1. dependent = strength
 indep = const, 1, agg, add, temp, cure

2. The estimated strength for a mix
 agg = .3
 add = 6.3
 temp = 47
 cure = 12
 is \(\hat{y} = \sum \hat{b} x = 28.2 \ 1 + 1.22 \ .3 + 2.31 \ 6.3 + .26 \ 47 + .36 \ 12 = 59.659 \)

 In[90]= \{28.2, 1.22, 2.31, 0.26, 0.36\} \cdot \{1, 6.3, 47, 12\}
 Out[90]= 59.659

3. Fraction of \(s_y^2 \) explained by regression on the independent variables is \(R^2 = 0.64 \).

 In[91]= .8^2
 Out[91]= 0.64

4. If the plot is elliptical the distribution \(y \) for every specification of the independent variables is normal with mean = 59.659

 \[\text{sd} = \sqrt{1 - .8^2} \] \(s_y = 0.6 \) \(s_y \) (\(s_y \) was not given)

5. For large n, if the normal probability plot of the residuals \(y - \hat{y} \) is close to a straight line this is sometimes taken as evidenced that the CI to follow can be employed.

6. 95% CI for betaHatcure = 0.36 + - 1.96 Sqrt[78.79] = {-17.0377, 17.7577} if the sample size is large and specified assumptions on the errors of regression are made.

 In[93]= 0.36 + {-1, 1} 1.96 Sqrt[78.79]
 Out[93]= {-17.0377, 17.7577}