
Recitation assignment due at the end of recitation 4 - 6 - 10.

Readings for the week are: for Monday Chapter 7; for Tuesday Chapter 9.

Textbook exercises for recitation Tuesday are:

Any plot  of  (x,  y)  scores is  called a scatter  plot.   Dependencies observed between two scores or
more scores are central to statistical method.

Much  of  the  statistical  thinking  brought  to  bear  on  scatter  plots  has  its  origins  in  two  early  grand
successes:   Gauss  (Astronomy,  predicting  future  positions  of  heavenly  bodies  from  a  few
observations  of  past  positions)  and  Galton  (Heredity,  a  scatter  plot  whose  correlation  actually
established beyond doubt a measure of the force of heredity in the weights of seeds).  Both were
startling  achievements  at  the  time  and  even  now.   With  hindsight,  knowing  all  the  mathematics,
even  knowing  how  he  cleverly  chose  his  subjects  and  found  ways  around  the  computational
difficulties  by  using  medians  instead  of  means,  it  would  take  years  for  me  duplicate.   Galton's
project, involving as it  did the cooperation of his friends to grow seeds in many places, count and
sort data and various ingenious simplifications remains a work of genius. 

In  both  of  the  above  cases  the  data  was  by  nature  "noisy."   Measurements  of  astronomical
positions were subject to various inaccuracies and so too natural variability was seen in the yields
of  seeds  and  growing  conditions.   A  key  idea  which  surfaced  was  that  practical,  even  profound
advances  in  scientific  tools  could  be  found  in  the  emerging  ideas  of  probability  and  statistics.
Before that, noisy data was distrusted as bad science.  

Such early successes brought needed insights to science and beyond but have been curiously and
needlessly rendered as dogma by some.

In Chapter 7, page 182, item 169 is a case in point.  It is said that you are to "Assign to the y-axis
the response variable that you hope to predict or explain.  Assign to the x-axis the explanatory or
predictor  variable  that  accounts  for,  explains,  predicts,  or  is  otherwise  responsible  or  the  y-
variable."  That is the usual convention, it is true.  However, the better view is that (x, y) may have
some relationship between them which you wish to exploit.  Correlation r (page 172) is a measure
of straight line fit of y on x but it is the same measure when the roles of x, y are interchanged (i.e.
r[x, y] = r[y, x]).  

We will see in Chapter 8 that if (x, y) are jointly normal distributed then there is a natural line for
y on x and a second natural line for x on y.  These two lines are the same only if  § r § = 1 (perfect
fit,  all  (x,  y)  points  fall  perfectly  on  a  line).   If  your  purpose  is  to  utilize  one  variable  to  predict  or
explain the other then yes, the convention is that y is the one to be explained and the line for y on x
is used.  The slope and intercept of this line are given as item(s) 196 on page 212.

1.  Do 7-1 (pg. 186).   If you are unable to identify one of the two variables as necessarily  y just
say so. 

2.  Do 7-2.  As above.

3.  For the (x, y) data  
      x              y          x deviations = (x - x )       y deviations = (y - y )       product 

     31           78

     26           46

     28           69

               
a.  Fill out the above table to complete the table find the correlation r by hand as is shown on page
173.  

b.  In the plot of the data (a) we have not taken the origin of the plot to be (0, 0) since that would
place the interesting part of the plot well away from the origin necessitating a fine scale (to get both
in view) that would compress the data into a little blob.  
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Overlay on the scatter plot the line passing through the point of averages (x , y ) and having slope
equal to (r sy  / sx).  This line is known as the least squares line of y on x and is taken up in the
following chapters. Does the line seem, to your eye, to be a reasonable fit to the three points?

4.  Here is a plot of data having a jointly normal (i.e. 2-dimensional normal) distribution for (x, y).
Note the roughly elliptical form of the plot.

80 100 120 140

98

100

102

104

a.  For a jointly normal plot the regression line is just the line passing through the mid-height of the
points at each x.  You can easily draw it by hand.  Just go through the middle of the plot.  Label this
line  "regression  of  y  on  x."   Your  line  should  pass  through  the  point  of  averages  which  is
approximately  (100,  100)  for  this  particular  data.   If  you were  to  calculate  the  slope as  in  #3  you
would get this very line you can fit by eye for jointly normal (x, y) data.  

b.  Now look at things with the roles of x, y interchanged.  Turn the picture (just above) so the y-
axis  is  horizontal  and  draw another  line,  the  regression  line  of  x  on  y,  which  passes  through  the
middle  x  for  each  y.   Galton  saw  all  of  this  in  his  remarkably  nearly  jointly  normal  data  for  x  =
parental seed weight and y = filial seed weight.  So too for his data on x = father's adult height and
y  =  son's  adult  height.   The  perfect  expression  of  all  this  in  planting  conducted  by  his  friends
literally  amazed  him,  led  to  the  definition  of  correlation,  defined  a  measure  of  the  parental
contribution to filial seed weight, tied in with continental research in astronomy, and helped propel
statistics and the various scientific disciplines into an increasingly close relationship.

5.  Do 7-4 .  Be creative here. Play devil's advocate against what the authors may be urging.

6.  Do 7-5.

7.  Do 7-6.  

8.  Do 7-8.

9.  Do 7-11.

10.  Do 7-12.

11.  r[x, y]= 08.  What are

            r[y, x] =
            
            
            r[-x, y] =
            
            
            r[-x, -y]]
            
            
           r[2 x, 4 y] = 
           
           
           r[3x - 6, 4 y + 11] =
           
           
           
 12. On page 173 we find "don't apply correlation to categorical data masquerading as quantitive."
If I followed that advice I would not be able to narrow the z-based CI for my  (based on independent
samples (xi , yi), i b n from 
                y  ± z sy  / n
the (except in rare conditions the narrower) regression-based 
                y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  
when the population mean mx  is known, even for the case in which score x is 1 for males and 0 for
females (and I know the population mean = rate of males in the population).  To the extent that the
sample correlation r[x, y] is near to 1 the regression-based method is both adjusting the estimator
of my  from y  to  
                regression-based estimator  y + Hmx - xL r @x , yD sy ë sx   

to which applies the (generally narrower than z sy  / n ) CI half width  

                z 1- r @x , yD2 sy ë n .
                
Determine these two CI for data on bar patrons having 
               
               x = 1 if male, 0 if female
               y = age
               n = 100 (sex and age obtained for each of a random sample of 100)
               
               x  = sample mean = 0.54 (given)
               mx= 0.62 (given)
                      (suppose we know that 62% of patrons are male in the population)
               sx  = sample sd of x-scores = .54µ .46 ~ 0.55 
                      (better to use sx  = .62µ .38  throughout but don't do that now) 
             
               y  = 26.7              
               my= unknown and to be estimated               
               sy  = 3.9
               r[x, y] = sample correlation = 0.58
          
a.  Regular estimator of population mean age (ignores x-scores altogether) is
               y  =

b.  Regular 95% z-based CI for population mean age (ignores x-scores altogether) is
                y  ± z sy  / n  =
                                              
      
c.  Regression-based estimator of population mean age is
         y + Hmx - xL r @x , yD sy ë sx  =

d.  Regression-based 95% CI for population mean age is 
         y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  =

  

e.  Experiment to find an n* for which the regular CI (b) would give the same CI half width as (d),
i.e. find n* for which
        1 / n*  =  1- 0.582   / 100
If  the  cost  to  obtain  each  sample  is  $100  dollars,  how  much  money  has  been  saved  using  the
regression-based approach?
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Overlay on the scatter plot the line passing through the point of averages (x , y ) and having slope
equal to (r sy  / sx).  This line is known as the least squares line of y on x and is taken up in the
following chapters. Does the line seem, to your eye, to be a reasonable fit to the three points?

4.  Here is a plot of data having a jointly normal (i.e. 2-dimensional normal) distribution for (x, y).
Note the roughly elliptical form of the plot.
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a.  For a jointly normal plot the regression line is just the line passing through the mid-height of the
points at each x.  You can easily draw it by hand.  Just go through the middle of the plot.  Label this
line  "regression  of  y  on  x."   Your  line  should  pass  through  the  point  of  averages  which  is
approximately  (100,  100)  for  this  particular  data.   If  you were  to  calculate  the  slope as  in  #3  you
would get this very line you can fit by eye for jointly normal (x, y) data.  

b.  Now look at things with the roles of x, y interchanged.  Turn the picture (just above) so the y-
axis  is  horizontal  and  draw another  line,  the  regression  line  of  x  on  y,  which  passes  through  the
middle  x  for  each  y.   Galton  saw  all  of  this  in  his  remarkably  nearly  jointly  normal  data  for  x  =
parental seed weight and y = filial seed weight.  So too for his data on x = father's adult height and
y  =  son's  adult  height.   The  perfect  expression  of  all  this  in  planting  conducted  by  his  friends
literally  amazed  him,  led  to  the  definition  of  correlation,  defined  a  measure  of  the  parental
contribution to filial seed weight, tied in with continental research in astronomy, and helped propel
statistics and the various scientific disciplines into an increasingly close relationship.
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10.  Do 7-12.

11.  r[x, y]= 08.  What are

            r[y, x] =
            
            
            r[-x, y] =
            
            
            r[-x, -y]]
            
            
           r[2 x, 4 y] = 
           
           
           r[3x - 6, 4 y + 11] =
           
           
           
 12. On page 173 we find "don't apply correlation to categorical data masquerading as quantitive."
If I followed that advice I would not be able to narrow the z-based CI for my  (based on independent
samples (xi , yi), i b n from 
                y  ± z sy  / n
the (except in rare conditions the narrower) regression-based 
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                regression-based estimator  y + Hmx - xL r @x , yD sy ë sx   

to which applies the (generally narrower than z sy  / n ) CI half width  

                z 1- r @x , yD2 sy ë n .
                
Determine these two CI for data on bar patrons having 
               
               x = 1 if male, 0 if female
               y = age
               n = 100 (sex and age obtained for each of a random sample of 100)
               
               x  = sample mean = 0.54 (given)
               mx= 0.62 (given)
                      (suppose we know that 62% of patrons are male in the population)
               sx  = sample sd of x-scores = .54µ .46 ~ 0.55 
                      (better to use sx  = .62µ .38  throughout but don't do that now) 
             
               y  = 26.7              
               my= unknown and to be estimated               
               sy  = 3.9
               r[x, y] = sample correlation = 0.58
          
a.  Regular estimator of population mean age (ignores x-scores altogether) is
               y  =

b.  Regular 95% z-based CI for population mean age (ignores x-scores altogether) is
                y  ± z sy  / n  =
                                              
      
c.  Regression-based estimator of population mean age is
         y + Hmx - xL r @x , yD sy ë sx  =

d.  Regression-based 95% CI for population mean age is 
         y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  =

  

e.  Experiment to find an n* for which the regular CI (b) would give the same CI half width as (d),
i.e. find n* for which
        1 / n*  =  1- 0.582   / 100
If  the  cost  to  obtain  each  sample  is  $100  dollars,  how  much  money  has  been  saved  using  the
regression-based approach?
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We will see in Chapter 8 that if (x, y) are jointly normal distributed then there is a natural line for
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1.  Do 7-1 (pg. 186).   If you are unable to identify one of the two variables as necessarily  y just
say so. 

2.  Do 7-2.  As above.

3.  For the (x, y) data  
      x              y          x deviations = (x - x )       y deviations = (y - y )       product 

     31           78

     26           46

     28           69
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Overlay on the scatter plot the line passing through the point of averages (x , y ) and having slope
equal to (r sy  / sx).  This line is known as the least squares line of y on x and is taken up in the
following chapters. Does the line seem, to your eye, to be a reasonable fit to the three points?

4.  Here is a plot of data having a jointly normal (i.e. 2-dimensional normal) distribution for (x, y).
Note the roughly elliptical form of the plot.
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a.  For a jointly normal plot the regression line is just the line passing through the mid-height of the
points at each x.  You can easily draw it by hand.  Just go through the middle of the plot.  Label this
line  "regression  of  y  on  x."   Your  line  should  pass  through  the  point  of  averages  which  is
approximately  (100,  100)  for  this  particular  data.   If  you were  to  calculate  the  slope as  in  #3  you
would get this very line you can fit by eye for jointly normal (x, y) data.  

b.  Now look at things with the roles of x, y interchanged.  Turn the picture (just above) so the y-
axis  is  horizontal  and  draw another  line,  the  regression  line  of  x  on  y,  which  passes  through  the
middle  x  for  each  y.   Galton  saw  all  of  this  in  his  remarkably  nearly  jointly  normal  data  for  x  =
parental seed weight and y = filial seed weight.  So too for his data on x = father's adult height and
y  =  son's  adult  height.   The  perfect  expression  of  all  this  in  planting  conducted  by  his  friends
literally  amazed  him,  led  to  the  definition  of  correlation,  defined  a  measure  of  the  parental
contribution to filial seed weight, tied in with continental research in astronomy, and helped propel
statistics and the various scientific disciplines into an increasingly close relationship.
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6.  Do 7-5.
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10.  Do 7-12.

11.  r[x, y]= 08.  What are
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            r[-x, -y]]
            
            
           r[2 x, 4 y] = 
           
           
           r[3x - 6, 4 y + 11] =
           
           
           
 12. On page 173 we find "don't apply correlation to categorical data masquerading as quantitive."
If I followed that advice I would not be able to narrow the z-based CI for my  (based on independent
samples (xi , yi), i b n from 
                y  ± z sy  / n
the (except in rare conditions the narrower) regression-based 
                y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  
when the population mean mx  is known, even for the case in which score x is 1 for males and 0 for
females (and I know the population mean = rate of males in the population).  To the extent that the
sample correlation r[x, y] is near to 1 the regression-based method is both adjusting the estimator
of my  from y  to  
                regression-based estimator  y + Hmx - xL r @x , yD sy ë sx   

to which applies the (generally narrower than z sy  / n ) CI half width  

                z 1- r @x , yD2 sy ë n .
                
Determine these two CI for data on bar patrons having 
               
               x = 1 if male, 0 if female
               y = age
               n = 100 (sex and age obtained for each of a random sample of 100)
               
               x  = sample mean = 0.54 (given)
               mx= 0.62 (given)
                      (suppose we know that 62% of patrons are male in the population)
               sx  = sample sd of x-scores = .54µ .46 ~ 0.55 
                      (better to use sx  = .62µ .38  throughout but don't do that now) 
             
               y  = 26.7              
               my= unknown and to be estimated               
               sy  = 3.9
               r[x, y] = sample correlation = 0.58
          
a.  Regular estimator of population mean age (ignores x-scores altogether) is
               y  =

b.  Regular 95% z-based CI for population mean age (ignores x-scores altogether) is
                y  ± z sy  / n  =
                                              
      
c.  Regression-based estimator of population mean age is
         y + Hmx - xL r @x , yD sy ë sx  =

d.  Regression-based 95% CI for population mean age is 
         y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  =

  

e.  Experiment to find an n* for which the regular CI (b) would give the same CI half width as (d),
i.e. find n* for which
        1 / n*  =  1- 0.582   / 100
If  the  cost  to  obtain  each  sample  is  $100  dollars,  how  much  money  has  been  saved  using  the
regression-based approach?
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of  seeds  and  growing  conditions.   A  key  idea  which  surfaced  was  that  practical,  even  profound
advances  in  scientific  tools  could  be  found  in  the  emerging  ideas  of  probability  and  statistics.
Before that, noisy data was distrusted as bad science.  

Such early successes brought needed insights to science and beyond but have been curiously and
needlessly rendered as dogma by some.

In Chapter 7, page 182, item 169 is a case in point.  It is said that you are to "Assign to the y-axis
the response variable that you hope to predict or explain.  Assign to the x-axis the explanatory or
predictor  variable  that  accounts  for,  explains,  predicts,  or  is  otherwise  responsible  or  the  y-
variable."  That is the usual convention, it is true.  However, the better view is that (x, y) may have
some relationship between them which you wish to exploit.  Correlation r (page 172) is a measure
of straight line fit of y on x but it is the same measure when the roles of x, y are interchanged (i.e.
r[x, y] = r[y, x]).  

We will see in Chapter 8 that if (x, y) are jointly normal distributed then there is a natural line for
y on x and a second natural line for x on y.  These two lines are the same only if  § r § = 1 (perfect
fit,  all  (x,  y)  points  fall  perfectly  on  a  line).   If  your  purpose  is  to  utilize  one  variable  to  predict  or
explain the other then yes, the convention is that y is the one to be explained and the line for y on x
is used.  The slope and intercept of this line are given as item(s) 196 on page 212.

1.  Do 7-1 (pg. 186).   If you are unable to identify one of the two variables as necessarily  y just
say so. 

2.  Do 7-2.  As above.

3.  For the (x, y) data  
      x              y          x deviations = (x - x )       y deviations = (y - y )       product 

     31           78

     26           46

     28           69

               
a.  Fill out the above table to complete the table find the correlation r by hand as is shown on page
173.  

b.  In the plot of the data (a) we have not taken the origin of the plot to be (0, 0) since that would
place the interesting part of the plot well away from the origin necessitating a fine scale (to get both
in view) that would compress the data into a little blob.  
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Overlay on the scatter plot the line passing through the point of averages (x , y ) and having slope
equal to (r sy  / sx).  This line is known as the least squares line of y on x and is taken up in the
following chapters. Does the line seem, to your eye, to be a reasonable fit to the three points?

4.  Here is a plot of data having a jointly normal (i.e. 2-dimensional normal) distribution for (x, y).
Note the roughly elliptical form of the plot.
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a.  For a jointly normal plot the regression line is just the line passing through the mid-height of the
points at each x.  You can easily draw it by hand.  Just go through the middle of the plot.  Label this
line  "regression  of  y  on  x."   Your  line  should  pass  through  the  point  of  averages  which  is
approximately  (100,  100)  for  this  particular  data.   If  you were  to  calculate  the  slope as  in  #3  you
would get this very line you can fit by eye for jointly normal (x, y) data.  

b.  Now look at things with the roles of x, y interchanged.  Turn the picture (just above) so the y-
axis  is  horizontal  and  draw another  line,  the  regression  line  of  x  on  y,  which  passes  through  the
middle  x  for  each  y.   Galton  saw  all  of  this  in  his  remarkably  nearly  jointly  normal  data  for  x  =
parental seed weight and y = filial seed weight.  So too for his data on x = father's adult height and
y  =  son's  adult  height.   The  perfect  expression  of  all  this  in  planting  conducted  by  his  friends
literally  amazed  him,  led  to  the  definition  of  correlation,  defined  a  measure  of  the  parental
contribution to filial seed weight, tied in with continental research in astronomy, and helped propel
statistics and the various scientific disciplines into an increasingly close relationship.

5.  Do 7-4 .  Be creative here. Play devil's advocate against what the authors may be urging.

6.  Do 7-5.

7.  Do 7-6.  

8.  Do 7-8.

9.  Do 7-11.

10.  Do 7-12.

11.  r[x, y]= 08.  What are

            r[y, x] =
            
            
            r[-x, y] =
            
            
            r[-x, -y]]
            
            
           r[2 x, 4 y] = 
           
           
           r[3x - 6, 4 y + 11] =
           
           
           
 12. On page 173 we find "don't apply correlation to categorical data masquerading as quantitive."
If I followed that advice I would not be able to narrow the z-based CI for my  (based on independent
samples (xi , yi), i b n from 
                y  ± z sy  / n
the (except in rare conditions the narrower) regression-based 
                y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  
when the population mean mx  is known, even for the case in which score x is 1 for males and 0 for
females (and I know the population mean = rate of males in the population).  To the extent that the
sample correlation r[x, y] is near to 1 the regression-based method is both adjusting the estimator
of my  from y  to  
                regression-based estimator  y + Hmx - xL r @x , yD sy ë sx   

to which applies the (generally narrower than z sy  / n ) CI half width  

                z 1- r @x , yD2 sy ë n .
                
Determine these two CI for data on bar patrons having 
               
               x = 1 if male, 0 if female
               y = age
               n = 100 (sex and age obtained for each of a random sample of 100)
               
               x  = sample mean = 0.54 (given)
               mx= 0.62 (given)
                      (suppose we know that 62% of patrons are male in the population)
               sx  = sample sd of x-scores = .54µ .46 ~ 0.55 
                      (better to use sx  = .62µ .38  throughout but don't do that now) 
             
               y  = 26.7              
               my= unknown and to be estimated               
               sy  = 3.9
               r[x, y] = sample correlation = 0.58
          
a.  Regular estimator of population mean age (ignores x-scores altogether) is
               y  =

b.  Regular 95% z-based CI for population mean age (ignores x-scores altogether) is
                y  ± z sy  / n  =
                                              
      
c.  Regression-based estimator of population mean age is
         y + Hmx - xL r @x , yD sy ë sx  =

d.  Regression-based 95% CI for population mean age is 
         y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  =

  

e.  Experiment to find an n* for which the regular CI (b) would give the same CI half width as (d),
i.e. find n* for which
        1 / n*  =  1- 0.582   / 100
If  the  cost  to  obtain  each  sample  is  $100  dollars,  how  much  money  has  been  saved  using  the
regression-based approach?
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Readings for the week are: for Monday Chapter 7; for Tuesday Chapter 9.

Textbook exercises for recitation Tuesday are:

Any plot  of  (x,  y)  scores is  called a scatter  plot.   Dependencies observed between two scores or
more scores are central to statistical method.

Much  of  the  statistical  thinking  brought  to  bear  on  scatter  plots  has  its  origins  in  two  early  grand
successes:   Gauss  (Astronomy,  predicting  future  positions  of  heavenly  bodies  from  a  few
observations  of  past  positions)  and  Galton  (Heredity,  a  scatter  plot  whose  correlation  actually
established beyond doubt a measure of the force of heredity in the weights of seeds).  Both were
startling  achievements  at  the  time  and  even  now.   With  hindsight,  knowing  all  the  mathematics,
even  knowing  how  he  cleverly  chose  his  subjects  and  found  ways  around  the  computational
difficulties  by  using  medians  instead  of  means,  it  would  take  years  for  me  duplicate.   Galton's
project, involving as it  did the cooperation of his friends to grow seeds in many places, count and
sort data and various ingenious simplifications remains a work of genius. 

In  both  of  the  above  cases  the  data  was  by  nature  "noisy."   Measurements  of  astronomical
positions were subject to various inaccuracies and so too natural variability was seen in the yields
of  seeds  and  growing  conditions.   A  key  idea  which  surfaced  was  that  practical,  even  profound
advances  in  scientific  tools  could  be  found  in  the  emerging  ideas  of  probability  and  statistics.
Before that, noisy data was distrusted as bad science.  

Such early successes brought needed insights to science and beyond but have been curiously and
needlessly rendered as dogma by some.

In Chapter 7, page 182, item 169 is a case in point.  It is said that you are to "Assign to the y-axis
the response variable that you hope to predict or explain.  Assign to the x-axis the explanatory or
predictor  variable  that  accounts  for,  explains,  predicts,  or  is  otherwise  responsible  or  the  y-
variable."  That is the usual convention, it is true.  However, the better view is that (x, y) may have
some relationship between them which you wish to exploit.  Correlation r (page 172) is a measure
of straight line fit of y on x but it is the same measure when the roles of x, y are interchanged (i.e.
r[x, y] = r[y, x]).  

We will see in Chapter 8 that if (x, y) are jointly normal distributed then there is a natural line for
y on x and a second natural line for x on y.  These two lines are the same only if  § r § = 1 (perfect
fit,  all  (x,  y)  points  fall  perfectly  on  a  line).   If  your  purpose  is  to  utilize  one  variable  to  predict  or
explain the other then yes, the convention is that y is the one to be explained and the line for y on x
is used.  The slope and intercept of this line are given as item(s) 196 on page 212.

1.  Do 7-1 (pg. 186).   If you are unable to identify one of the two variables as necessarily  y just
say so. 

2.  Do 7-2.  As above.

3.  For the (x, y) data  
      x              y          x deviations = (x - x )       y deviations = (y - y )       product 

     31           78

     26           46

     28           69

               
a.  Fill out the above table to complete the table find the correlation r by hand as is shown on page
173.  

b.  In the plot of the data (a) we have not taken the origin of the plot to be (0, 0) since that would
place the interesting part of the plot well away from the origin necessitating a fine scale (to get both
in view) that would compress the data into a little blob.  
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Overlay on the scatter plot the line passing through the point of averages (x , y ) and having slope
equal to (r sy  / sx).  This line is known as the least squares line of y on x and is taken up in the
following chapters. Does the line seem, to your eye, to be a reasonable fit to the three points?

4.  Here is a plot of data having a jointly normal (i.e. 2-dimensional normal) distribution for (x, y).
Note the roughly elliptical form of the plot.
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a.  For a jointly normal plot the regression line is just the line passing through the mid-height of the
points at each x.  You can easily draw it by hand.  Just go through the middle of the plot.  Label this
line  "regression  of  y  on  x."   Your  line  should  pass  through  the  point  of  averages  which  is
approximately  (100,  100)  for  this  particular  data.   If  you were  to  calculate  the  slope as  in  #3  you
would get this very line you can fit by eye for jointly normal (x, y) data.  

b.  Now look at things with the roles of x, y interchanged.  Turn the picture (just above) so the y-
axis  is  horizontal  and  draw another  line,  the  regression  line  of  x  on  y,  which  passes  through  the
middle  x  for  each  y.   Galton  saw  all  of  this  in  his  remarkably  nearly  jointly  normal  data  for  x  =
parental seed weight and y = filial seed weight.  So too for his data on x = father's adult height and
y  =  son's  adult  height.   The  perfect  expression  of  all  this  in  planting  conducted  by  his  friends
literally  amazed  him,  led  to  the  definition  of  correlation,  defined  a  measure  of  the  parental
contribution to filial seed weight, tied in with continental research in astronomy, and helped propel
statistics and the various scientific disciplines into an increasingly close relationship.

5.  Do 7-4 .  Be creative here. Play devil's advocate against what the authors may be urging.

6.  Do 7-5.

7.  Do 7-6.  

8.  Do 7-8.

9.  Do 7-11.

10.  Do 7-12.

11.  r[x, y]= 08.  What are

            r[y, x] =
            
            
            r[-x, y] =
            
            
            r[-x, -y]]
            
            
           r[2 x, 4 y] = 
           
           
           r[3x - 6, 4 y + 11] =
           
           
           
 12. On page 173 we find "don't apply correlation to categorical data masquerading as quantitive."
If I followed that advice I would not be able to narrow the z-based CI for my  (based on independent
samples (xi , yi), i b n from 
                y  ± z sy  / n
the (except in rare conditions the narrower) regression-based 
                y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  
when the population mean mx  is known, even for the case in which score x is 1 for males and 0 for
females (and I know the population mean = rate of males in the population).  To the extent that the
sample correlation r[x, y] is near to 1 the regression-based method is both adjusting the estimator
of my  from y  to  
                regression-based estimator  y + Hmx - xL r @x , yD sy ë sx   

to which applies the (generally narrower than z sy  / n ) CI half width  

                z 1- r @x , yD2 sy ë n .
                
Determine these two CI for data on bar patrons having 
               
               x = 1 if male, 0 if female
               y = age
               n = 100 (sex and age obtained for each of a random sample of 100)
               
               x  = sample mean = 0.54 (given)
               mx= 0.62 (given)
                      (suppose we know that 62% of patrons are male in the population)
               sx  = sample sd of x-scores = .54µ .46 ~ 0.55 
                      (better to use sx  = .62µ .38  throughout but don't do that now) 
             
               y  = 26.7              
               my= unknown and to be estimated               
               sy  = 3.9
               r[x, y] = sample correlation = 0.58
          
a.  Regular estimator of population mean age (ignores x-scores altogether) is
               y  =

b.  Regular 95% z-based CI for population mean age (ignores x-scores altogether) is
                y  ± z sy  / n  =
                                              
      
c.  Regression-based estimator of population mean age is
         y + Hmx - xL r @x , yD sy ë sx  =

d.  Regression-based 95% CI for population mean age is 
         y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  =

  

e.  Experiment to find an n* for which the regular CI (b) would give the same CI half width as (d),
i.e. find n* for which
        1 / n*  =  1- 0.582   / 100
If  the  cost  to  obtain  each  sample  is  $100  dollars,  how  much  money  has  been  saved  using  the
regression-based approach?
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Readings for the week are: for Monday Chapter 7; for Tuesday Chapter 9.

Textbook exercises for recitation Tuesday are:

Any plot  of  (x,  y)  scores is  called a scatter  plot.   Dependencies observed between two scores or
more scores are central to statistical method.

Much  of  the  statistical  thinking  brought  to  bear  on  scatter  plots  has  its  origins  in  two  early  grand
successes:   Gauss  (Astronomy,  predicting  future  positions  of  heavenly  bodies  from  a  few
observations  of  past  positions)  and  Galton  (Heredity,  a  scatter  plot  whose  correlation  actually
established beyond doubt a measure of the force of heredity in the weights of seeds).  Both were
startling  achievements  at  the  time  and  even  now.   With  hindsight,  knowing  all  the  mathematics,
even  knowing  how  he  cleverly  chose  his  subjects  and  found  ways  around  the  computational
difficulties  by  using  medians  instead  of  means,  it  would  take  years  for  me  duplicate.   Galton's
project, involving as it  did the cooperation of his friends to grow seeds in many places, count and
sort data and various ingenious simplifications remains a work of genius. 

In  both  of  the  above  cases  the  data  was  by  nature  "noisy."   Measurements  of  astronomical
positions were subject to various inaccuracies and so too natural variability was seen in the yields
of  seeds  and  growing  conditions.   A  key  idea  which  surfaced  was  that  practical,  even  profound
advances  in  scientific  tools  could  be  found  in  the  emerging  ideas  of  probability  and  statistics.
Before that, noisy data was distrusted as bad science.  

Such early successes brought needed insights to science and beyond but have been curiously and
needlessly rendered as dogma by some.

In Chapter 7, page 182, item 169 is a case in point.  It is said that you are to "Assign to the y-axis
the response variable that you hope to predict or explain.  Assign to the x-axis the explanatory or
predictor  variable  that  accounts  for,  explains,  predicts,  or  is  otherwise  responsible  or  the  y-
variable."  That is the usual convention, it is true.  However, the better view is that (x, y) may have
some relationship between them which you wish to exploit.  Correlation r (page 172) is a measure
of straight line fit of y on x but it is the same measure when the roles of x, y are interchanged (i.e.
r[x, y] = r[y, x]).  

We will see in Chapter 8 that if (x, y) are jointly normal distributed then there is a natural line for
y on x and a second natural line for x on y.  These two lines are the same only if  § r § = 1 (perfect
fit,  all  (x,  y)  points  fall  perfectly  on  a  line).   If  your  purpose  is  to  utilize  one  variable  to  predict  or
explain the other then yes, the convention is that y is the one to be explained and the line for y on x
is used.  The slope and intercept of this line are given as item(s) 196 on page 212.

1.  Do 7-1 (pg. 186).   If you are unable to identify one of the two variables as necessarily  y just
say so. 

2.  Do 7-2.  As above.

3.  For the (x, y) data  
      x              y          x deviations = (x - x )       y deviations = (y - y )       product 

     31           78

     26           46

     28           69

               
a.  Fill out the above table to complete the table find the correlation r by hand as is shown on page
173.  

b.  In the plot of the data (a) we have not taken the origin of the plot to be (0, 0) since that would
place the interesting part of the plot well away from the origin necessitating a fine scale (to get both
in view) that would compress the data into a little blob.  
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Overlay on the scatter plot the line passing through the point of averages (x , y ) and having slope
equal to (r sy  / sx).  This line is known as the least squares line of y on x and is taken up in the
following chapters. Does the line seem, to your eye, to be a reasonable fit to the three points?

4.  Here is a plot of data having a jointly normal (i.e. 2-dimensional normal) distribution for (x, y).
Note the roughly elliptical form of the plot.
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a.  For a jointly normal plot the regression line is just the line passing through the mid-height of the
points at each x.  You can easily draw it by hand.  Just go through the middle of the plot.  Label this
line  "regression  of  y  on  x."   Your  line  should  pass  through  the  point  of  averages  which  is
approximately  (100,  100)  for  this  particular  data.   If  you were  to  calculate  the  slope as  in  #3  you
would get this very line you can fit by eye for jointly normal (x, y) data.  

b.  Now look at things with the roles of x, y interchanged.  Turn the picture (just above) so the y-
axis  is  horizontal  and  draw another  line,  the  regression  line  of  x  on  y,  which  passes  through  the
middle  x  for  each  y.   Galton  saw  all  of  this  in  his  remarkably  nearly  jointly  normal  data  for  x  =
parental seed weight and y = filial seed weight.  So too for his data on x = father's adult height and
y  =  son's  adult  height.   The  perfect  expression  of  all  this  in  planting  conducted  by  his  friends
literally  amazed  him,  led  to  the  definition  of  correlation,  defined  a  measure  of  the  parental
contribution to filial seed weight, tied in with continental research in astronomy, and helped propel
statistics and the various scientific disciplines into an increasingly close relationship.

5.  Do 7-4 .  Be creative here. Play devil's advocate against what the authors may be urging.

6.  Do 7-5.

7.  Do 7-6.  

8.  Do 7-8.

9.  Do 7-11.

10.  Do 7-12.

11.  r[x, y]= 08.  What are

            r[y, x] =
            
            
            r[-x, y] =
            
            
            r[-x, -y]]
            
            
           r[2 x, 4 y] = 
           
           
           r[3x - 6, 4 y + 11] =
           
           
           
 12. On page 173 we find "don't apply correlation to categorical data masquerading as quantitive."
If I followed that advice I would not be able to narrow the z-based CI for my  (based on independent
samples (xi , yi), i b n from 
                y  ± z sy  / n
the (except in rare conditions the narrower) regression-based 
                y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  
when the population mean mx  is known, even for the case in which score x is 1 for males and 0 for
females (and I know the population mean = rate of males in the population).  To the extent that the
sample correlation r[x, y] is near to 1 the regression-based method is both adjusting the estimator
of my  from y  to  
                regression-based estimator  y + Hmx - xL r @x , yD sy ë sx   

to which applies the (generally narrower than z sy  / n ) CI half width  

                z 1- r @x , yD2 sy ë n .
                
Determine these two CI for data on bar patrons having 
               
               x = 1 if male, 0 if female
               y = age
               n = 100 (sex and age obtained for each of a random sample of 100)
               
               x  = sample mean = 0.54 (given)
               mx= 0.62 (given)
                      (suppose we know that 62% of patrons are male in the population)
               sx  = sample sd of x-scores = .54µ .46 ~ 0.55 
                      (better to use sx  = .62µ .38  throughout but don't do that now) 
             
               y  = 26.7              
               my= unknown and to be estimated               
               sy  = 3.9
               r[x, y] = sample correlation = 0.58
          
a.  Regular estimator of population mean age (ignores x-scores altogether) is
               y  =

b.  Regular 95% z-based CI for population mean age (ignores x-scores altogether) is
                y  ± z sy  / n  =
                                              
      
c.  Regression-based estimator of population mean age is
         y + Hmx - xL r @x , yD sy ë sx  =

d.  Regression-based 95% CI for population mean age is 
         y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  =

  

e.  Experiment to find an n* for which the regular CI (b) would give the same CI half width as (d),
i.e. find n* for which
        1 / n*  =  1- 0.582   / 100
If  the  cost  to  obtain  each  sample  is  $100  dollars,  how  much  money  has  been  saved  using  the
regression-based approach?
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Readings for the week are: for Monday Chapter 7; for Tuesday Chapter 9.

Textbook exercises for recitation Tuesday are:

Any plot  of  (x,  y)  scores is  called a scatter  plot.   Dependencies observed between two scores or
more scores are central to statistical method.

Much  of  the  statistical  thinking  brought  to  bear  on  scatter  plots  has  its  origins  in  two  early  grand
successes:   Gauss  (Astronomy,  predicting  future  positions  of  heavenly  bodies  from  a  few
observations  of  past  positions)  and  Galton  (Heredity,  a  scatter  plot  whose  correlation  actually
established beyond doubt a measure of the force of heredity in the weights of seeds).  Both were
startling  achievements  at  the  time  and  even  now.   With  hindsight,  knowing  all  the  mathematics,
even  knowing  how  he  cleverly  chose  his  subjects  and  found  ways  around  the  computational
difficulties  by  using  medians  instead  of  means,  it  would  take  years  for  me  duplicate.   Galton's
project, involving as it  did the cooperation of his friends to grow seeds in many places, count and
sort data and various ingenious simplifications remains a work of genius. 

In  both  of  the  above  cases  the  data  was  by  nature  "noisy."   Measurements  of  astronomical
positions were subject to various inaccuracies and so too natural variability was seen in the yields
of  seeds  and  growing  conditions.   A  key  idea  which  surfaced  was  that  practical,  even  profound
advances  in  scientific  tools  could  be  found  in  the  emerging  ideas  of  probability  and  statistics.
Before that, noisy data was distrusted as bad science.  

Such early successes brought needed insights to science and beyond but have been curiously and
needlessly rendered as dogma by some.

In Chapter 7, page 182, item 169 is a case in point.  It is said that you are to "Assign to the y-axis
the response variable that you hope to predict or explain.  Assign to the x-axis the explanatory or
predictor  variable  that  accounts  for,  explains,  predicts,  or  is  otherwise  responsible  or  the  y-
variable."  That is the usual convention, it is true.  However, the better view is that (x, y) may have
some relationship between them which you wish to exploit.  Correlation r (page 172) is a measure
of straight line fit of y on x but it is the same measure when the roles of x, y are interchanged (i.e.
r[x, y] = r[y, x]).  

We will see in Chapter 8 that if (x, y) are jointly normal distributed then there is a natural line for
y on x and a second natural line for x on y.  These two lines are the same only if  § r § = 1 (perfect
fit,  all  (x,  y)  points  fall  perfectly  on  a  line).   If  your  purpose  is  to  utilize  one  variable  to  predict  or
explain the other then yes, the convention is that y is the one to be explained and the line for y on x
is used.  The slope and intercept of this line are given as item(s) 196 on page 212.

1.  Do 7-1 (pg. 186).   If you are unable to identify one of the two variables as necessarily  y just
say so. 

2.  Do 7-2.  As above.

3.  For the (x, y) data  
      x              y          x deviations = (x - x )       y deviations = (y - y )       product 

     31           78

     26           46

     28           69

               
a.  Fill out the above table to complete the table find the correlation r by hand as is shown on page
173.  

b.  In the plot of the data (a) we have not taken the origin of the plot to be (0, 0) since that would
place the interesting part of the plot well away from the origin necessitating a fine scale (to get both
in view) that would compress the data into a little blob.  
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Overlay on the scatter plot the line passing through the point of averages (x , y ) and having slope
equal to (r sy  / sx).  This line is known as the least squares line of y on x and is taken up in the
following chapters. Does the line seem, to your eye, to be a reasonable fit to the three points?

4.  Here is a plot of data having a jointly normal (i.e. 2-dimensional normal) distribution for (x, y).
Note the roughly elliptical form of the plot.
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a.  For a jointly normal plot the regression line is just the line passing through the mid-height of the
points at each x.  You can easily draw it by hand.  Just go through the middle of the plot.  Label this
line  "regression  of  y  on  x."   Your  line  should  pass  through  the  point  of  averages  which  is
approximately  (100,  100)  for  this  particular  data.   If  you were  to  calculate  the  slope as  in  #3  you
would get this very line you can fit by eye for jointly normal (x, y) data.  

b.  Now look at things with the roles of x, y interchanged.  Turn the picture (just above) so the y-
axis  is  horizontal  and  draw another  line,  the  regression  line  of  x  on  y,  which  passes  through  the
middle  x  for  each  y.   Galton  saw  all  of  this  in  his  remarkably  nearly  jointly  normal  data  for  x  =
parental seed weight and y = filial seed weight.  So too for his data on x = father's adult height and
y  =  son's  adult  height.   The  perfect  expression  of  all  this  in  planting  conducted  by  his  friends
literally  amazed  him,  led  to  the  definition  of  correlation,  defined  a  measure  of  the  parental
contribution to filial seed weight, tied in with continental research in astronomy, and helped propel
statistics and the various scientific disciplines into an increasingly close relationship.

5.  Do 7-4 .  Be creative here. Play devil's advocate against what the authors may be urging.

6.  Do 7-5.

7.  Do 7-6.  

8.  Do 7-8.

9.  Do 7-11.

10.  Do 7-12.

11.  r[x, y]= 08.  What are

            r[y, x] =
            
            
            r[-x, y] =
            
            
            r[-x, -y]]
            
            
           r[2 x, 4 y] = 
           
           
           r[3x - 6, 4 y + 11] =
           
           
           
 12. On page 173 we find "don't apply correlation to categorical data masquerading as quantitive."
If I followed that advice I would not be able to narrow the z-based CI for my  (based on independent
samples (xi , yi), i b n from 
                y  ± z sy  / n
the (except in rare conditions the narrower) regression-based 
                y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  
when the population mean mx  is known, even for the case in which score x is 1 for males and 0 for
females (and I know the population mean = rate of males in the population).  To the extent that the
sample correlation r[x, y] is near to 1 the regression-based method is both adjusting the estimator
of my  from y  to  
                regression-based estimator  y + Hmx - xL r @x , yD sy ë sx   

to which applies the (generally narrower than z sy  / n ) CI half width  

                z 1- r @x , yD2 sy ë n .
                
Determine these two CI for data on bar patrons having 
               
               x = 1 if male, 0 if female
               y = age
               n = 100 (sex and age obtained for each of a random sample of 100)
               
               x  = sample mean = 0.54 (given)
               mx= 0.62 (given)
                      (suppose we know that 62% of patrons are male in the population)
               sx  = sample sd of x-scores = .54µ .46 ~ 0.55 
                      (better to use sx  = .62µ .38  throughout but don't do that now) 
             
               y  = 26.7              
               my= unknown and to be estimated               
               sy  = 3.9
               r[x, y] = sample correlation = 0.58
          
a.  Regular estimator of population mean age (ignores x-scores altogether) is
               y  =

b.  Regular 95% z-based CI for population mean age (ignores x-scores altogether) is
                y  ± z sy  / n  =
                                              
      
c.  Regression-based estimator of population mean age is
         y + Hmx - xL r @x , yD sy ë sx  =

d.  Regression-based 95% CI for population mean age is 
         y + Hmx - xL r @x , yD sy ë sx  ± z 1- r @x , yD2  sy  / n  =

  

e.  Experiment to find an n* for which the regular CI (b) would give the same CI half width as (d),
i.e. find n* for which
        1 / n*  =  1- 0.582   / 100
If  the  cost  to  obtain  each  sample  is  $100  dollars,  how  much  money  has  been  saved  using  the
regression-based approach?
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