}_2 \sim 1.23529$ -0.656347 ~ 0.656347 .

1b.

Estimated margin of error of the estimator $\overline{x}_1 - \overline{x}_2$ is calculated as follows:

$$1.96 \sqrt{\frac{s_1^2}{n_1} \frac{N_1 - n_1}{N_1 - 1} + \frac{s_2^2}{n_2} \frac{N_2 - n_2}{N_2 - 1}}$$
$$= 1.96 \sqrt{\frac{1.3125}{17} \frac{383 - 17}{383 - 1} + \frac{0.61111}{19} \frac{384 - 19}{384 - 1}}$$
$$\sim 0.633975$$

1c. Claim made for estimated margin of error: Provided n_1 , N_1 - n_1 , n_2 , N_2 - n_2 are all "large enough"

Around 95% of random samples of 17 from 383 and 19 from 384 have

 $\bar{x}_1 - \bar{x}_2 \pm$ estimated margin of error

that will cover the actual value of $\mu_1 - \mu_2$.

Our $n_1 = 17$ and $n_2 = 19$ are on the small side so we'll have to say the confidence level will not so closely approximate 95%. But let's press on snce the data are still informative.

Our random sample of 17 from 383 and 19 from 384 pages of the book has produced the 95% confidence interval

 \bar{x}_1 - \bar{x}_2 ± estimated margin of error

$$= 0.656347 \pm 0.633975$$
$$= [0.022372, 1.29032]$$

So either $\mu_1 - \mu_2$ is not zero or the confidence interval has failed to cover (~ 5% chance).