HW due a start of class 8-2-10.

1. Let X = the number of tosses to obtain the first head.

 a. Guess $\mu = E \ X$ (it is intuitive)

 b. Can you guess σ?

 c. Let x_1 denote the number of tosses you have to make to get the first head. Repeat the experiment to get x_2 (the number of tosses you have to make to get the first head the second time you try the experiment). Do this 30 times getting x_1, \ldots, x_{30}. Record the results (number of tosses required for each of 30 replications of "tossing until the first head."

 d. From your sample of $n = 30$ give

 \bar{x} (sample mean), an estimate of μ

 s, your estimate of σ

 $\frac{s}{\sqrt{n}}$, your estimate of the standard deviation of \bar{x}

 MOE (margin of error for \bar{x}) = 1.96 $\frac{s}{\sqrt{n}}$
1. Let \(X \) = the number of tosses to obtain the first head.

 a. Guess \(m = \mathbb{E} X \) (it is intuitive)

 b. Can you guess \(s \)?

 c. Let \(x_1 \) denote the number of tosses you have to make to get the first head. Repeat the experiment to get \(x_2 \) (the number of tosses you have to make to get the first head the second time you try the experiment). Do this 30 times getting \(x_1, \ldots, x_{30} \). Record the results (number of tosses required for each of 30 replications of "tossing until the first head").

 d. From your sample of \(n = 30 \) give \(\bar{x} \) (sample mean), an estimate of \(m \)

 \(s \), your estimate of \(\sigma \),

 \[\text{MOE (margin of error for } \bar{x}) = 1.96 s \]

 \[95\% \text{ CI for } \mu \]

 If \(\mu \) is not in your interval then a "bad" event has occurred. What is the probability of this "bad" event?

 Around what fraction of the class should have an 80% t-CI containing \(\mu \)?

Prepare a histogram of your 30 numbers, does it look at all as though \(X \) is normal distributed?

2. Let \(X \) = the number of heads in 10 tosses of a coin. Although \(X \) is not normally distributed (it is binomial) the distribution is not far from normal with mean \(np \), and standard deviation \(\sqrt{np(1-p)} \). For \(n = 3 \) times toss a coin 10 times recording the number of heads \(x_1, x_2, x_3 \) in each of the three experiments.

 From your sample of \(n = 3 \) give

 \[\bar{x} \] (sample mean), an estimate of \(\mu \)

 \[s \], your estimate of \(\sigma \)
1. Let X = the number of tosses to obtain the first head.

 a. Guess $m = E(X)$ (it is intuitive)

 b. Can you guess s?

 c. Let x_1 denote the number of tosses you have to make to get the first head. Repeat the experiment to get x_2 (the number of tosses you have to make to get the first head the second time you try the experiment). Do this 30 times getting x_1, \ldots, x_{30}. Record the results (number of tosses required for each of 30 replications of "tossing until the first head.")

 d. From your sample of $n = 30$ give \bar{x} (sample mean), an estimate of m, your estimate of s, your estimate of the standard deviation of x. MOE (margin of error for \bar{x}) = $t_{0.025} \frac{s}{\sqrt{n}}$

2. Let X = the number of heads in 10 tosses of a coin. Although X is not normally distributed (it is binomial) the distribution is not far from normal with mean np, and standard deviation $\sqrt{np(1-p)}$.

 For $n = 3$ times toss a coin 10 times recording the number of heads x_1, x_2, x_3 in each of the three experiments.

 From your sample of $n = 3$ give \bar{x} (sample mean), an estimate of m, your estimate of s, your estimate of the standard deviation of x. MOE (margin of error for \bar{x}) = $t_{0.025} \frac{s}{\sqrt{n}}$ 80% t-based CI for μ

 If μ is not in your interval then a "bad" event has occurred. What is the probability of this "bad" event?

 Around what fraction of the class should have an 80% t-Cl containing μ?

3. A 95% z-Cl for μ based on a large sample selected with replacement from a population is given as [3.884, 3.917].

 MOE

 Interval for 68% confidence

 \bar{x}

 95% z-Cl if instead the sampling is without replacement, population size $N = 1000$ and sample size $n = 100$.