Due a start of class 8-2-10.

1. Let X be the number of tosses to obtain the first head.

 a. Guess $\mu = E(X)$ (it is intuitive).

 \[\mu = \frac{1}{2}(1) + \frac{1}{2}(1+\mu) \]

 \[\Rightarrow \mu = 2 \]

 b. Can you guess σ?

 \[\Rightarrow \mu = 2 \]

 c. Let x_1 denote the number of tosses you have to make to get the first head. Repeat the experiment to get x_2 (the number of tosses you have to make to get the first head the second time you try the experiment). Do this 30 times getting x_1, \ldots, x_{30}. Record the results (number of tosses required for each of 30 replications of "tossing until the first head."

 \[4, 3, 1, 6, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 3, 4, 1, 4, 1, 2, 1, 1, 1, 3, 4, \]

 \[3, 4, 2, 5 \]

 \[n = 30 \]

 \[\bar{x} = \frac{69}{30} = 2.3 \]

 d. From your sample of $n = 30$ give \bar{x} (sample mean), an estimate of μ.

 \[\bar{x} \]

 \[s, \text{ your estimate of } \sigma \]

 \[\sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} \]

 \[= \sqrt{\frac{29}{29}} + \frac{(5-2.3)^2}{29} + \frac{(6-2.3)^2}{29} \]

 \[= \sqrt{1.9177} = 1.385 \]

 \[\frac{s}{\sqrt{n}}, \text{ your estimate of the standard deviation of } \bar{x} \]

 \[\frac{1.385}{\sqrt{30}} = .253 \]

 MOE (margin of error for \bar{x}) = 1.96 $\frac{s}{\sqrt{n}}$

 \[1.96 \left(\frac{1.385}{\sqrt{30}} \right) = .496 \]
68%
-95% z-based CI for \(\mu \)
\[
+ 2.3 + .253 = 2.553
\]
\[
- 2.3 - .253 = 2.047
\]

If \(\mu \) is not in your interval then a "bad" event has occurred.
What is the probability of this "bad" event?

In class, 7/13 did not cover: = .54 w/ 68%, 32% would not cover

Around what fraction of the class should have an 80% t-Cl containing \(\mu \)?

Prepare a histogram of your 30 numbers, does it look at all as though \(X \) is normal distributed?

\[
\text{no.}
\]

2. Let \(X \) = the number of heads in 10 tosses of a coin. Although \(X \) is not normally distributed (it is binomial) the distribution is not far from normal with mean np, and standard deviation \(\sqrt{np(1-p)} \).
For \(n = 3 \) times toss a coin 10 times recording the number of heads \(x_1, x_2, x_3 \) in each of the three experiments.

From your sample of \(n = 3 \) give

\[
x \text{ (sample mean), an estimate of } \mu
\]
\[
\bar{x} = \frac{15}{3} = 5
\]

\[
s, \text{ your estimate of } \sigma
\]
\[
\sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} = \sqrt{\frac{(4 - 5)^2}{2} + \frac{(5 - 5)^2}{2} + \frac{(6 - 5)^2}{2}}
\]
\[
= \sqrt{\frac{1}{2} + 0 + \frac{1}{2}} = \sqrt{1} = 1
\]
\[
\frac{\sigma}{\sqrt{n}}, \text{ your estimate of the standard deviation of } \bar{x} \\
\frac{1}{12} = .707
\]

\[df = 3 - 1 = 2\]

\[t - \text{MOE (margin of error for } \bar{x}) = t_{0.025} \frac{\sigma}{\sqrt{n}} \]

\[4.303(.707) = 3.04\]

80\% t-based CI for \(\mu\)

\[5 - (1.886)(1) = 3.114 \quad 5 + (1.886)(1) = 6.886\]

If \(\mu\) is not in your interval then a "bad" event has occurred.
What is the probability of this "bad" event? \(\mu = 5\)

W/ 80\% CI, 20\% would not cover

Around what fraction of the class should have an 80\% t-Cl containing \(\mu\)?

3. A 95\% z-Cl for \(\mu\) based on a large sample selected with replacement from a population is given as [3.884, 3.9170].

\[
\text{MOE} = \frac{1}{2} \text{ diff of upper + lower CI} \\
= 3.9170 - 3.884 = 0.033/2 = 0.0165
\]

Interval for 68\% confidence

\[
x = \frac{3.884 + 3.9170}{2} = 3.9005
\]

95\% z-Cl if instead the sampling is without replacement, population size \(N = 1000\) and sample size \(n = 100\).

\[
x \pm 1.96 \sqrt{\frac{N-n}{N-1} \frac{4}{1000-100}} \]

\[
x = 3.9005 \pm 0.165 (9.499/6)
\]

\[
3.9005 \pm 0.165 (9.499/6)
\]
Problem

Class Data #1

<table>
<thead>
<tr>
<th>Name</th>
<th>m</th>
<th>\bar{x}</th>
<th>Δ</th>
<th>$\frac{\Delta}{\text{in}}$</th>
<th>$1.96 \times \frac{\Delta}{\text{in}}$</th>
<th>$\frac{68%}{\text{of} \bar{x}} - \frac{\Delta}{\text{in}}$</th>
<th>$\frac{95%}{\text{of} \bar{x}} - \frac{2 \times \Delta}{\text{in}}$</th>
<th>Cover M=2?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emily</td>
<td>30</td>
<td>2.3</td>
<td>1.305</td>
<td>.253</td>
<td>.496</td>
<td>2.047 - 2.553</td>
<td>[2.047, 2.553]</td>
<td></td>
</tr>
<tr>
<td>Angie</td>
<td>30</td>
<td>1.77</td>
<td>1.346</td>
<td>.248</td>
<td>.489</td>
<td>1.522 - 2.018</td>
<td>[1.522, 2.018]</td>
<td></td>
</tr>
<tr>
<td>James</td>
<td>30</td>
<td>1.366</td>
<td>.9699</td>
<td>.1397</td>
<td>.2738</td>
<td>1.2283 - 1.5057</td>
<td>[1.2283, 1.5057]</td>
<td></td>
</tr>
<tr>
<td>Jorn</td>
<td>30</td>
<td>1.6</td>
<td>.9322</td>
<td>.1702</td>
<td>.334</td>
<td>1.4298 - 1.7702</td>
<td>[1.4298, 1.7702]</td>
<td></td>
</tr>
<tr>
<td>Tim</td>
<td>30</td>
<td>1.63</td>
<td>.999</td>
<td>.182</td>
<td>.337</td>
<td>1.448 - 1.812</td>
<td>[1.448, 1.812]</td>
<td></td>
</tr>
<tr>
<td>Tenika</td>
<td>30</td>
<td>1.9</td>
<td>1.155</td>
<td>.21</td>
<td>.4116</td>
<td>1.69 - 2.11</td>
<td>[1.69, 2.11]</td>
<td>✓</td>
</tr>
<tr>
<td>Sarah</td>
<td>30</td>
<td>2.23</td>
<td>1.529</td>
<td>.279</td>
<td>.5471</td>
<td>1.9508 - 2.5041</td>
<td>[1.9508, 2.5041]</td>
<td>✓</td>
</tr>
<tr>
<td>Jessica</td>
<td>30</td>
<td>1.9</td>
<td>3.78</td>
<td>.69</td>
<td>1.35</td>
<td>1.21 - 2.59</td>
<td>[1.21, 2.59]</td>
<td>✓</td>
</tr>
<tr>
<td>Megan</td>
<td>30</td>
<td>1.7</td>
<td>1.32</td>
<td>.241</td>
<td>.4724</td>
<td>1.459 - 1.941</td>
<td>[1.459, 1.941]</td>
<td></td>
</tr>
<tr>
<td>Rachel</td>
<td>30</td>
<td>1.13</td>
<td>.819</td>
<td>.149</td>
<td>.29704</td>
<td>.981 - 1.279</td>
<td>[0.981, 1.279]</td>
<td></td>
</tr>
<tr>
<td>Tyrone</td>
<td>30</td>
<td>1.64</td>
<td>.95</td>
<td>.173</td>
<td>.061</td>
<td>1.49 - 1.83</td>
<td>[1.49, 1.83]</td>
<td></td>
</tr>
<tr>
<td>Takyun</td>
<td>30</td>
<td>1.9</td>
<td>1.152</td>
<td>.2109</td>
<td>.44134</td>
<td>1.6891 - 2.1109</td>
<td>[1.6891, 2.1109]</td>
<td>✓</td>
</tr>
<tr>
<td>Tiffany</td>
<td>30</td>
<td>2.166</td>
<td>1.39</td>
<td>.253</td>
<td>.497</td>
<td>1.913 - 2.419</td>
<td>[1.913, 2.419]</td>
<td>✓</td>
</tr>
</tbody>
</table>
Class Data Problem #2

<table>
<thead>
<tr>
<th>Name</th>
<th>(m)</th>
<th>(x)</th>
<th>(\delta)</th>
<th>(\frac{\delta}{\delta_{\delta}})</th>
<th>(\frac{\delta}{\delta_{\delta}})</th>
<th>(x + \frac{1}{2} \delta)</th>
<th>(x + \frac{1}{2} \delta)</th>
<th>(\text{Cover?})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim</td>
<td>3</td>
<td>5</td>
<td>2.05</td>
<td>1.59</td>
<td>2.11</td>
<td>7.89</td>
<td>7.89</td>
<td>✓</td>
</tr>
<tr>
<td>Angie</td>
<td>3</td>
<td>4.33</td>
<td>3.21</td>
<td>1.95</td>
<td>2.46</td>
<td>8.09</td>
<td>7.82</td>
<td>✓</td>
</tr>
<tr>
<td>James</td>
<td>3</td>
<td>6.66</td>
<td>9.66</td>
<td>4.71</td>
<td>4.67</td>
<td>9.69</td>
<td>8.86</td>
<td></td>
</tr>
<tr>
<td>Sarah</td>
<td>3</td>
<td>4.66</td>
<td>5.77</td>
<td>5.33</td>
<td>5.03</td>
<td>5.28</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Tiffany</td>
<td>3</td>
<td>4.66</td>
<td>1.15</td>
<td>1.66</td>
<td>1.84</td>
<td>4.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megan</td>
<td>3</td>
<td>5.3</td>
<td>3</td>
<td>1.73</td>
<td>2.93</td>
<td>7.87</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Jessica</td>
<td>3</td>
<td>4.33</td>
<td>3.56</td>
<td>5.17</td>
<td>3.16</td>
<td>5.49</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Sorn</td>
<td>3</td>
<td>4.66</td>
<td>5.77</td>
<td>5.33</td>
<td>4.02</td>
<td>5.29</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Yrione</td>
<td>3</td>
<td>4.33</td>
<td>1.15</td>
<td>1.88</td>
<td>2.97</td>
<td>5.97</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Takhuan</td>
<td>3</td>
<td>5.41</td>
<td>5.77</td>
<td>5.33</td>
<td>5.03</td>
<td>6.29</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Tenika</td>
<td>3</td>
<td>5.33</td>
<td>2.57</td>
<td>1.45</td>
<td>3.47</td>
<td>2.19</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Emily</td>
<td>3</td>
<td>5</td>
<td>7.07</td>
<td>3.11</td>
<td>6.88</td>
<td>6.28</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Rachel</td>
<td>3</td>
<td>7.3</td>
<td>8.45</td>
<td>4.87</td>
<td>6.59</td>
<td>8.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{9/13 Cover} \)