
Lecture outline for 3 - 15/17 - 10.

This material pertains to chapters 23/24 assigned for MW in the syllabus.

Chapters 23/24 reinforce confidence intervals and tests for a population proportion p, just covered
on exam 2, extending those ideas to confidence intervals and tests for the population mean m.  

                             for p                               for m            assumptions

 z-based CI      p`  ± z 
p` q`

n            x  ± z s
n

       "large n"

 

 t-based                     none                 x  ± tn-1
s
n

    for  all n > 1 if the population is normal

where s denotes the sample standard deviation s = 
⁄i = 1
i = n Hxi-x L2
n-1 .  

The respective claims are:

      P( p in  p`  ± z 
p` q`

n ) Ø P(Z in (-z, z)) as n Ø ¶ in Bernoulli trials with 0 < p < 1.

      

      P( m in  x  ± z s
n

) Ø P(Z in (-z, z)) as n Ø ¶ in independent samples if s < ¶.

    

      P( m in x  ± tn-1
s
n

) ª P(Tn-1 in (-z, z)) for every n > 1 in independent normal samples.     

In all cases we assume with-replacement samples from a fixed population.
 
See  pp.  64/65  for  the  sample  standard  deviation  s  which  is  typically  used  to  estimate  the
population standard deviation s.  

For data taking only the values 1 (success) or 0 (failure) the population mean m is the same as the
probability of success p.  For such data               

                       s
n

 = 
p` q`

n-1   (this is NOT used in the p-case!).

So the z-based CI for p is almost a perfect special case of the z-based CI for m.  In fact for large n
the difference will be negligible.  

Why  is  n-1  in  the  denominator  above?   When estimating  a  population  standard  deviation  s  by  a
sample  standard  deviation  s  notice  that  s  uses  the  squared  deviations  Hxi - x L2  from  sample
average (summed over the sample) whereas the calculation of s uses squared deviations Hxi - mL2

from  population  mean  m  (summed  over  the  population).   As  it  happens,  using  the  sample  mean
always results in a downward bias since the sample mean is "closer to the sample data" than the
actual population mean is.  Substituting n-1 in the denominator defining s was once thought to be a
good compensation for this perceived bias.  Evolving statistical tables accommodated the practice
and it is now "fixed in stone."  

The corresponding test statistics are:

         p` -p0
p` q`

n

 ~ Z distributed if n is large and p0 is the actual population fraction.

          
x -m0

s
n

 ~ Z distributed if n is large and the actual population mean is m0 and s < ¶.        

         
x -m0

s
n

 is exactly Tn-1 distributed if n > 1, the actual population mean is m0, and s < ¶. 

        
Recitation assignment due 3-16-10.

1.   Our  class may be considered to be a random sample with-replacement  from the msu student
body as regards score x = last digit of student number.  It is not that the class is a random sample
of  students  for  surely  that  is  not  the  case,  rather  the  last  digits  are  close  to  being  assigned  as
independent  samples  from the digits  0  through 9  with  equal  probability  for  each.   It  is  unusual  in
statistical  work  that  we know the population  mean but  according to  our  view of  last  digits  we are
confident  that  m  =  (1/10)(0+1+2+  ...  +  8+9)  =  4.5.   The  population  standard  deviation  s  is  also
known to us and is the square root of (1/10)((0-4.5L2+ ... + (9-4.5L2) ~ 2.87... .

a.  Verify the values given for m and (to five decimals or more) s.

b.  The standard error for the sample mean x  is known to be s

n
.  Since we know s we also know

this standard error.  Calculate it for a (with replacement) sample of n = 25.

c.  Here is a sample of n = 25 actually taken by equal probability with replacement samples from
the population {0,1,2,3,4,5,6,7,8,9}.   Make note of  the fact  that  it  would make no difference if
the population had one million of each of the ten digits since we sample with replacement.

3, 8, 9, 9, 3, 0, 3, 6, 6, 5, 0, 5, 9, 7, 3, 9, 9, 8, 5, 0, 8, 2, 2, 7, 7
d.   From  the  sample  (c)  calculate  the  values  of  the  sample  mean  x  and  the  sample  standard
deviation s.

e.  Compare the sample mean with the actual population mean 4.5.  Likewise compare the sample
standard  deviation  s  with  the  actual  population  standard  deviation  s.   The  Job  description  (so  to
speak) of the sample mean is to find the population mean.  Likewise the sample standard deviation
is  tasked  with  finding  the  actual  population  standard  deviation.   Remember,  the  population  could
just  as  well  consist  of  ten  million  or  as  many  as  we  like.   In  view  of  this  it  is  remarkable  if  the
sample mean comes anywhere near m and the sample standard deviation comes anywhere near s!
How well did we do?

For  the  following  we  have  to  pretend  that  we  don't  know  the  population,  its  mean  or  its
standard deviation.  

f.  The population could be estimated by a histogram (or just a bar graph) showing the frequencies
at the distinct values 0 through 9 found in the sample of n = 25 x-scores.  Give such a bar graph or
histogram.

g.  Using the formula x  ± z s
n

 evaluate it to produce a 95% confidence interval for (unknown) m

based on the above sample of 25.

h.  Does your CI (g) cover the actual population mean m?  Ordinarily we would not know the answer
since m is after all not known (the whole point of the sample is to estimate it).  

Out of 100,000 samples of n = 25 (independently gathered) around how many samples of 25 would
produce a 95% CI failing to cover m?

Is such a CI exact for 95% or approximately a 95% CI?

Have we said how large n should be for the CI to work as described?

i.   To  test  the  hypothesis  that  m  is  actually  4.5  (I've  tried  to  convince  you  of  this,  relating  my
conversations with the registrar's office, etc.) we take m0 = 4.5 and evaluate the test statistic

       
x -m0

s
n

 = 

which measures how different x  is from 4.5 (in terms of the estimated standard deviation s
n

of x ).

j.   Just as you did for the P-value of a test of a hypothesis about p (in previous chapters) now do
exactly the same with your statistic (i).  Use it to determine the P-value of a z-test of 
                H0: m = 4.5  versus  HA: m > 4.5.

Is this test one-sided or two-sided?

What entry do you make to the z-table?

What is the P-value for this data?  Does it seem small enough to lead us to seriously question the
null hypothesis I have urged on you?

Sampling from a normal population.  If a population is normal the mean m and standard
deviation s are all that are needed to specify that population completely.  

Importantly, our estimates of them, x  and s, are statistically independent of one another.  This has
deep consequences.  Moreover 

              
x -m
s
n

(at the root of CI) actually is free of m and s (although they are in the data x, the way the above is
constructed nicely cancels them out!).  

So  when sampling  any  normal  population  the  distribution  of  the  above  quotient  does  not  depend
upon  the  particular  (normal)  population!   That  distribution  does  depend  upon  the  sample  size  n
which must be more than 1 for s to be defined.  It is tabulated as the "t-distribution" and has many
uses  in  statistics,  each  with  its  own  "degrees  of  freedom"  calculation  linking  the  particular
application  to  the  particular  n  needed.   So  instead  of  n  in  the  t-table  we  have  something  called
"degrees of freedom."  

In our use of the t -CI for m the "degrees of freedom" is n-1.
                                                           

2.  The following data was obtained as a random sample from a normal population.

                  76.6464, 104.43, 67.0315, 89.8393, 92.8544, 106.225, 121.926
        
a.  Determine:                            sample mean
                               sample standard deviation
                               
                               
b.  Determine a 95% CI for the population mean m.  The degrees of freedom are n-1 and if you look
at  the  bottom of  the  t-table  you  will  find1.96  (the  z-score  you  would  use  for  a  z-CI,  but  not  used
here for small n).  The 1.96 at the table bottom is for "infinite" degrees of freedom (think z) but you
need the entry for 95% CI for degrees of freedom n-1.  The 95% CI is then 

                               x  ± tn-1
s
n

                               
                               
c.  Determine the test statistic for a t-test (not a z-test) of the null  hypothesis that m  is 100 versus
the alternative that it is less than 100.
 
 
 
 
d.   The  t-table  is  not  very  complete  but  you  can  find  a  range  for  the  P-value  (look  for  your  test
statistic in row n-1).



Lecture outline for 3 - 15/17 - 10.

This material pertains to chapters 23/24 assigned for MW in the syllabus.

Chapters 23/24 reinforce confidence intervals and tests for a population proportion p, just covered
on exam 2, extending those ideas to confidence intervals and tests for the population mean m.  

                             for p                               for m            assumptions

 z-based CI      p`  ± z 
p` q`

n            x  ± z s
n

       "large n"

 

 t-based                     none                 x  ± tn-1
s
n

    for  all n > 1 if the population is normal

where s denotes the sample standard deviation s = 
⁄i = 1
i = n Hxi-x L2
n-1 .  

The respective claims are:

      P( p in  p`  ± z 
p` q`

n ) Ø P(Z in (-z, z)) as n Ø ¶ in Bernoulli trials with 0 < p < 1.

      

      P( m in  x  ± z s
n

) Ø P(Z in (-z, z)) as n Ø ¶ in independent samples if s < ¶.

    

      P( m in x  ± tn-1
s
n

) ª P(Tn-1 in (-z, z)) for every n > 1 in independent normal samples.     

In all cases we assume with-replacement samples from a fixed population.
 
See  pp.  64/65  for  the  sample  standard  deviation  s  which  is  typically  used  to  estimate  the
population standard deviation s.  

For data taking only the values 1 (success) or 0 (failure) the population mean m is the same as the
probability of success p.  For such data               

                       s
n

 = 
p` q`

n-1   (this is NOT used in the p-case!).

So the z-based CI for p is almost a perfect special case of the z-based CI for m.  In fact for large n
the difference will be negligible.  

Why  is  n-1  in  the  denominator  above?   When estimating  a  population  standard  deviation  s  by  a
sample  standard  deviation  s  notice  that  s  uses  the  squared  deviations  Hxi - x L2  from  sample
average (summed over the sample) whereas the calculation of s uses squared deviations Hxi - mL2

from  population  mean  m  (summed  over  the  population).   As  it  happens,  using  the  sample  mean
always results in a downward bias since the sample mean is "closer to the sample data" than the
actual population mean is.  Substituting n-1 in the denominator defining s was once thought to be a
good compensation for this perceived bias.  Evolving statistical tables accommodated the practice
and it is now "fixed in stone."  

The corresponding test statistics are:

         p` -p0
p` q`

n

 ~ Z distributed if n is large and p0 is the actual population fraction.

          
x -m0

s
n

 ~ Z distributed if n is large and the actual population mean is m0 and s < ¶.        

         
x -m0

s
n

 is exactly Tn-1 distributed if n > 1, the actual population mean is m0, and s < ¶. 

        
Recitation assignment due 3-16-10.

1.   Our  class may be considered to be a random sample with-replacement  from the msu student
body as regards score x = last digit of student number.  It is not that the class is a random sample
of  students  for  surely  that  is  not  the  case,  rather  the  last  digits  are  close  to  being  assigned  as
independent  samples  from the digits  0  through 9  with  equal  probability  for  each.   It  is  unusual  in
statistical  work  that  we know the population  mean but  according to  our  view of  last  digits  we are
confident  that  m  =  (1/10)(0+1+2+  ...  +  8+9)  =  4.5.   The  population  standard  deviation  s  is  also
known to us and is the square root of (1/10)((0-4.5L2+ ... + (9-4.5L2) ~ 2.87... .

a.  Verify the values given for m and (to five decimals or more) s.

b.  The standard error for the sample mean x  is known to be s

n
.  Since we know s we also know

this standard error.  Calculate it for a (with replacement) sample of n = 25.

c.  Here is a sample of n = 25 actually taken by equal probability with replacement samples from
the population {0,1,2,3,4,5,6,7,8,9}.   Make note of  the fact  that  it  would make no difference if
the population had one million of each of the ten digits since we sample with replacement.

3, 8, 9, 9, 3, 0, 3, 6, 6, 5, 0, 5, 9, 7, 3, 9, 9, 8, 5, 0, 8, 2, 2, 7, 7
d.   From  the  sample  (c)  calculate  the  values  of  the  sample  mean  x  and  the  sample  standard
deviation s.

e.  Compare the sample mean with the actual population mean 4.5.  Likewise compare the sample
standard  deviation  s  with  the  actual  population  standard  deviation  s.   The  Job  description  (so  to
speak) of the sample mean is to find the population mean.  Likewise the sample standard deviation
is  tasked  with  finding  the  actual  population  standard  deviation.   Remember,  the  population  could
just  as  well  consist  of  ten  million  or  as  many  as  we  like.   In  view  of  this  it  is  remarkable  if  the
sample mean comes anywhere near m and the sample standard deviation comes anywhere near s!
How well did we do?

For  the  following  we  have  to  pretend  that  we  don't  know  the  population,  its  mean  or  its
standard deviation.  

f.  The population could be estimated by a histogram (or just a bar graph) showing the frequencies
at the distinct values 0 through 9 found in the sample of n = 25 x-scores.  Give such a bar graph or
histogram.

g.  Using the formula x  ± z s
n

 evaluate it to produce a 95% confidence interval for (unknown) m

based on the above sample of 25.

h.  Does your CI (g) cover the actual population mean m?  Ordinarily we would not know the answer
since m is after all not known (the whole point of the sample is to estimate it).  

Out of 100,000 samples of n = 25 (independently gathered) around how many samples of 25 would
produce a 95% CI failing to cover m?

Is such a CI exact for 95% or approximately a 95% CI?

Have we said how large n should be for the CI to work as described?

i.   To  test  the  hypothesis  that  m  is  actually  4.5  (I've  tried  to  convince  you  of  this,  relating  my
conversations with the registrar's office, etc.) we take m0 = 4.5 and evaluate the test statistic

       
x -m0

s
n

 = 

which measures how different x  is from 4.5 (in terms of the estimated standard deviation s
n

of x ).

j.   Just as you did for the P-value of a test of a hypothesis about p (in previous chapters) now do
exactly the same with your statistic (i).  Use it to determine the P-value of a z-test of 
                H0: m = 4.5  versus  HA: m > 4.5.

Is this test one-sided or two-sided?

What entry do you make to the z-table?

What is the P-value for this data?  Does it seem small enough to lead us to seriously question the
null hypothesis I have urged on you?

Sampling from a normal population.  If a population is normal the mean m and standard
deviation s are all that are needed to specify that population completely.  

Importantly, our estimates of them, x  and s, are statistically independent of one another.  This has
deep consequences.  Moreover 

              
x -m
s
n

(at the root of CI) actually is free of m and s (although they are in the data x, the way the above is
constructed nicely cancels them out!).  

So  when sampling  any  normal  population  the  distribution  of  the  above  quotient  does  not  depend
upon  the  particular  (normal)  population!   That  distribution  does  depend  upon  the  sample  size  n
which must be more than 1 for s to be defined.  It is tabulated as the "t-distribution" and has many
uses  in  statistics,  each  with  its  own  "degrees  of  freedom"  calculation  linking  the  particular
application  to  the  particular  n  needed.   So  instead  of  n  in  the  t-table  we  have  something  called
"degrees of freedom."  

In our use of the t -CI for m the "degrees of freedom" is n-1.
                                                           

2.  The following data was obtained as a random sample from a normal population.

                  76.6464, 104.43, 67.0315, 89.8393, 92.8544, 106.225, 121.926
        
a.  Determine:                            sample mean
                               sample standard deviation
                               
                               
b.  Determine a 95% CI for the population mean m.  The degrees of freedom are n-1 and if you look
at  the  bottom of  the  t-table  you  will  find1.96  (the  z-score  you  would  use  for  a  z-CI,  but  not  used
here for small n).  The 1.96 at the table bottom is for "infinite" degrees of freedom (think z) but you
need the entry for 95% CI for degrees of freedom n-1.  The 95% CI is then 

                               x  ± tn-1
s
n

                               
                               
c.  Determine the test statistic for a t-test (not a z-test) of the null  hypothesis that m  is 100 versus
the alternative that it is less than 100.
 
 
 
 
d.   The  t-table  is  not  very  complete  but  you  can  find  a  range  for  the  P-value  (look  for  your  test
statistic in row n-1).
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Lecture outline for 3 - 15/17 - 10.

This material pertains to chapters 23/24 assigned for MW in the syllabus.

Chapters 23/24 reinforce confidence intervals and tests for a population proportion p, just covered
on exam 2, extending those ideas to confidence intervals and tests for the population mean m.  

                             for p                               for m            assumptions

 z-based CI      p`  ± z 
p` q`

n            x  ± z s
n

       "large n"

 

 t-based                     none                 x  ± tn-1
s
n

    for  all n > 1 if the population is normal

where s denotes the sample standard deviation s = 
⁄i = 1
i = n Hxi-x L2
n-1 .  

The respective claims are:

      P( p in  p`  ± z 
p` q`

n ) Ø P(Z in (-z, z)) as n Ø ¶ in Bernoulli trials with 0 < p < 1.

      

      P( m in  x  ± z s
n

) Ø P(Z in (-z, z)) as n Ø ¶ in independent samples if s < ¶.

    

      P( m in x  ± tn-1
s
n

) ª P(Tn-1 in (-z, z)) for every n > 1 in independent normal samples.     

In all cases we assume with-replacement samples from a fixed population.
 
See  pp.  64/65  for  the  sample  standard  deviation  s  which  is  typically  used  to  estimate  the
population standard deviation s.  

For data taking only the values 1 (success) or 0 (failure) the population mean m is the same as the
probability of success p.  For such data               

                       s
n

 = 
p` q`

n-1   (this is NOT used in the p-case!).

So the z-based CI for p is almost a perfect special case of the z-based CI for m.  In fact for large n
the difference will be negligible.  

Why  is  n-1  in  the  denominator  above?   When estimating  a  population  standard  deviation  s  by  a
sample  standard  deviation  s  notice  that  s  uses  the  squared  deviations  Hxi - x L2  from  sample
average (summed over the sample) whereas the calculation of s uses squared deviations Hxi - mL2

from  population  mean  m  (summed  over  the  population).   As  it  happens,  using  the  sample  mean
always results in a downward bias since the sample mean is "closer to the sample data" than the
actual population mean is.  Substituting n-1 in the denominator defining s was once thought to be a
good compensation for this perceived bias.  Evolving statistical tables accommodated the practice
and it is now "fixed in stone."  

The corresponding test statistics are:

         p` -p0
p` q`

n

 ~ Z distributed if n is large and p0 is the actual population fraction.

          
x -m0

s
n

 ~ Z distributed if n is large and the actual population mean is m0 and s < ¶.        

         
x -m0

s
n

 is exactly Tn-1 distributed if n > 1, the actual population mean is m0, and s < ¶. 

        
Recitation assignment due 3-16-10.

1.   Our  class may be considered to be a random sample with-replacement  from the msu student
body as regards score x = last digit of student number.  It is not that the class is a random sample
of  students  for  surely  that  is  not  the  case,  rather  the  last  digits  are  close  to  being  assigned  as
independent  samples  from the digits  0  through 9  with  equal  probability  for  each.   It  is  unusual  in
statistical  work  that  we know the population  mean but  according to  our  view of  last  digits  we are
confident  that  m  =  (1/10)(0+1+2+  ...  +  8+9)  =  4.5.   The  population  standard  deviation  s  is  also
known to us and is the square root of (1/10)((0-4.5L2+ ... + (9-4.5L2) ~ 2.87... .

a.  Verify the values given for m and (to five decimals or more) s.

b.  The standard error for the sample mean x  is known to be s

n
.  Since we know s we also know

this standard error.  Calculate it for a (with replacement) sample of n = 25.

c.  Here is a sample of n = 25 actually taken by equal probability with replacement samples from
the population {0,1,2,3,4,5,6,7,8,9}.   Make note of  the fact  that  it  would make no difference if
the population had one million of each of the ten digits since we sample with replacement.

3, 8, 9, 9, 3, 0, 3, 6, 6, 5, 0, 5, 9, 7, 3, 9, 9, 8, 5, 0, 8, 2, 2, 7, 7
d.   From  the  sample  (c)  calculate  the  values  of  the  sample  mean  x  and  the  sample  standard
deviation s.

e.  Compare the sample mean with the actual population mean 4.5.  Likewise compare the sample
standard  deviation  s  with  the  actual  population  standard  deviation  s.   The  Job  description  (so  to
speak) of the sample mean is to find the population mean.  Likewise the sample standard deviation
is  tasked  with  finding  the  actual  population  standard  deviation.   Remember,  the  population  could
just  as  well  consist  of  ten  million  or  as  many  as  we  like.   In  view  of  this  it  is  remarkable  if  the
sample mean comes anywhere near m and the sample standard deviation comes anywhere near s!
How well did we do?

For  the  following  we  have  to  pretend  that  we  don't  know  the  population,  its  mean  or  its
standard deviation.  

f.  The population could be estimated by a histogram (or just a bar graph) showing the frequencies
at the distinct values 0 through 9 found in the sample of n = 25 x-scores.  Give such a bar graph or
histogram.

g.  Using the formula x  ± z s
n

 evaluate it to produce a 95% confidence interval for (unknown) m

based on the above sample of 25.

h.  Does your CI (g) cover the actual population mean m?  Ordinarily we would not know the answer
since m is after all not known (the whole point of the sample is to estimate it).  

Out of 100,000 samples of n = 25 (independently gathered) around how many samples of 25 would
produce a 95% CI failing to cover m?

Is such a CI exact for 95% or approximately a 95% CI?

Have we said how large n should be for the CI to work as described?

i.   To  test  the  hypothesis  that  m  is  actually  4.5  (I've  tried  to  convince  you  of  this,  relating  my
conversations with the registrar's office, etc.) we take m0 = 4.5 and evaluate the test statistic

       
x -m0

s
n

 = 

which measures how different x  is from 4.5 (in terms of the estimated standard deviation s
n

of x ).

j.   Just as you did for the P-value of a test of a hypothesis about p (in previous chapters) now do
exactly the same with your statistic (i).  Use it to determine the P-value of a z-test of 
                H0: m = 4.5  versus  HA: m > 4.5.

Is this test one-sided or two-sided?

What entry do you make to the z-table?

What is the P-value for this data?  Does it seem small enough to lead us to seriously question the
null hypothesis I have urged on you?

Sampling from a normal population.  If a population is normal the mean m and standard
deviation s are all that are needed to specify that population completely.  

Importantly, our estimates of them, x  and s, are statistically independent of one another.  This has
deep consequences.  Moreover 

              
x -m
s
n

(at the root of CI) actually is free of m and s (although they are in the data x, the way the above is
constructed nicely cancels them out!).  

So  when sampling  any  normal  population  the  distribution  of  the  above  quotient  does  not  depend
upon  the  particular  (normal)  population!   That  distribution  does  depend  upon  the  sample  size  n
which must be more than 1 for s to be defined.  It is tabulated as the "t-distribution" and has many
uses  in  statistics,  each  with  its  own  "degrees  of  freedom"  calculation  linking  the  particular
application  to  the  particular  n  needed.   So  instead  of  n  in  the  t-table  we  have  something  called
"degrees of freedom."  

In our use of the t -CI for m the "degrees of freedom" is n-1.
                                                           

2.  The following data was obtained as a random sample from a normal population.

                  76.6464, 104.43, 67.0315, 89.8393, 92.8544, 106.225, 121.926
        
a.  Determine:                            sample mean
                               sample standard deviation
                               
                               
b.  Determine a 95% CI for the population mean m.  The degrees of freedom are n-1 and if you look
at  the  bottom of  the  t-table  you  will  find1.96  (the  z-score  you  would  use  for  a  z-CI,  but  not  used
here for small n).  The 1.96 at the table bottom is for "infinite" degrees of freedom (think z) but you
need the entry for 95% CI for degrees of freedom n-1.  The 95% CI is then 

                               x  ± tn-1
s
n

                               
                               
c.  Determine the test statistic for a t-test (not a z-test) of the null  hypothesis that m  is 100 versus
the alternative that it is less than 100.
 
 
 
 
d.   The  t-table  is  not  very  complete  but  you  can  find  a  range  for  the  P-value  (look  for  your  test
statistic in row n-1).
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Lecture outline for 3 - 15/17 - 10.

This material pertains to chapters 23/24 assigned for MW in the syllabus.

Chapters 23/24 reinforce confidence intervals and tests for a population proportion p, just covered
on exam 2, extending those ideas to confidence intervals and tests for the population mean m.  

                             for p                               for m            assumptions

 z-based CI      p`  ± z 
p` q`

n            x  ± z s
n

       "large n"

 

 t-based                     none                 x  ± tn-1
s
n

    for  all n > 1 if the population is normal

where s denotes the sample standard deviation s = 
⁄i = 1
i = n Hxi-x L2
n-1 .  

The respective claims are:

      P( p in  p`  ± z 
p` q`

n ) Ø P(Z in (-z, z)) as n Ø ¶ in Bernoulli trials with 0 < p < 1.

      

      P( m in  x  ± z s
n

) Ø P(Z in (-z, z)) as n Ø ¶ in independent samples if s < ¶.

    

      P( m in x  ± tn-1
s
n

) ª P(Tn-1 in (-z, z)) for every n > 1 in independent normal samples.     

In all cases we assume with-replacement samples from a fixed population.
 
See  pp.  64/65  for  the  sample  standard  deviation  s  which  is  typically  used  to  estimate  the
population standard deviation s.  

For data taking only the values 1 (success) or 0 (failure) the population mean m is the same as the
probability of success p.  For such data               

                       s
n

 = 
p` q`

n-1   (this is NOT used in the p-case!).

So the z-based CI for p is almost a perfect special case of the z-based CI for m.  In fact for large n
the difference will be negligible.  

Why  is  n-1  in  the  denominator  above?   When estimating  a  population  standard  deviation  s  by  a
sample  standard  deviation  s  notice  that  s  uses  the  squared  deviations  Hxi - x L2  from  sample
average (summed over the sample) whereas the calculation of s uses squared deviations Hxi - mL2

from  population  mean  m  (summed  over  the  population).   As  it  happens,  using  the  sample  mean
always results in a downward bias since the sample mean is "closer to the sample data" than the
actual population mean is.  Substituting n-1 in the denominator defining s was once thought to be a
good compensation for this perceived bias.  Evolving statistical tables accommodated the practice
and it is now "fixed in stone."  

The corresponding test statistics are:

         p` -p0
p` q`

n

 ~ Z distributed if n is large and p0 is the actual population fraction.

          
x -m0

s
n

 ~ Z distributed if n is large and the actual population mean is m0 and s < ¶.        

         
x -m0

s
n

 is exactly Tn-1 distributed if n > 1, the actual population mean is m0, and s < ¶. 

        
Recitation assignment due 3-16-10.

1.   Our  class may be considered to be a random sample with-replacement  from the msu student
body as regards score x = last digit of student number.  It is not that the class is a random sample
of  students  for  surely  that  is  not  the  case,  rather  the  last  digits  are  close  to  being  assigned  as
independent  samples  from the digits  0  through 9  with  equal  probability  for  each.   It  is  unusual  in
statistical  work  that  we know the population  mean but  according to  our  view of  last  digits  we are
confident  that  m  =  (1/10)(0+1+2+  ...  +  8+9)  =  4.5.   The  population  standard  deviation  s  is  also
known to us and is the square root of (1/10)((0-4.5L2+ ... + (9-4.5L2) ~ 2.87... .

a.  Verify the values given for m and (to five decimals or more) s.

b.  The standard error for the sample mean x  is known to be s

n
.  Since we know s we also know

this standard error.  Calculate it for a (with replacement) sample of n = 25.

c.  Here is a sample of n = 25 actually taken by equal probability with replacement samples from
the population {0,1,2,3,4,5,6,7,8,9}.   Make note of  the fact  that  it  would make no difference if
the population had one million of each of the ten digits since we sample with replacement.

3, 8, 9, 9, 3, 0, 3, 6, 6, 5, 0, 5, 9, 7, 3, 9, 9, 8, 5, 0, 8, 2, 2, 7, 7
d.   From  the  sample  (c)  calculate  the  values  of  the  sample  mean  x  and  the  sample  standard
deviation s.

e.  Compare the sample mean with the actual population mean 4.5.  Likewise compare the sample
standard  deviation  s  with  the  actual  population  standard  deviation  s.   The  Job  description  (so  to
speak) of the sample mean is to find the population mean.  Likewise the sample standard deviation
is  tasked  with  finding  the  actual  population  standard  deviation.   Remember,  the  population  could
just  as  well  consist  of  ten  million  or  as  many  as  we  like.   In  view  of  this  it  is  remarkable  if  the
sample mean comes anywhere near m and the sample standard deviation comes anywhere near s!
How well did we do?

For  the  following  we  have  to  pretend  that  we  don't  know  the  population,  its  mean  or  its
standard deviation.  

f.  The population could be estimated by a histogram (or just a bar graph) showing the frequencies
at the distinct values 0 through 9 found in the sample of n = 25 x-scores.  Give such a bar graph or
histogram.

g.  Using the formula x  ± z s
n

 evaluate it to produce a 95% confidence interval for (unknown) m

based on the above sample of 25.

h.  Does your CI (g) cover the actual population mean m?  Ordinarily we would not know the answer
since m is after all not known (the whole point of the sample is to estimate it).  

Out of 100,000 samples of n = 25 (independently gathered) around how many samples of 25 would
produce a 95% CI failing to cover m?

Is such a CI exact for 95% or approximately a 95% CI?

Have we said how large n should be for the CI to work as described?

i.   To  test  the  hypothesis  that  m  is  actually  4.5  (I've  tried  to  convince  you  of  this,  relating  my
conversations with the registrar's office, etc.) we take m0 = 4.5 and evaluate the test statistic

       
x -m0

s
n

 = 

which measures how different x  is from 4.5 (in terms of the estimated standard deviation s
n

of x ).

j.   Just as you did for the P-value of a test of a hypothesis about p (in previous chapters) now do
exactly the same with your statistic (i).  Use it to determine the P-value of a z-test of 
                H0: m = 4.5  versus  HA: m > 4.5.

Is this test one-sided or two-sided?

What entry do you make to the z-table?

What is the P-value for this data?  Does it seem small enough to lead us to seriously question the
null hypothesis I have urged on you?

Sampling from a normal population.  If a population is normal the mean m and standard
deviation s are all that are needed to specify that population completely.  

Importantly, our estimates of them, x  and s, are statistically independent of one another.  This has
deep consequences.  Moreover 

              
x -m
s
n

(at the root of CI) actually is free of m and s (although they are in the data x, the way the above is
constructed nicely cancels them out!).  

So  when sampling  any  normal  population  the  distribution  of  the  above  quotient  does  not  depend
upon  the  particular  (normal)  population!   That  distribution  does  depend  upon  the  sample  size  n
which must be more than 1 for s to be defined.  It is tabulated as the "t-distribution" and has many
uses  in  statistics,  each  with  its  own  "degrees  of  freedom"  calculation  linking  the  particular
application  to  the  particular  n  needed.   So  instead  of  n  in  the  t-table  we  have  something  called
"degrees of freedom."  

In our use of the t -CI for m the "degrees of freedom" is n-1.
                                                           

2.  The following data was obtained as a random sample from a normal population.

                  76.6464, 104.43, 67.0315, 89.8393, 92.8544, 106.225, 121.926
        
a.  Determine:                            sample mean
                               sample standard deviation
                               
                               
b.  Determine a 95% CI for the population mean m.  The degrees of freedom are n-1 and if you look
at  the  bottom of  the  t-table  you  will  find1.96  (the  z-score  you  would  use  for  a  z-CI,  but  not  used
here for small n).  The 1.96 at the table bottom is for "infinite" degrees of freedom (think z) but you
need the entry for 95% CI for degrees of freedom n-1.  The 95% CI is then 

                               x  ± tn-1
s
n

                               
                               
c.  Determine the test statistic for a t-test (not a z-test) of the null  hypothesis that m  is 100 versus
the alternative that it is less than 100.
 
 
 
 
d.   The  t-table  is  not  very  complete  but  you  can  find  a  range  for  the  P-value  (look  for  your  test
statistic in row n-1).
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Lecture outline for 3 - 15/17 - 10.

This material pertains to chapters 23/24 assigned for MW in the syllabus.

Chapters 23/24 reinforce confidence intervals and tests for a population proportion p, just covered
on exam 2, extending those ideas to confidence intervals and tests for the population mean m.  

                             for p                               for m            assumptions

 z-based CI      p`  ± z 
p` q`

n            x  ± z s
n

       "large n"

 

 t-based                     none                 x  ± tn-1
s
n

    for  all n > 1 if the population is normal

where s denotes the sample standard deviation s = 
⁄i = 1
i = n Hxi-x L2
n-1 .  

The respective claims are:

      P( p in  p`  ± z 
p` q`

n ) Ø P(Z in (-z, z)) as n Ø ¶ in Bernoulli trials with 0 < p < 1.

      

      P( m in  x  ± z s
n

) Ø P(Z in (-z, z)) as n Ø ¶ in independent samples if s < ¶.

    

      P( m in x  ± tn-1
s
n

) ª P(Tn-1 in (-z, z)) for every n > 1 in independent normal samples.     

In all cases we assume with-replacement samples from a fixed population.
 
See  pp.  64/65  for  the  sample  standard  deviation  s  which  is  typically  used  to  estimate  the
population standard deviation s.  

For data taking only the values 1 (success) or 0 (failure) the population mean m is the same as the
probability of success p.  For such data               

                       s
n

 = 
p` q`

n-1   (this is NOT used in the p-case!).

So the z-based CI for p is almost a perfect special case of the z-based CI for m.  In fact for large n
the difference will be negligible.  

Why  is  n-1  in  the  denominator  above?   When estimating  a  population  standard  deviation  s  by  a
sample  standard  deviation  s  notice  that  s  uses  the  squared  deviations  Hxi - x L2  from  sample
average (summed over the sample) whereas the calculation of s uses squared deviations Hxi - mL2

from  population  mean  m  (summed  over  the  population).   As  it  happens,  using  the  sample  mean
always results in a downward bias since the sample mean is "closer to the sample data" than the
actual population mean is.  Substituting n-1 in the denominator defining s was once thought to be a
good compensation for this perceived bias.  Evolving statistical tables accommodated the practice
and it is now "fixed in stone."  

The corresponding test statistics are:

         p` -p0
p` q`

n

 ~ Z distributed if n is large and p0 is the actual population fraction.

          
x -m0

s
n

 ~ Z distributed if n is large and the actual population mean is m0 and s < ¶.        

         
x -m0

s
n

 is exactly Tn-1 distributed if n > 1, the actual population mean is m0, and s < ¶. 

        
Recitation assignment due 3-16-10.

1.   Our  class may be considered to be a random sample with-replacement  from the msu student
body as regards score x = last digit of student number.  It is not that the class is a random sample
of  students  for  surely  that  is  not  the  case,  rather  the  last  digits  are  close  to  being  assigned  as
independent  samples  from the digits  0  through 9  with  equal  probability  for  each.   It  is  unusual  in
statistical  work  that  we know the population  mean but  according to  our  view of  last  digits  we are
confident  that  m  =  (1/10)(0+1+2+  ...  +  8+9)  =  4.5.   The  population  standard  deviation  s  is  also
known to us and is the square root of (1/10)((0-4.5L2+ ... + (9-4.5L2) ~ 2.87... .

a.  Verify the values given for m and (to five decimals or more) s.

b.  The standard error for the sample mean x  is known to be s

n
.  Since we know s we also know

this standard error.  Calculate it for a (with replacement) sample of n = 25.

c.  Here is a sample of n = 25 actually taken by equal probability with replacement samples from
the population {0,1,2,3,4,5,6,7,8,9}.   Make note of  the fact  that  it  would make no difference if
the population had one million of each of the ten digits since we sample with replacement.

3, 8, 9, 9, 3, 0, 3, 6, 6, 5, 0, 5, 9, 7, 3, 9, 9, 8, 5, 0, 8, 2, 2, 7, 7
d.   From  the  sample  (c)  calculate  the  values  of  the  sample  mean  x  and  the  sample  standard
deviation s.

e.  Compare the sample mean with the actual population mean 4.5.  Likewise compare the sample
standard  deviation  s  with  the  actual  population  standard  deviation  s.   The  Job  description  (so  to
speak) of the sample mean is to find the population mean.  Likewise the sample standard deviation
is  tasked  with  finding  the  actual  population  standard  deviation.   Remember,  the  population  could
just  as  well  consist  of  ten  million  or  as  many  as  we  like.   In  view  of  this  it  is  remarkable  if  the
sample mean comes anywhere near m and the sample standard deviation comes anywhere near s!
How well did we do?

For  the  following  we  have  to  pretend  that  we  don't  know  the  population,  its  mean  or  its
standard deviation.  

f.  The population could be estimated by a histogram (or just a bar graph) showing the frequencies
at the distinct values 0 through 9 found in the sample of n = 25 x-scores.  Give such a bar graph or
histogram.

g.  Using the formula x  ± z s
n

 evaluate it to produce a 95% confidence interval for (unknown) m

based on the above sample of 25.

h.  Does your CI (g) cover the actual population mean m?  Ordinarily we would not know the answer
since m is after all not known (the whole point of the sample is to estimate it).  

Out of 100,000 samples of n = 25 (independently gathered) around how many samples of 25 would
produce a 95% CI failing to cover m?

Is such a CI exact for 95% or approximately a 95% CI?

Have we said how large n should be for the CI to work as described?

i.   To  test  the  hypothesis  that  m  is  actually  4.5  (I've  tried  to  convince  you  of  this,  relating  my
conversations with the registrar's office, etc.) we take m0 = 4.5 and evaluate the test statistic

       
x -m0

s
n

 = 

which measures how different x  is from 4.5 (in terms of the estimated standard deviation s
n

of x ).

j.   Just as you did for the P-value of a test of a hypothesis about p (in previous chapters) now do
exactly the same with your statistic (i).  Use it to determine the P-value of a z-test of 
                H0: m = 4.5  versus  HA: m > 4.5.

Is this test one-sided or two-sided?

What entry do you make to the z-table?

What is the P-value for this data?  Does it seem small enough to lead us to seriously question the
null hypothesis I have urged on you?

Sampling from a normal population.  If a population is normal the mean m and standard
deviation s are all that are needed to specify that population completely.  

Importantly, our estimates of them, x  and s, are statistically independent of one another.  This has
deep consequences.  Moreover 

              
x -m
s
n

(at the root of CI) actually is free of m and s (although they are in the data x, the way the above is
constructed nicely cancels them out!).  

So  when sampling  any  normal  population  the  distribution  of  the  above  quotient  does  not  depend
upon  the  particular  (normal)  population!   That  distribution  does  depend  upon  the  sample  size  n
which must be more than 1 for s to be defined.  It is tabulated as the "t-distribution" and has many
uses  in  statistics,  each  with  its  own  "degrees  of  freedom"  calculation  linking  the  particular
application  to  the  particular  n  needed.   So  instead  of  n  in  the  t-table  we  have  something  called
"degrees of freedom."  

In our use of the t -CI for m the "degrees of freedom" is n-1.
                                                           

2.  The following data was obtained as a random sample from a normal population.

                  76.6464, 104.43, 67.0315, 89.8393, 92.8544, 106.225, 121.926
        
a.  Determine:                            sample mean
                               sample standard deviation
                               
                               
b.  Determine a 95% CI for the population mean m.  The degrees of freedom are n-1 and if you look
at  the  bottom of  the  t-table  you  will  find1.96  (the  z-score  you  would  use  for  a  z-CI,  but  not  used
here for small n).  The 1.96 at the table bottom is for "infinite" degrees of freedom (think z) but you
need the entry for 95% CI for degrees of freedom n-1.  The 95% CI is then 

                               x  ± tn-1
s
n

                               
                               
c.  Determine the test statistic for a t-test (not a z-test) of the null  hypothesis that m  is 100 versus
the alternative that it is less than 100.
 
 
 
 
d.   The  t-table  is  not  very  complete  but  you  can  find  a  range  for  the  P-value  (look  for  your  test
statistic in row n-1).
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Lecture outline for 3 - 15/17 - 10.

This material pertains to chapters 23/24 assigned for MW in the syllabus.

Chapters 23/24 reinforce confidence intervals and tests for a population proportion p, just covered
on exam 2, extending those ideas to confidence intervals and tests for the population mean m.  

                             for p                               for m            assumptions

 z-based CI      p`  ± z 
p` q`

n            x  ± z s
n

       "large n"

 

 t-based                     none                 x  ± tn-1
s
n

    for  all n > 1 if the population is normal

where s denotes the sample standard deviation s = 
⁄i = 1
i = n Hxi-x L2
n-1 .  

The respective claims are:

      P( p in  p`  ± z 
p` q`

n ) Ø P(Z in (-z, z)) as n Ø ¶ in Bernoulli trials with 0 < p < 1.

      

      P( m in  x  ± z s
n

) Ø P(Z in (-z, z)) as n Ø ¶ in independent samples if s < ¶.

    

      P( m in x  ± tn-1
s
n

) ª P(Tn-1 in (-z, z)) for every n > 1 in independent normal samples.     

In all cases we assume with-replacement samples from a fixed population.
 
See  pp.  64/65  for  the  sample  standard  deviation  s  which  is  typically  used  to  estimate  the
population standard deviation s.  

For data taking only the values 1 (success) or 0 (failure) the population mean m is the same as the
probability of success p.  For such data               

                       s
n

 = 
p` q`

n-1   (this is NOT used in the p-case!).

So the z-based CI for p is almost a perfect special case of the z-based CI for m.  In fact for large n
the difference will be negligible.  

Why  is  n-1  in  the  denominator  above?   When estimating  a  population  standard  deviation  s  by  a
sample  standard  deviation  s  notice  that  s  uses  the  squared  deviations  Hxi - x L2  from  sample
average (summed over the sample) whereas the calculation of s uses squared deviations Hxi - mL2

from  population  mean  m  (summed  over  the  population).   As  it  happens,  using  the  sample  mean
always results in a downward bias since the sample mean is "closer to the sample data" than the
actual population mean is.  Substituting n-1 in the denominator defining s was once thought to be a
good compensation for this perceived bias.  Evolving statistical tables accommodated the practice
and it is now "fixed in stone."  

The corresponding test statistics are:

         p` -p0
p` q`

n

 ~ Z distributed if n is large and p0 is the actual population fraction.

          
x -m0

s
n

 ~ Z distributed if n is large and the actual population mean is m0 and s < ¶.        

         
x -m0

s
n

 is exactly Tn-1 distributed if n > 1, the actual population mean is m0, and s < ¶. 

        
Recitation assignment due 3-16-10.

1.   Our  class may be considered to be a random sample with-replacement  from the msu student
body as regards score x = last digit of student number.  It is not that the class is a random sample
of  students  for  surely  that  is  not  the  case,  rather  the  last  digits  are  close  to  being  assigned  as
independent  samples  from the digits  0  through 9  with  equal  probability  for  each.   It  is  unusual  in
statistical  work  that  we know the population  mean but  according to  our  view of  last  digits  we are
confident  that  m  =  (1/10)(0+1+2+  ...  +  8+9)  =  4.5.   The  population  standard  deviation  s  is  also
known to us and is the square root of (1/10)((0-4.5L2+ ... + (9-4.5L2) ~ 2.87... .

a.  Verify the values given for m and (to five decimals or more) s.

b.  The standard error for the sample mean x  is known to be s

n
.  Since we know s we also know

this standard error.  Calculate it for a (with replacement) sample of n = 25.

c.  Here is a sample of n = 25 actually taken by equal probability with replacement samples from
the population {0,1,2,3,4,5,6,7,8,9}.   Make note of  the fact  that  it  would make no difference if
the population had one million of each of the ten digits since we sample with replacement.

3, 8, 9, 9, 3, 0, 3, 6, 6, 5, 0, 5, 9, 7, 3, 9, 9, 8, 5, 0, 8, 2, 2, 7, 7
d.   From  the  sample  (c)  calculate  the  values  of  the  sample  mean  x  and  the  sample  standard
deviation s.

e.  Compare the sample mean with the actual population mean 4.5.  Likewise compare the sample
standard  deviation  s  with  the  actual  population  standard  deviation  s.   The  Job  description  (so  to
speak) of the sample mean is to find the population mean.  Likewise the sample standard deviation
is  tasked  with  finding  the  actual  population  standard  deviation.   Remember,  the  population  could
just  as  well  consist  of  ten  million  or  as  many  as  we  like.   In  view  of  this  it  is  remarkable  if  the
sample mean comes anywhere near m and the sample standard deviation comes anywhere near s!
How well did we do?

For  the  following  we  have  to  pretend  that  we  don't  know  the  population,  its  mean  or  its
standard deviation.  

f.  The population could be estimated by a histogram (or just a bar graph) showing the frequencies
at the distinct values 0 through 9 found in the sample of n = 25 x-scores.  Give such a bar graph or
histogram.

g.  Using the formula x  ± z s
n

 evaluate it to produce a 95% confidence interval for (unknown) m

based on the above sample of 25.

h.  Does your CI (g) cover the actual population mean m?  Ordinarily we would not know the answer
since m is after all not known (the whole point of the sample is to estimate it).  

Out of 100,000 samples of n = 25 (independently gathered) around how many samples of 25 would
produce a 95% CI failing to cover m?

Is such a CI exact for 95% or approximately a 95% CI?

Have we said how large n should be for the CI to work as described?

i.   To  test  the  hypothesis  that  m  is  actually  4.5  (I've  tried  to  convince  you  of  this,  relating  my
conversations with the registrar's office, etc.) we take m0 = 4.5 and evaluate the test statistic

       
x -m0

s
n

 = 

which measures how different x  is from 4.5 (in terms of the estimated standard deviation s
n

of x ).

j.   Just as you did for the P-value of a test of a hypothesis about p (in previous chapters) now do
exactly the same with your statistic (i).  Use it to determine the P-value of a z-test of 
                H0: m = 4.5  versus  HA: m > 4.5.

Is this test one-sided or two-sided?

What entry do you make to the z-table?

What is the P-value for this data?  Does it seem small enough to lead us to seriously question the
null hypothesis I have urged on you?

Sampling from a normal population.  If a population is normal the mean m and standard
deviation s are all that are needed to specify that population completely.  

Importantly, our estimates of them, x  and s, are statistically independent of one another.  This has
deep consequences.  Moreover 

              
x -m
s
n

(at the root of CI) actually is free of m and s (although they are in the data x, the way the above is
constructed nicely cancels them out!).  

So  when sampling  any  normal  population  the  distribution  of  the  above  quotient  does  not  depend
upon  the  particular  (normal)  population!   That  distribution  does  depend  upon  the  sample  size  n
which must be more than 1 for s to be defined.  It is tabulated as the "t-distribution" and has many
uses  in  statistics,  each  with  its  own  "degrees  of  freedom"  calculation  linking  the  particular
application  to  the  particular  n  needed.   So  instead  of  n  in  the  t-table  we  have  something  called
"degrees of freedom."  

In our use of the t -CI for m the "degrees of freedom" is n-1.
                                                           

2.  The following data was obtained as a random sample from a normal population.

                  76.6464, 104.43, 67.0315, 89.8393, 92.8544, 106.225, 121.926
        
a.  Determine:                            sample mean
                               sample standard deviation
                               
                               
b.  Determine a 95% CI for the population mean m.  The degrees of freedom are n-1 and if you look
at  the  bottom of  the  t-table  you  will  find1.96  (the  z-score  you  would  use  for  a  z-CI,  but  not  used
here for small n).  The 1.96 at the table bottom is for "infinite" degrees of freedom (think z) but you
need the entry for 95% CI for degrees of freedom n-1.  The 95% CI is then 

                               x  ± tn-1
s
n

                               
                               
c.  Determine the test statistic for a t-test (not a z-test) of the null  hypothesis that m  is 100 versus
the alternative that it is less than 100.
 
 
 
 
d.   The  t-table  is  not  very  complete  but  you  can  find  a  range  for  the  P-value  (look  for  your  test
statistic in row n-1).
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