STT 315

Readings for week of 9-18-06 are chapter 4, the binomial distribution of section 3-7, and the Poisson distribution section 3-9.

I will explain these topics, and the examples below, in class this coming week.  

Homework will be posted very late this Saturday evening.

Realistically, although I DO wish you to study these materials, I will have to take you through it in class.

Chapter 4

Expression (4-1) pg. 175 defines the normal density function pertaining to any specified values of the mean mu and standard deviation sigma.  The integral of (4-1) is equal to one.  Interpret the density (4-1) to represent thickness of probability “paint” which has been smeared about on the horizontal axis, thickness being (4-1) at each x.  

Expression (4-2) particularizes this to the example mu = 100, sigma = 5.  Figure 4-1 graphs that density.  The probability placed on the interval [95, 100] by that particular normal is therefore the area under the density (4-2) between the limits of [95, 100].  By our rule of thumb this is around 0.34 since [95, 100] is the interval from the mean to one standard deviation below the mean.

Standard scale:  The standard score of any value x, relative to a given mean mu and standard deviation sigma, is (x – mu) / sigma.  In the example just above, the standard score of 95 is (95 – 100) / 5 = -1.  The standard score of 100 is (100 – 100) / 5 = 0.  Standard score is just the number of standard deviations that x is removed from mu.

Key fact:  If random variable X is normally distributed with mean mu and sd sigma then random variable Z = (X – mu) / sigma has the normal distribution with mean zero and standard deviation one.  In the above example, for the normal distribution with mu = 100, sd = 5, the probability of the interval [95, 100] is exactly equal to the probability of the interval [-1, 0] for the normal distribution with mean zero and sd one.  In a sense “all normal distributions share like areas in sd units from mu.”

z-table:  The normal distribution with mean zero and sd one is called the “standard normal distribution” or z-distribution.  Inside the front cover of your book, and also in Table 2 pg. 776, find areas for the z-distribution.  We use the standard normal to obtain all other normal probabilities, e.g. X normal with mu = 100 and sd 5, written X ~ N[100, 52] (see just below middle of page 176).  See sections 4-4 and 4-5.

       P(X in [100, 107.2]) = P(Z in [(100 – 100) / 5, (107.3 – 100) / 5] = P(Z in [0, 1.46])

               z              0.06 

              1.4            0.4279      that is, P(Z in [0, 1.46]) = P(X in [100, 107.2].

For another example let IQ ~ N[100, 152].  Then    

      P(IQ in [100, 139]) = P(Z in [0, (139 – 100) / 15]) = P(Z in [0, 2.60])

               z              0.00 

              2.6            0.4953 = P(Z in [0, 2.60]) = P(IQ in [100, 139]).

Other cases work by cut and paste, combined with symmetry of normal distributions, e.g.               

      P(IQ > 139) = .5 – 0.4953  or   P(Z in [-1.6, 2.2] = P(Z in [0, 1.6] + P(Z in [0, 2.2]).

Multiples of normals , normals plus a constant, and sums of independent normals give a result that is normal.  See pg. 176 and examples 4-1 to 4-4 pp. 177-178.  We consider constants to be normals with zero variance.  Constants do not have densities obviously.

Inverse transformation.  See section 4-6.  A typical question would be like “what is the 90th percentile of I.Q.?  It just means “what is the I.Q. “iq” with P(I.Q. < iq) = 0.90?  If you have such an I.Q. then 90% of the population has I.Q. less than yours.  So

            P(100 < I.Q. < iq) = .90 - .50 = .40.

We first solve it for Z, i.e. find z with P(Z in [0, z]) = 0.4

               z              0.08 

              1.2            0.40   (find entry closest to 0.40 and read off z)

Then iq = z  sigma + mu = 1.28  15  +  100 ~ 119.  An I.Q. of 119 would surpass around 90% of the population.

Binomial B(n,p) (see section 4-7).  The binomial distribution is the distribution of the total number of events which occur when there are n attempts, each of which may give an occurrence or not, these attempts being independent, and the probability of an event occurring at each attempt is some fixed p.  Here are the binomial probailities

        P(x occurrences in n attempts with probability p each attempt)

        = p(x) = (nx) px (1-p)n-x  x = 0, ..., n  (see pg. 141)

with the binomial coefficient  (nx) = n! /(x!  (n-x)!).

Coins example.

        P(50 occurrences in 100 attempts with probability 0.5 each attempt)

        = P(X = 50) = (10050) 0.550 (1-0.5)100-50 = 0.0795892 

where

        (10050) = 100! / (50!  50!) (binomial coefficient)

                       = 100891344545564193334812497256  (huge)

         0.550 = 88817841970012523233890533447265625  10-50 (tiny)

Situations such as the one just above in which very large numbers and very tiny numbers are multiplied are candidates for mathematical approximations.  The normal approximation of the binomial (below) will be an example.

Normal approximation of binomial probabilities for individual x or ranges of x.  The expected value for the binomial is np.  The sd is root(np(1-p) = root(npq).  The normal approximates it using the normal density with mean np and sd root(npq), where q = 1-p.

 Using the normal approximation with continuity correction 0.5 

        p(x) = (nx) px (1-p)n-x 

               ~ P(Z in [(x + 0.5 – np) / root(n p (1-p), (x - .5 – np) / root(n p (1-p)])

For example, 

       P(50 heads in 100 coin tosses)

       ~ P(Z in [(49.5 – 0.5) / root(100  0.5  0.5), (50.5 – 0.5) / root(100  0.5  0.5)])

       = P(Z in [-0.1, 0.1])

       = 2 P(Z in [0, 0.10])  (uses symmetry of Z around 0)

               z              0.00 

              0.1            0.0398   (find entry closest to 0.40 and read off z)

So P(Z in [0, 0.1]) = 0.0398.  This gives

       P(50 heads in 100 coin tosses)

       ~ 0.0796.

An “interval of x” example.  A sample of 10000 prospective customers is selected with-replacement.  We find 5070 of them favor a new product over all leading competitors’ products. If 52% of all prospective customers favor the new product over all leading competitors’ products what is the probability we would have seen as few, or fewer, of them in our sample?  This is a binomial setup with n = 10000 sample size, p = 0.52 = chance of an occurrence (favor new product) for each sample person, and we’re interested in the probability 5070 or fewer will favor the new product.

        P(X < 5071) = p(0) + p(1) + ... + p(5070)

        ~ P(Z < (5070.5 – 10000  0.52) / root(5000  0.52  0.48))

(5070.5 is the continuity correction, part of p(5070) is left of x = 5070 under the normal)

        = P(Z < - 2.59)

        = P(Z > 2.59) by symmetry of the standard normal Z

        = 0.5 – P(Z in [0, 2.59])

               z              0.09 

              2.5            0.4952      that is, P(Z in [0, 2..59]) ~ 0.4952

So P(X < 5071) ~ 0.5 – 0.4952 = 0.0048.  If the rate of preference for the new product s really 0.52 in the population of prospective customers then there is around one-half of a percent chance we’d have seen 5070 or fewer in our sample of 10000 prospective customers.

Poisson with mean mu.  Consult section 3-7.  The Poisson is a model for rate occurrences.  For example, we may have a binomial with a small p (rare occurrences).  Provided n is large and p is small you will find that the binomial probabilities p(0), p(1),  etc. are relatively insensitive to the specific values of n and p and depend ony on them through their produce np = mu, that is (for large n and small p)

       binomial p(x) = p(x) = (nx) px (1-p)n-x     x = 0, 1, ..., n

are rather well approximated by the Poisson probabilities

       Poisson  p(x) = e-np (np)x / x!        x = 0, 1, 2, ... ad inf

Since np = mu for the binomial we may as well define the Poisson model in general for any mean mu

       Poisson  p(x) = e-mu (mu)x / x!        x = 0, 1, 2, ... ad inf

Cookie example.   A randomly mixed batter makes 100 cookies.  There are 500 raisins mixed in.  Cookies may have x = 0 raisins, 1, ... etc.  The probability of more than the cookie than hold will be negligible so the model is not to be faulted on that account.  Think about a particular cookie.  Each raisin thrown into the mix has 1 / 100 chance of making it into that cookie.  There are n = 500 raisins (attempts).  The attempts are not completely independent since it may be hard for a raisin to get in that particular cookie if many are already in it.  But the trials are for the most part independent so we’ll ignore that.  So the distribution of the number X of raisins in a cookie is binomial with n = 500 and p = .01.  What is the chance a particular cookie gets no raisins at all?

         binomial p(0) = (5000) .010 (1-.01)500-0 = .99500 = .0066.

We’ve n = 500 raisins (large) and p = .01 (small) and we expect mu = np = 5 raisins per cookie.  With large n and small p we have the approximation

         Poisson p(0) =  e-mu (mu)x / x! =  e-5 50 / 0! = e-5 = .0067.

The Poisson model, which only needs to know that we average 5 raisins, approximates the binomial probability well enough to see that there is little chance any single raisin cookie suffers the embarrassment of having no raisins.

On average, how many raisin cookies in the batch of 500 have no raisins? 

         500  .0066 = 3.3 (plus a little more due to rounding).

Lawsuits example.  A business experiences an average of 4.7 lawsuits a year.  The lawsuits appear to arise from largely independent circumstances (not class action suits for example) and are thought to be approximately Poisson distributed.  In fact the Poisson arises easily in such situations.   What is the probability of 6 lawsuits this coming year?

         Poisson p(6) =  e-mu (mu)x / x! =  e-4.7 4.76 / 6! = .136.    

Normal approximation of Poisson (mu > 3 rule of thumb).  The Poisson probability distribution for mu > 3 is rather well approximated by the normal distribution with mean mu and sd root(mu).  Why sd root(mu)?  Think of every Poisson as applicable to a binomial with an arbitrarily small p and large n = mu / p.  The mean is mu and the sd is root(npq) = root((mu / p) p (1-p)) but (1-p) is arbitrarily close to 1.  So sd becomes root(mu).  That is in fact the sd of the Poisson model of mean mu.

Nice thing about normal approximations is you can get probabilities of interval ranges.  We return to the cookies.  The expected number of raisins per cookie is 5 > 3.  What is the Poisson probability of more than 3 cookies?  

                   p(4) + p(5) .... + p(500)   lots of work!

                   = 1 – p(0) – p(1) – p(2) – p(3)

                  =  1 - 0.00673795 - 0.0336897 - 0.0842243 - 0.140374  

                  =  1 – 0.265 = 0.735

Using the normal approximation with mu = 5, sd = root(5) and continuity correction

                  p(4) + p(5) .... + ad inf

                  ~ P(Z > (3.5 – 5) / root(5))  

(3.5 comes from the continuity correction, part of p(4) is left of x = 4 under the normal)

                  = P( Z > - 0.67)

                  = 0.5 + P(0 < Z < 0.67)  (just cut and paste)

                  = 0.5 + 0.2486 = 0.7486

              z              0.07

             0.6            0.2486   

Using two decimal rounding we’ve got the Poisson calculated value of 0.73 versus the normal approximation 0.75.  
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