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These slides cover 
           A.   Use of random digits.
           B.   Regression estimator.
           
A.   Use  of  random  digits.   This  topic  was  introduced  early  in  the
course  but  will  be  more  fully  elaborated  here  since  it  is  needed  for
the BONUS assignment due this week in recitation.

Random digits,  such  as  found  in  Table  14  of  your  textbook,  appear
something like this:

         Table 14   Random Numbers
         
         1559    9068    9290    8303    8508    8954    1051    6677  ....
         5550    6245    7313    0117    7652    5069    6354    7668  ....
         
The idea is that  these digits  should behave as though they were pro-
duced from with-replacement  and equal-probability  sampling of  the
ten digits  {0,  1,  2,  3,  4,  5,  6,  7,  8,  9}.    For  example,  any particular
digit,  such as  "7"  would  be  expected  to  occur  in  roughly  one of  ten
times.  Likewise, consecutive pairs 15  59  90  68   ..  can be regarded
as  with-replacement  samples  of  the  100  two  digit  pairs  {00,  01,  ...,
99}.   The  independence  of  such  digits  means  that  if  portions  of  the
table  are  revealed  to  us  the  odds  are  not  changed  for  the  portions
unseen.  As an example, upon seeing the first block 1559, the condi-
tional  probability  that  the  very  next  block  is  also  1559  is  one  in
10000, just as it would be if you had not seen the first block of four.  

How do we use random digits to effect a random sample?  Basically,
we  set  up  a  1:1  corresspondence  between  the  population  units  and
random digit  patterns  so  that  everybody  gets  the  same  chance  to  be
chosen.  For example, if your population has 53996 units and a with-
replacement sample of 4 units is desired you could set up the corress-
pondence
               unit 1    õ  digit pattern 00001
               unit 2    õ  digit pattern 00002
                 ...                              ...
     unit 53996    õ   digit pattern 53996     
Using the portion of Table 14 above we can decide to take consecu-
tive  non-overlapping  blocks  of  5  digits,  skipping  any  greater  than
53996 and the 00000 block (skipping them does not alter the odds for
those actually used).  Here is the sample we obtain by this method:
  Table 14   Random Numbers
         

   1559 9 068 92 90    830 3 8508     8954    1 051 66 77  ....
so  units  15599,  6892,  38505,  5166  comprise  our  with-replacement
sample of four.  If we desire a sample without-replacement it is only
necessary  to  skip  over  any  five  digit  block  that  has  previously
occurred, again not changing the odds for ones that are selectable.
         
B.   Regression  estimator.   The  idea  of  drawing  a  straight  line
through  a  cloud  of  (x,  y)  points  is  very  old  and  has  many  applica-
tions.   We'll  describe a way to use a line through points to narrow a
confidence  interval.   For  example,  suppose  we  wonder  how  much
revenue will  come to us this  year  from a population of ten thousand
rental  properties,  each  of  which  is  subject  to  its  own local  economy
with  differing  tax,  economic  health,  maintainance,  and  other  issues.
We have recourse to sampling (say) 100 of the properties  and audit-
ing them to learn (maybe predict as best we can) how much revenue
each  will  produce.   If  would  be  enormously  costly  to  do  this  for  all
ten thousand properties.  Let's focus on the mean revenue y per prop-
erty.  That can project total revenue by multiplying the CI by ten thou-
sand.  The usual  95% CI for my is

                  yBAR ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

We can  narrow this  95% interval  by  increasing  the  sample  size  n  =
100 but this comes at some cost.  Perhaps it costs $800 to audit each
sample  property.   To  double  precision  will  require  around  n  =  400
sample  size  which  adds  300  times  $800  =  $240,000  to  the  cost!
What if we could effectively narrow the interval without much addi-
tional cost?  

Here  is  a  way  to  do  it  using  something  called  a  regression  estima-

tor.   What you do is score each sample property with (x, y) where y
is the projected  revenue  and x is  what we earned from that  property
last year (a matter of record).   It will turn out to be advantageous for
us to record  x  for  each sample  property.   This  comes at  virtually no
additional cost and will narrow the CI for the same n = 100 sampling
effort (and cost). 

After  our  sample  of  100  properties  is  in  we  calculate  the  following
five (so-called first and second order) statistics:
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We surely know the average revenue mx of all ten thousand prop-

erties  from  last  year.   Also,  it  seems  reasonable  to  suppose  that
there is some degree of positive linear association between revenues
last  year  and  this  (i.e.  a  plot  of  all  ten  thousand  (x,  y)  scores,  if  it
could be had, would likely show a cloud of points around an upward
sloping line, since higher than average revenue x last year is likely to
be accompanied by higher than average revenue y this year, and like-
wise  low  x  will  be  associated  with  low  y,  not  perfectly  by  approxi-
mately).   

The basic idea.  If our sample 100 properties has  xêê  <  mx  we reason
that yêê  is also likely to be lower than  mx.  So we might improve upon
the  estimate  by  increasing  yêê  in  such  a  case  according  to  how  far
below mx  our  sample  xêê  has  fallen  and the  apparent  degree  of  linear
association  between  x  and  y  revealed  by  our  sample  of  100  proper-
ties.  

The regression estimator adjusts  y
è

 as follows:

      regression estimator m̀y, regr =
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where

      sample correlation !̀ = xyêêêê - xêêê yêêê
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What is the payoff for using this  regression estimator?   It  can be
seen in the form of the 95% (or other) CI for my.

          yêê
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  ignoring x

            m̀y, regr ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

 
"##############

1 - !̀2
 using x

          

 Since  -1 b  !̀  !  1  the  shrinkage  factor  is  0  b  
"###############

1 - !̀2
b  1.   If  the

sample (x,  y)  points  fall  exactly  on a  straight  line  of (some) upward

slope !̀ = 1 and this shrinkage factor is 0 = 
è!!!!!!!!!!!!!!!

1 - 12  indicating per-
fect prediction.  In effect, you know my  for this year since you know
my  from last year and there appears to be perfect positive correlation.
The same would be true if there is perfect negative correlation !̀ = -1,
i.e. all points on a line of (some) downward slope.
 
The above is all you need for your assignment due 2-23-06.  Read

on  for  general  information  about  random  sampling  and  also

regression.

A.  More about uses of random digits.

How  are  the  digits  of  Table  14  produced?   One  might  imagine  a
scheme in which a sort of roulette wheel with sectors {0, 1, 2, 3, 4, 5,
6,  7,  8,  9}  is  spun  repeatedly.   Rand  Corporation  used an electronic
roulette wheel to produce digits for their book "A Million  Random Digits

with 100000 Normal  Deviates" The Free Press, 1955.  Such efforts go back
at least to 1927.  Other mechanisms designed to tap physical random-
ness abound, one current example being a very high speed electronic
device  (about  the  size  of  a  small  refrigerator)  to  monitor  electronic
noise,  the  output  of  which  is  mathematically  modified  to  produce
equally probable outcomes at a startlingly fast rate for super-comput-
ing uses.  I have an old Atari 800 (8 bit!) computer that uses the least
significant  digits  of  its  electronic  clock's  time reading as a source of
random digits, the output of which works very well.  The main draw-
back to such schemes is (a) they often take too much equipment and
time, (b) their random digits are lost unless they are stored (requiring
more time) making it difficult to check work done with them.  

Random  digits  are  usually  pseudo  random:   The  random  digits
commonly  used  today  are  not  random  at  all!   They  are  most  often
produced by a deterministic recursive algorithm of the type
        g(x) ö g(f(x))ög(f(f(x)))ög(f(f(f(x))))ö etc
where  x  is  the  "seed"  and  g,  f  are  appropriately  chosen  functions.
We  continue  to  call  the  output  of  such  schemes  Random  Digits  or
Random Numbers when in reality they are not really random but are
perfectly predictable once you know the underlying functions f, g of
the particular  method.   Nonetheless,  these Pseudo Random Numbers
do behave very much as if they were random for particular choices of
functions  g,  f.   In  fact,  they  are  required  to  pass  on-going  tests  for
randomness  both  before  and  after  being  pressed  into  service.   In
embarrassing  example  highlighting  the  risks  IBM  faced  when  it
began to embrace PCs, the second generation random number genera-
tor issued  with the  IBM PC failed such a test.   Consecutive  pairs  of
random numbers  plotted  like  nearly  vertical  parallel  lines  instead  of
being  scattered  all  over  the  square  as  should  have  been  the  case.
That plot revealed the generator being used.  It was a commonly used
type  involving  steep  parallel  lines  (f  was  a  function  consisting  of
steep parallel lines one after the other and g grabbed some digits off)
but  the  slopes  of  these  lines  had  been  chosen  improperly.   I  had  a
first  generation IBM PC whose random number  generator,  doubtless
of the same type but correctly tuned, worked fine.  An IBM rep came
to my home, in a suit,  to change the chip in another,  second genera-tion, IBM PC.  Years later students jokingly informed me they'd beenusing that computer as a door stop in my lab (such a joke had circu-lated about the ultimate fate of early PCs and they took humor in thefact that they'd actually been doing it).        Demand  for  random  digits.   These  days,  the  appetite  for  randomdigits is enormous since they are needed for all sorts of sampling andsimulation activities.   A new type of statistics routinely uses trillionsof random digits to solve very modest statistical problems, the advan-tage  being  that  almost  all  of  the  specialized  formulas  such  as  arefound  in  your  textbook  can be  bypassed  through  the  use  of  a  single"do almost everything" program.  For such work random digits mustbe  instantly  available  to  computers  in  massive  quantities   and  theymust reliably act in respect of statistical considerations.  Random dig-its are at the heart of information technology underpinning such activi-ties  as  modelling  market  movements,  economic  forecasting,  weatherforecasting,  statistical  sampling,  and  the  growing  field  of  systemsmodeling.  Two  examples  will  give  you  a  taste  of  what  is  going  on.   A  fewyears ago I attended a workshop at which an engineer described howhe, in just  3  years,  came up with  a working prototype  for a portabledevice requested by the FAA that could be carried by one person andwould  detect  stress  fractures  in  aircraft  wings  using  a  scan  plate(much like a metal detector) passed over a wing's surface.  The engi-neer  began  by  setting  up  a  mathematical  model  for  wing  fracturesusing dozens of variables in non-linear  differential  equations.  Thesehighly  complex  equations  described  the  totality  of  the  engineer'sknowledge  of  the  effects  induced  by  stress  fractures  on  an  electro-magnetic field.  But the model was far too complex and needed super-computers and lots of time to scan just one portion of a wing.  To tryto  simplify  things  he  used  advanced  mathematics  to  "linearize"  thissystem,  replacing  the  dozens  of  nonlinear  differential  equations  bylinear differential  equations in hundreds of variables.   This was sim-pler conceptually but still far too complex to lead directly to a porta-ble device that could be used in real time.  To see how his linearizedsystem responded to various fracture environments he employed mas-sive  random inputs  to  simulate  enormous  numbers  of  fracture  types,subjecting  these  one  by  one  to  super-computer  solution  of  therequired  hundreds  of  linear  differential  equations.   Pouring  over  allthis  data  using  statistical  methods  his  computers  isolated  a  mere  12of the hundreds of variables that explained most of the overall statisti-cal variation of the data (this was very fortuitous, but he was lookingfor a break after  all).   In a test run of a truck-sized proof of conceptdevice  his  12  variable  LINEAR model  met  the  FAA's  needs,  result-ing  in  a  major  contract  to  go  ahead  with  conversion  to  a  portabledevice.  Our second example came out of another workshop.  In thisone a statistician developed a method for isolating conversations in anoisy  environment.   We  were  shown  a  video  of  an  outdoor  cafe,taken  from  across  a  busy  street,  with  people  sitting  at  little  tablesimmersed in traffic noises and lots of other stray sounds coming fromall directions.  The camera zoomed in on two people having lunch, aswitch  was  flipped,  and  we  were  able  to  understand  their  conversa-tion relatively freed from other sounds.  The conversation was unintel-ligible until  the switch was thrown at which point  the general  soundpattern of the environment was statistically tuned so we could under-stand  the  conversation.   The  computations  behind  it  all  were  basedon  massive  simulations  and  Bayes'  formula,  utilizing,  once  again,  avirtually limitless supply of random digits.  The methods being used,called Monte Carlo Simulation, had in fact been pioneered by mathe-maticians  and  physicists  in  the  1940s  who,  when  faced  with  enor-mous  mathematical  calculations  on  nuclear  matters  that  their  earlycomputers  simply  could  not  handle,  in  effect  sampled  the  calcula-tions  to  get  an  accurate  approximation  to  the  needed  answer.   It  isreally more subtle and elegant than it may seem from this description.Modern  business  applications  of  these  ideas  include  intelligentsystems  that  can  learn  to  behave  in  changing  business  environ-ments  whilst  continuing  to  earn  money  at  a  rate  close  to  whatwould, in retrospect, have been the best to have done within someclass  of  good  performing  strategies  (best  portfolio  rebalancingscheme  to  have  used,  best  of  several  decision  models  to  haverelied upon, best of several human advisors to have listened to).           B.  More about regression and correlation.A few remarks about correlation.  As mentioned above, the idea ofdrawing  a  straight  line  through  a  cloud  of  (x,  y)  points  is  very  old.But  Sir  Francis  Galton  observed  something  very  interesting  aboutsuch plots.  Here is a quote taken from       http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Galton.html  expressing it well:Regression to the mean."In  around  1875  he  was  experimenting  with  sweet-pea  seeds.  He  used  100seeds of each of seven different diameters and constructed a two-way plot ofdiameters  of  the original  seeds against  the diameters of  the seeds of  the nextgeneration. He noticed that  the median diameter of  the offspring of  the largeseeds  were  less  than  that  of  their  parents  while  the  median  diameter  of  theoffspring  of  the  small  seeds  were  greater  than  that  of  their  parents.  Galtonrealised that  the  off-spring tended  to  revert  towards  the  mean size.  Certainlyhe did not  understand at  this  stage that  his findings would apply to any two-way  plot,  thinking  rather  than  it  was  peculiar  to  the  situation  with  which  hewas  experimenting.  At  first  he  called  the  phenomena  'reversion',  but  laterchanged the name to 'regression'."The regression phenomenon applies to many (x, y) plots.  We hear ofoutstanding students  on a test administered  in junior year whose testscores falter  when they are re-tested  next  year.   I've a plot  of  scoreson  two midterm examinations over exactly the same material adminis-tered two days apart.  The any group appreciably above the mean onexam 1 definitely fell back on exam 2 whereas any group appreciablybelow  the  mean  on  exam  1  moved  up  on  exam  2.   The  averageheights  of  husbands  of  exceptionally  tall  married  women  is  not  sooutstanding as the women.  Likewise the average heights of wives ofexceptionally tall married men is not so outstanding as the tall men.This  phenomenon  does  not  apply  to  all  plots  but  does  apply  espe-cially to bi-variate (two dimensional)  normal plots.   The two dimen-sional  analogue of the bell  curves are the bell  surfaces.   Here is  onefor IQ scores of married couples.  You can see that their IQ's show atendency to increase together.60 80 100 120 140Husband's IQ 60 80 100120140Wife's IQ00.250.50.751 60 80 100 120 140Husband's IQPerhaps  you  can  perceive  in  the  picture  that  the  countours  (think  ofslices horizontally through the surface) are elliptical.  The plot belowobscures this ellipse by attempting to shade the picture.   60 80 100 120 140Husband's IQ 60 80 100 120 140Wife's IQ00.10.2 60 80 100 120 140Husband's IQData  from such  a  distribtuion  (bi-variate  normal)  tends  to  plot  in  anelliptical form.  That is how you recognize "being in control for twovariables."   Here  is  a  plot  of  IQ  scores  (x,  y)  for  200  cou-ples. 80 90 100 110 120 130 Husband's IQ8090100110120130Wife's IQHere is a plot for 4000 couples.80 100 120 140 Husband's IQ80100120140Wife's IQRegression is  seen in  the plot  as follows.   Take any Husbands'  IQ,say IQ 130.  Looking at all the points above x = 130 the mean wives'IQ (whose husbands are at 130) is less than 130.  So the average IQof  women  married  to  husbands  whose  IQ  is  130  will  be  less  than130.  If  you  plot  the  vertical  strip  averages  (average  y  score  for  each  x)these tend to fall on a straight line, the line you perceive passing rightthrough the center of the plot.  It is called the regression line.  Galtonwanted to understand regression and how to measure its effect.His  attempts  to  understand  the  regression  phenomenon  were  con-nected with his drive to measure the extent of linear statistical depen-dence  between  two  scores  (x,  y).   He  wanted a  simple  measure  thatwas insensitive to the scales of measurement.  For a list of (x, y) pairs Galton reasoned that points with         x > xBAR and y > yBAR should  contribute  positively  to  linear  dependence  x  and  y  are  largetogether.  Likewise, points (x, y) with both x < xBAR and y < yBARshould  contribute  positively  to  linear  dependence.   In  the  other  twocases     x < xBAR and y > yBAR      x > xBAR and y < yBARhe felt  there  should  be  a  negative  contribution  to linear  dependence.This  led him to consider  the  covariance,  an extension of  variance  totwo variables x, y.              Cov(X, Y) = E (X - EX)(Y - EY) for r.v.                                 = E(X Y) - (E X) (E Y)Note that Cov(X, Y) is 0 for independent r.v.  Note also that              Var X = Cov(X, X)              Var Y = Cov(Y, Y)For any two r.v., regardless of whether independent or dependent,                       Var(X + Y) = Var(X) + 2 Cov(X, Y) + Var(Y)              Now to the sample counterpart of covariance.  For a list of n datapairs (x, y) we have              Cov = (" xy / n) - ("x / n) ("y / n).                      = xyêêêê - xêêê yêêê (avg of prod - prod of avgs)Correlation.   Covariance  is  a  nice  measure  of  linear  association.After all, it lets us deal with variance of sums of r.v. even in the depen-dent case. But although covariance does not depend upon either the xor  y  mean,  it  does  depend upon the  scales  of  measurement  (see thatcov doubles if all the x scores are doubled).  Galton got rid of this bydividing covariance by each of the sd of x and y, calling this CORRE-LATION:           correlation ! = CovHX, YLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsx sY  for r.v.and for n pairs (x, y):            sample correlation !̀ = xyêêêê - xêêê yêêêÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################x2êêêê - H xêêêL2  "####################y2êêêê - H yêêêL2Properties  of correlation.   It  is  mathematically  proven that correla-tion  does  not  change  if  scales  are  multiplied  by  a  positive  constantand locations are hcanges.  Correlation of r.v. ! satisfies -1b!b1 andis zero if r.v. X, Y are independent.  Sample correlation is zero if thedata appear as independent, but may be zero in some other cases.  For example, (x, y) data {0, 0}, {0,1}, {1,0}, {1,1} presents as inde-pendent (if x i = 0 you know y = 0 or 1, likewise if x = 1 you know y= 0 or 1) and indeed the correlation is zero (calculate it).0.2 0.4 0.6 0.8 10.20.40.60.81Data  {0,0},  {0,2},  {1,1}  also  has  zero  correlation  but  does  notpresent as independent (if x = 1 you know y = 1 also).0.2 0.4 0.6 0.8 10.511.52If r.v. are independent you will likely see a sample correlation aroundzero.   But  if  a sample  correlation  is  around 0 that  does  not  precludedependence.Appearanace  of  correlation  in  bi-variate  normal  plots.   Here  areseveral  sample plots  from bi-variate  normal distributions  having dif-ferent correlations.  Correlation 0.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.25.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.5.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.75.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.9380 100 120 140 Husband's IQ80100120140Wife's IQ
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A.   Use  of  random  digits.   This  topic  was  introduced  early  in  the
course  but  will  be  more  fully  elaborated  here  since  it  is  needed  for
the BONUS assignment due this week in recitation.

Random digits,  such  as  found  in  Table  14  of  your  textbook,  appear
something like this:

         Table 14   Random Numbers
         
         1559    9068    9290    8303    8508    8954    1051    6677  ....
         5550    6245    7313    0117    7652    5069    6354    7668  ....
         
The idea is that  these digits  should behave as though they were pro-
duced from with-replacement  and equal-probability  sampling of  the
ten digits  {0,  1,  2,  3,  4,  5,  6,  7,  8,  9}.    For  example,  any particular
digit,  such as  "7"  would  be  expected  to  occur  in  roughly  one of  ten
times.  Likewise, consecutive pairs 15  59  90  68   ..  can be regarded
as  with-replacement  samples  of  the  100  two  digit  pairs  {00,  01,  ...,
99}.   The  independence  of  such  digits  means  that  if  portions  of  the
table  are  revealed  to  us  the  odds  are  not  changed  for  the  portions
unseen.  As an example, upon seeing the first block 1559, the condi-
tional  probability  that  the  very  next  block  is  also  1559  is  one  in
10000, just as it would be if you had not seen the first block of four.  

How do we use random digits to effect a random sample?  Basically,
we  set  up  a  1:1  corresspondence  between  the  population  units  and
random digit  patterns  so  that  everybody  gets  the  same  chance  to  be
chosen.  For example, if your population has 53996 units and a with-
replacement sample of 4 units is desired you could set up the corress-
pondence
               unit 1    õ  digit pattern 00001
               unit 2    õ  digit pattern 00002
                 ...                              ...
     unit 53996    õ   digit pattern 53996     
Using the portion of Table 14 above we can decide to take consecu-
tive  non-overlapping  blocks  of  5  digits,  skipping  any  greater  than
53996 and the 00000 block (skipping them does not alter the odds for
those actually used).  Here is the sample we obtain by this method:
  Table 14   Random Numbers
         

   1559 9 068 92 90    830 3 8508     8954    1 051 66 77  ....
so  units  15599,  6892,  38505,  5166  comprise  our  with-replacement
sample of four.  If we desire a sample without-replacement it is only
necessary  to  skip  over  any  five  digit  block  that  has  previously
occurred, again not changing the odds for ones that are selectable.
         
B.   Regression  estimator.   The  idea  of  drawing  a  straight  line
through  a  cloud  of  (x,  y)  points  is  very  old  and  has  many  applica-
tions.   We'll  describe a way to use a line through points to narrow a
confidence  interval.   For  example,  suppose  we  wonder  how  much
revenue will  come to us this  year  from a population of ten thousand
rental  properties,  each  of  which  is  subject  to  its  own local  economy
with  differing  tax,  economic  health,  maintainance,  and  other  issues.
We have recourse to sampling (say) 100 of the properties  and audit-
ing them to learn (maybe predict as best we can) how much revenue
each  will  produce.   If  would  be  enormously  costly  to  do  this  for  all
ten thousand properties.  Let's focus on the mean revenue y per prop-
erty.  That can project total revenue by multiplying the CI by ten thou-
sand.  The usual  95% CI for my is

                  yBAR ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

We can  narrow this  95% interval  by  increasing  the  sample  size  n  =
100 but this comes at some cost.  Perhaps it costs $800 to audit each
sample  property.   To  double  precision  will  require  around  n  =  400
sample  size  which  adds  300  times  $800  =  $240,000  to  the  cost!
What if we could effectively narrow the interval without much addi-
tional cost?  

Here  is  a  way  to  do  it  using  something  called  a  regression  estima-

tor.   What you do is score each sample property with (x, y) where y
is the projected  revenue  and x is  what we earned from that  property
last year (a matter of record).   It will turn out to be advantageous for
us to record  x  for  each sample  property.   This  comes at  virtually no
additional cost and will narrow the CI for the same n = 100 sampling
effort (and cost). 

After  our  sample  of  100  properties  is  in  we  calculate  the  following
five (so-called first and second order) statistics:

      xêê yêê

x2
êêêê

y2
êêêê

xyêêêê

 

      
We surely know the average revenue mx of all ten thousand prop-

erties  from  last  year.   Also,  it  seems  reasonable  to  suppose  that
there is some degree of positive linear association between revenues
last  year  and  this  (i.e.  a  plot  of  all  ten  thousand  (x,  y)  scores,  if  it
could be had, would likely show a cloud of points around an upward
sloping line, since higher than average revenue x last year is likely to
be accompanied by higher than average revenue y this year, and like-
wise  low  x  will  be  associated  with  low  y,  not  perfectly  by  approxi-
mately).   

The basic idea.  If our sample 100 properties has  xêê  <  mx  we reason
that yêê  is also likely to be lower than  mx.  So we might improve upon
the  estimate  by  increasing  yêê  in  such  a  case  according  to  how  far
below mx  our  sample  xêê  has  fallen  and the  apparent  degree  of  linear
association  between  x  and  y  revealed  by  our  sample  of  100  proper-
ties.  

The regression estimator adjusts  y
è

 as follows:

      regression estimator m̀y, regr =

yêê + H mx - xêê L !̀
"####################
y2

êêêê
- H yêêêL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################
x2

êêêê
- H xêêêL2

      

where

      sample correlation !̀ =
xyêêêê - xêêê yêêê

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################
x2

êêêê
- H xêêêL2  

"####################
y2

êêêê
- H yêêêL2

What is the payoff for using this  regression estimator?   It  can be
seen in the form of the 95% (or other) CI for my.

          yêê
! 1.96 

syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

  ignoring x

            m̀y, regr ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

 
"##############

1 - !̀2
 using x

          

 Since  -1 b  !̀  !  1  the  shrinkage  factor  is  0  b  
"###############

1 - !̀2
b  1.   If  the

sample (x,  y)  points  fall  exactly  on a  straight  line  of (some) upward

slope !̀ = 1 and this shrinkage factor is 0 = 
è!!!!!!!!!!!!!!!

1 - 12  indicating per-
fect prediction.  In effect, you know my  for this year since you know
my  from last year and there appears to be perfect positive correlation.
The same would be true if there is perfect negative correlation !̀ = -1,
i.e. all points on a line of (some) downward slope.
 
The above is all you need for your assignment due 2-23-06.  Read

on  for  general  information  about  random  sampling  and  also

regression.

A.  More about uses of random digits.

How  are  the  digits  of  Table  14  produced?   One  might  imagine  a
scheme in which a sort of roulette wheel with sectors {0, 1, 2, 3, 4, 5,
6,  7,  8,  9}  is  spun  repeatedly.   Rand  Corporation  used an electronic
roulette wheel to produce digits for their book "A Million  Random Digits

with 100000 Normal  Deviates" The Free Press, 1955.  Such efforts go back
at least to 1927.  Other mechanisms designed to tap physical random-
ness abound, one current example being a very high speed electronic
device  (about  the  size  of  a  small  refrigerator)  to  monitor  electronic
noise,  the  output  of  which  is  mathematically  modified  to  produce
equally probable outcomes at a startlingly fast rate for super-comput-
ing uses.  I have an old Atari 800 (8 bit!) computer that uses the least
significant  digits  of  its  electronic  clock's  time reading as a source of
random digits, the output of which works very well.  The main draw-
back to such schemes is (a) they often take too much equipment and
time, (b) their random digits are lost unless they are stored (requiring
more time) making it difficult to check work done with them.  

Random  digits  are  usually  pseudo  random:   The  random  digits
commonly  used  today  are  not  random  at  all!   They  are  most  often
produced by a deterministic recursive algorithm of the type
        g(x) ö g(f(x))ög(f(f(x)))ög(f(f(f(x))))ö etc
where  x  is  the  "seed"  and  g,  f  are  appropriately  chosen  functions.
We  continue  to  call  the  output  of  such  schemes  Random  Digits  or
Random Numbers when in reality they are not really random but are
perfectly predictable once you know the underlying functions f, g of
the particular  method.   Nonetheless,  these Pseudo Random Numbers
do behave very much as if they were random for particular choices of
functions  g,  f.   In  fact,  they  are  required  to  pass  on-going  tests  for
randomness  both  before  and  after  being  pressed  into  service.   In
embarrassing  example  highlighting  the  risks  IBM  faced  when  it
began to embrace PCs, the second generation random number genera-
tor issued  with the  IBM PC failed such a test.   Consecutive  pairs  of
random numbers  plotted  like  nearly  vertical  parallel  lines  instead  of
being  scattered  all  over  the  square  as  should  have  been  the  case.
That plot revealed the generator being used.  It was a commonly used
type  involving  steep  parallel  lines  (f  was  a  function  consisting  of
steep parallel lines one after the other and g grabbed some digits off)
but  the  slopes  of  these  lines  had  been  chosen  improperly.   I  had  a
first  generation IBM PC whose random number  generator,  doubtless
of the same type but correctly tuned, worked fine.  An IBM rep came
to my home, in a suit,  to change the chip in another,  second genera-
tion, IBM PC.  Years later students jokingly informed me they'd been
using that computer as a door stop in my lab (such a joke had circu-
lated about the ultimate fate of early PCs and they took humor in the
fact that they'd actually been doing it).
        
Demand  for  random  digits.   These  days,  the  appetite  for  random
digits is enormous since they are needed for all sorts of sampling and
simulation activities.   A new type of statistics routinely uses trillions
of random digits to solve very modest statistical problems, the advan-
tage  being  that  almost  all  of  the  specialized  formulas  such  as  are
found  in  your  textbook  can be  bypassed  through  the  use  of  a  single
"do almost everything" program.  For such work random digits must
be  instantly  available  to  computers  in  massive  quantities   and  they
must reliably act in respect of statistical considerations.  Random dig-
its are at the heart of information technology underpinning such activi-
ties  as  modelling  market  movements,  economic  forecasting,  weather
forecasting,  statistical  sampling,  and  the  growing  field  of  systems
modeling.  

Two  examples  will  give  you  a  taste  of  what  is  going  on.   A  few
years ago I attended a workshop at which an engineer described how
he, in just  3  years,  came up with  a working prototype  for a portable
device requested by the FAA that could be carried by one person and
would  detect  stress  fractures  in  aircraft  wings  using  a  scan  plate
(much like a metal detector) passed over a wing's surface.  The engi-
neer  began  by  setting  up  a  mathematical  model  for  wing  fractures
using dozens of variables in non-linear  differential  equations.  These
highly  complex  equations  described  the  totality  of  the  engineer's
knowledge  of  the  effects  induced  by  stress  fractures  on  an  electro-
magnetic field.  But the model was far too complex and needed super-
computers and lots of time to scan just one portion of a wing.  To tryto  simplify  things  he  used  advanced  mathematics  to  "linearize"  thissystem,  replacing  the  dozens  of  nonlinear  differential  equations  bylinear differential  equations in hundreds of variables.   This was sim-pler conceptually but still far too complex to lead directly to a porta-ble device that could be used in real time.  To see how his linearizedsystem responded to various fracture environments he employed mas-sive  random inputs  to  simulate  enormous  numbers  of  fracture  types,subjecting  these  one  by  one  to  super-computer  solution  of  therequired  hundreds  of  linear  differential  equations.   Pouring  over  allthis  data  using  statistical  methods  his  computers  isolated  a  mere  12of the hundreds of variables that explained most of the overall statisti-cal variation of the data (this was very fortuitous, but he was lookingfor a break after  all).   In a test run of a truck-sized proof of conceptdevice  his  12  variable  LINEAR model  met  the  FAA's  needs,  result-ing  in  a  major  contract  to  go  ahead  with  conversion  to  a  portabledevice.  Our second example came out of another workshop.  In thisone a statistician developed a method for isolating conversations in anoisy  environment.   We  were  shown  a  video  of  an  outdoor  cafe,taken  from  across  a  busy  street,  with  people  sitting  at  little  tablesimmersed in traffic noises and lots of other stray sounds coming fromall directions.  The camera zoomed in on two people having lunch, aswitch  was  flipped,  and  we  were  able  to  understand  their  conversa-tion relatively freed from other sounds.  The conversation was unintel-ligible until  the switch was thrown at which point  the general  soundpattern of the environment was statistically tuned so we could under-stand  the  conversation.   The  computations  behind  it  all  were  basedon  massive  simulations  and  Bayes'  formula,  utilizing,  once  again,  avirtually limitless supply of random digits.  The methods being used,called Monte Carlo Simulation, had in fact been pioneered by mathe-maticians  and  physicists  in  the  1940s  who,  when  faced  with  enor-mous  mathematical  calculations  on  nuclear  matters  that  their  earlycomputers  simply  could  not  handle,  in  effect  sampled  the  calcula-tions  to  get  an  accurate  approximation  to  the  needed  answer.   It  isreally more subtle and elegant than it may seem from this description.Modern  business  applications  of  these  ideas  include  intelligentsystems  that  can  learn  to  behave  in  changing  business  environ-ments  whilst  continuing  to  earn  money  at  a  rate  close  to  whatwould, in retrospect, have been the best to have done within someclass  of  good  performing  strategies  (best  portfolio  rebalancingscheme  to  have  used,  best  of  several  decision  models  to  haverelied upon, best of several human advisors to have listened to).           B.  More about regression and correlation.A few remarks about correlation.  As mentioned above, the idea ofdrawing  a  straight  line  through  a  cloud  of  (x,  y)  points  is  very  old.But  Sir  Francis  Galton  observed  something  very  interesting  aboutsuch plots.  Here is a quote taken from       http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Galton.html  expressing it well:Regression to the mean."In  around  1875  he  was  experimenting  with  sweet-pea  seeds.  He  used  100seeds of each of seven different diameters and constructed a two-way plot ofdiameters  of  the original  seeds against  the diameters of  the seeds of  the nextgeneration. He noticed that  the median diameter of  the offspring of  the largeseeds  were  less  than  that  of  their  parents  while  the  median  diameter  of  theoffspring  of  the  small  seeds  were  greater  than  that  of  their  parents.  Galtonrealised that  the  off-spring tended  to  revert  towards  the  mean size.  Certainlyhe did not  understand at  this  stage that  his findings would apply to any two-way  plot,  thinking  rather  than  it  was  peculiar  to  the  situation  with  which  hewas  experimenting.  At  first  he  called  the  phenomena  'reversion',  but  laterchanged the name to 'regression'."The regression phenomenon applies to many (x, y) plots.  We hear ofoutstanding students  on a test administered  in junior year whose testscores falter  when they are re-tested  next  year.   I've a plot  of  scoreson  two midterm examinations over exactly the same material adminis-tered two days apart.  The any group appreciably above the mean onexam 1 definitely fell back on exam 2 whereas any group appreciablybelow  the  mean  on  exam  1  moved  up  on  exam  2.   The  averageheights  of  husbands  of  exceptionally  tall  married  women  is  not  sooutstanding as the women.  Likewise the average heights of wives ofexceptionally tall married men is not so outstanding as the tall men.This  phenomenon  does  not  apply  to  all  plots  but  does  apply  espe-cially to bi-variate (two dimensional)  normal plots.   The two dimen-sional  analogue of the bell  curves are the bell  surfaces.   Here is  onefor IQ scores of married couples.  You can see that their IQ's show atendency to increase together.60 80 100 120 140Husband's IQ 60 80 100120140Wife's IQ00.250.50.751 60 80 100 120 140Husband's IQPerhaps  you  can  perceive  in  the  picture  that  the  countours  (think  ofslices horizontally through the surface) are elliptical.  The plot belowobscures this ellipse by attempting to shade the picture.   60 80 100 120 140Husband's IQ 60 80 100 120 140Wife's IQ00.10.2 60 80 100 120 140Husband's IQData  from such  a  distribtuion  (bi-variate  normal)  tends  to  plot  in  anelliptical form.  That is how you recognize "being in control for twovariables."  Here is a plot of IQ scores (x, y) for 200 couples.80 90 100 110 120 130 Husband's IQ8090100110120130Wife's IQHere is a plot for 4000 couples.80 100 120 140 Husband's IQ80100120140Wife's IQRegression is  seen in  the plot  as follows.   Take any Husbands'  IQ,say IQ 130.  Looking at all the points above x = 130 the mean wives'IQ (whose husbands are at 130) is less than 130.  So the average IQof  women  married  to  husbands  whose  IQ  is  130  will  be  less  than130.  If  you  plot  the  vertical  strip  averages  (average  y  score  for  each  x)these tend to fall on a straight line, the line you perceive passing rightthrough the center of the plot.  It is called the regression line.  Galtonwanted to understand regression and how to measure its effect.His  attempts  to  understand  the  regression  phenomenon  were  con-nected with his drive to measure the extent of linear statistical depen-dence  between  two  scores  (x,  y).   He  wanted a  simple  measure  thatwas insensitive to the scales of measurement.  For a list of (x, y) pairs Galton reasoned that points with         x > xBAR and y > yBAR should  contribute  positively  to  linear  dependence  x  and  y  are  largetogether.  Likewise, points (x, y) with both x < xBAR and y < yBARshould  contribute  positively  to  linear  dependence.   In  the  other  twocases     x < xBAR and y > yBAR      x > xBAR and y < yBARhe felt  there  should  be  a  negative  contribution  to linear  dependence.This  led him to consider  the  covariance,  an extension of  variance  totwo variables x, y.              Cov(X, Y) = E (X - EX)(Y - EY) for r.v.                                 = E(X Y) - (E X) (E Y)Note that Cov(X, Y) is 0 for independent r.v.  Note also that              Var X = Cov(X, X)              Var Y = Cov(Y, Y)For any two r.v., regardless of whether independent or dependent,                       Var(X + Y) = Var(X) + 2 Cov(X, Y) + Var(Y)              Now to the sample counterpart of covariance.  For a list of n datapairs (x, y) we have              Cov = (" xy / n) - ("x / n) ("y / n).                      = xyêêêê - xêêê yêêê (avg of prod - prod of avgs)Correlation.   Covariance  is  a  nice  measure  of  linear  association.After all, it lets us deal with variance of sums of r.v. even in the depen-dent case. But although covariance does not depend upon either the xor  y  mean,  it  does  depend upon the  scales  of  measurement  (see thatcov doubles if all the x scores are doubled).  Galton got rid of this bydividing covariance by each of the sd of x and y, calling this CORRE-LATION:           correlation ! = CovHX, YLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsx sY  for r.v.and for n pairs (x, y):            sample correlation !̀ = xyêêêê - xêêê yêêêÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################x2êêêê - H xêêêL2  "####################y2êêêê - H yêêêL2Properties  of correlation.   It  is  mathematically  proven that correla-tion  does  not  change  if  scales  are  multiplied  by  a  positive  constantand locations are hcanges.  Correlation of r.v. ! satisfies -1b!b1 andis zero if r.v. X, Y are independent.  Sample correlation is zero if thedata appear as independent, but may be zero in some other cases.  For example, (x, y) data {0, 0}, {0,1}, {1,0}, {1,1} presents as inde-pendent (if x i = 0 you know y = 0 or 1, likewise if x = 1 you know y=  0  or  1)  and  indeed  the  correlation  is  zero  (calculateit). 0.2 0.4 0.6 0.8 10.20.40.60.81Data  {0,0},  {0,2},  {1,1}  also  has  zero  correlation  but  does  notpresent as independent (if x = 1 you know y = 1 also).0.2 0.4 0.6 0.8 10.511.52If r.v. are independent you will likely see a sample correlation aroundzero.   But  if  a sample  correlation  is  around 0 that  does  not  precludedependence.Appearanace  of  correlation  in  bi-variate  normal  plots.   Here  areseveral  sample plots  from bi-variate  normal distributions  having dif-ferent correlations.  Correlation 0.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.25.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.5.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.75.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.9380 100 120 140 Husband's IQ80100120140Wife's IQ
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STT 315
Slides for week 7, 2-20-06 (see also Additional Slides for Week 6)

These slides cover 
           A.   Use of random digits.
           B.   Regression estimator.
           
A.   Use  of  random  digits.   This  topic  was  introduced  early  in  the
course  but  will  be  more  fully  elaborated  here  since  it  is  needed  for
the BONUS assignment due this week in recitation.

Random digits,  such  as  found  in  Table  14  of  your  textbook,  appear
something like this:

         Table 14   Random Numbers
         
         1559    9068    9290    8303    8508    8954    1051    6677  ....
         5550    6245    7313    0117    7652    5069    6354    7668  ....
         
The idea is that  these digits  should behave as though they were pro-
duced from with-replacement  and equal-probability  sampling of  the
ten digits  {0,  1,  2,  3,  4,  5,  6,  7,  8,  9}.    For  example,  any particular
digit,  such as  "7"  would  be  expected  to  occur  in  roughly  one of  ten
times.  Likewise, consecutive pairs 15  59  90  68   ..  can be regarded
as  with-replacement  samples  of  the  100  two  digit  pairs  {00,  01,  ...,
99}.   The  independence  of  such  digits  means  that  if  portions  of  the
table  are  revealed  to  us  the  odds  are  not  changed  for  the  portions
unseen.  As an example, upon seeing the first block 1559, the condi-
tional  probability  that  the  very  next  block  is  also  1559  is  one  in
10000, just as it would be if you had not seen the first block of four.  

How do we use random digits to effect a random sample?  Basically,
we  set  up  a  1:1  corresspondence  between  the  population  units  and
random digit  patterns  so  that  everybody  gets  the  same  chance  to  be
chosen.  For example, if your population has 53996 units and a with-
replacement sample of 4 units is desired you could set up the corress-
pondence
               unit 1    õ  digit pattern 00001
               unit 2    õ  digit pattern 00002
                 ...                              ...
     unit 53996    õ   digit pattern 53996     
Using the portion of Table 14 above we can decide to take consecu-
tive  non-overlapping  blocks  of  5  digits,  skipping  any  greater  than
53996 and the 00000 block (skipping them does not alter the odds for
those actually used).  Here is the sample we obtain by this method:
  Table 14   Random Numbers
         

   1559 9 068 92 90    830 3 8508     8954    1 051 66 77  ....
so  units  15599,  6892,  38505,  5166  comprise  our  with-replacement
sample of four.  If we desire a sample without-replacement it is only
necessary  to  skip  over  any  five  digit  block  that  has  previously
occurred, again not changing the odds for ones that are selectable.
         
B.   Regression  estimator.   The  idea  of  drawing  a  straight  line
through  a  cloud  of  (x,  y)  points  is  very  old  and  has  many  applica-
tions.   We'll  describe a way to use a line through points to narrow a
confidence  interval.   For  example,  suppose  we  wonder  how  much
revenue will  come to us this  year  from a population of ten thousand
rental  properties,  each  of  which  is  subject  to  its  own local  economy
with  differing  tax,  economic  health,  maintainance,  and  other  issues.
We have recourse to sampling (say) 100 of the properties  and audit-
ing them to learn (maybe predict as best we can) how much revenue
each  will  produce.   If  would  be  enormously  costly  to  do  this  for  all
ten thousand properties.  Let's focus on the mean revenue y per prop-
erty.  That can project total revenue by multiplying the CI by ten thou-
sand.  The usual  95% CI for my is

                  yBAR ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

We can  narrow this  95% interval  by  increasing  the  sample  size  n  =
100 but this comes at some cost.  Perhaps it costs $800 to audit each
sample  property.   To  double  precision  will  require  around  n  =  400
sample  size  which  adds  300  times  $800  =  $240,000  to  the  cost!
What if we could effectively narrow the interval without much addi-
tional cost?  

Here  is  a  way  to  do  it  using  something  called  a  regression  estima-

tor.   What you do is score each sample property with (x, y) where y
is the projected  revenue  and x is  what we earned from that  property
last year (a matter of record).   It will turn out to be advantageous for
us to record  x  for  each sample  property.   This  comes at  virtually no
additional cost and will narrow the CI for the same n = 100 sampling
effort (and cost). 

After  our  sample  of  100  properties  is  in  we  calculate  the  following
five (so-called first and second order) statistics:

      xêê yêê

x2
êêêê

y2
êêêê

xyêêêê

 

      
We surely know the average revenue mx of all ten thousand prop-

erties  from  last  year.   Also,  it  seems  reasonable  to  suppose  that
there is some degree of positive linear association between revenues
last  year  and  this  (i.e.  a  plot  of  all  ten  thousand  (x,  y)  scores,  if  it
could be had, would likely show a cloud of points around an upward
sloping line, since higher than average revenue x last year is likely to
be accompanied by higher than average revenue y this year, and like-
wise  low  x  will  be  associated  with  low  y,  not  perfectly  by  approxi-
mately).   

The basic idea.  If our sample 100 properties has  xêê  <  mx  we reason
that yêê  is also likely to be lower than  mx.  So we might improve upon
the  estimate  by  increasing  yêê  in  such  a  case  according  to  how  far
below mx  our  sample  xêê  has  fallen  and the  apparent  degree  of  linear
association  between  x  and  y  revealed  by  our  sample  of  100  proper-
ties.  

The regression estimator adjusts  y
è

 as follows:

      regression estimator m̀y, regr =

yêê + H mx - xêê L !̀
"####################
y2

êêêê
- H yêêêL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################
x2

êêêê
- H xêêêL2

      

where

      sample correlation !̀ = xyêêêê - xêêê yêêê
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################

x2
êêêê

- H xêêêL2  
"####################
y2

êêêê
- H yêêêL2

What is the payoff for using this  regression estimator?   It  can be
seen in the form of the 95% (or other) CI for my.

          yêê
! 1.96 

syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

  ignoring x

            m̀y, regr ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

 
"##############

1 - !̀2
 using x

          

 Since  -1 b  !̀  !  1  the  shrinkage  factor  is  0  b  
"###############

1 - !̀2
b  1.   If  the

sample (x,  y)  points  fall  exactly  on a  straight  line  of (some) upward

slope !̀ = 1 and this shrinkage factor is 0 = 
è!!!!!!!!!!!!!!!

1 - 12  indicating per-
fect prediction.  In effect, you know my  for this year since you know
my  from last year and there appears to be perfect positive correlation.
The same would be true if there is perfect negative correlation !̀ = -1,
i.e. all points on a line of (some) downward slope.
 
The above is all you need for your assignment due 2-23-06.  Read

on  for  general  information  about  random  sampling  and  also

regression.

A.  More about uses of random digits.

How  are  the  digits  of  Table  14  produced?   One  might  imagine  a
scheme in which a sort of roulette wheel with sectors {0, 1, 2, 3, 4, 5,
6,  7,  8,  9}  is  spun  repeatedly.   Rand  Corporation  used an electronic
roulette wheel to produce digits for their book "A Million  Random Digits

with 100000 Normal  Deviates" The Free Press, 1955.  Such efforts go back
at least to 1927.  Other mechanisms designed to tap physical random-
ness abound, one current example being a very high speed electronic
device  (about  the  size  of  a  small  refrigerator)  to  monitor  electronic
noise,  the  output  of  which  is  mathematically  modified  to  produce
equally probable outcomes at a startlingly fast rate for super-comput-
ing uses.  I have an old Atari 800 (8 bit!) computer that uses the least
significant  digits  of  its  electronic  clock's  time reading as a source of
random digits, the output of which works very well.  The main draw-
back to such schemes is (a) they often take too much equipment and
time, (b) their random digits are lost unless they are stored (requiring
more time) making it difficult to check work done with them.  

Random  digits  are  usually  pseudo  random:   The  random  digits
commonly  used  today  are  not  random  at  all!   They  are  most  often
produced by a deterministic recursive algorithm of the type
        g(x) ö g(f(x))ög(f(f(x)))ög(f(f(f(x))))ö etc
where  x  is  the  "seed"  and  g,  f  are  appropriately  chosen  functions.
We  continue  to  call  the  output  of  such  schemes  Random  Digits  or
Random Numbers when in reality they are not really random but are
perfectly predictable once you know the underlying functions f, g of
the particular  method.   Nonetheless,  these Pseudo Random Numbers
do behave very much as if they were random for particular choices of
functions  g,  f.   In  fact,  they  are  required  to  pass  on-going  tests  for
randomness  both  before  and  after  being  pressed  into  service.   In
embarrassing  example  highlighting  the  risks  IBM  faced  when  it
began to embrace PCs, the second generation random number genera-
tor issued  with the  IBM PC failed such a test.   Consecutive  pairs  of
random numbers  plotted  like  nearly  vertical  parallel  lines  instead  of
being  scattered  all  over  the  square  as  should  have  been  the  case.
That plot revealed the generator being used.  It was a commonly used
type  involving  steep  parallel  lines  (f  was  a  function  consisting  of
steep parallel lines one after the other and g grabbed some digits off)
but  the  slopes  of  these  lines  had  been  chosen  improperly.   I  had  a
first  generation IBM PC whose random number  generator,  doubtless
of the same type but correctly tuned, worked fine.  An IBM rep came
to my home, in a suit,  to change the chip in another,  second genera-
tion, IBM PC.  Years later students jokingly informed me they'd been
using that computer as a door stop in my lab (such a joke had circu-
lated about the ultimate fate of early PCs and they took humor in the
fact that they'd actually been doing it).
        
Demand  for  random  digits.   These  days,  the  appetite  for  random
digits is enormous since they are needed for all sorts of sampling and
simulation activities.   A new type of statistics routinely uses trillions
of random digits to solve very modest statistical problems, the advan-
tage  being  that  almost  all  of  the  specialized  formulas  such  as  are
found  in  your  textbook  can be  bypassed  through  the  use  of  a  single
"do almost everything" program.  For such work random digits must
be  instantly  available  to  computers  in  massive  quantities   and  they
must reliably act in respect of statistical considerations.  Random dig-
its are at the heart of information technology underpinning such activi-
ties  as  modelling  market  movements,  economic  forecasting,  weather
forecasting,  statistical  sampling,  and  the  growing  field  of  systems
modeling.  

Two  examples  will  give  you  a  taste  of  what  is  going  on.   A  few
years ago I attended a workshop at which an engineer described how
he, in just  3  years,  came up with  a working prototype  for a portable
device requested by the FAA that could be carried by one person and
would  detect  stress  fractures  in  aircraft  wings  using  a  scan  plate
(much like a metal detector) passed over a wing's surface.  The engi-
neer  began  by  setting  up  a  mathematical  model  for  wing  fractures
using dozens of variables in non-linear  differential  equations.  These
highly  complex  equations  described  the  totality  of  the  engineer's
knowledge  of  the  effects  induced  by  stress  fractures  on  an  electro-
magnetic field.  But the model was far too complex and needed super-
computers and lots of time to scan just one portion of a wing.  To try
to  simplify  things  he  used  advanced  mathematics  to  "linearize"  this
system,  replacing  the  dozens  of  nonlinear  differential  equations  by
linear differential  equations in hundreds of variables.   This was sim-
pler conceptually but still far too complex to lead directly to a porta-
ble device that could be used in real time.  To see how his linearized
system responded to various fracture environments he employed mas-
sive  random inputs  to  simulate  enormous  numbers  of  fracture  types,
subjecting  these  one  by  one  to  super-computer  solution  of  the
required  hundreds  of  linear  differential  equations.   Pouring  over  all
this  data  using  statistical  methods  his  computers  isolated  a  mere  12
of the hundreds of variables that explained most of the overall statisti-
cal variation of the data (this was very fortuitous, but he was looking
for a break after  all).   In a test run of a truck-sized proof of concept
device  his  12  variable  LINEAR model  met  the  FAA's  needs,  result-
ing  in  a  major  contract  to  go  ahead  with  conversion  to  a  portable
device.  Our second example came out of another workshop.  In this
one a statistician developed a method for isolating conversations in a
noisy  environment.   We  were  shown  a  video  of  an  outdoor  cafe,
taken  from  across  a  busy  street,  with  people  sitting  at  little  tables
immersed in traffic noises and lots of other stray sounds coming from
all directions.  The camera zoomed in on two people having lunch, a
switch  was  flipped,  and  we  were  able  to  understand  their  conversa-
tion relatively freed from other sounds.  The conversation was unintel-
ligible until  the switch was thrown at which point  the general  sound
pattern of the environment was statistically tuned so we could under-
stand  the  conversation.   The  computations  behind  it  all  were  based
on  massive  simulations  and  Bayes'  formula,  utilizing,  once  again,  a
virtually limitless supply of random digits.  The methods being used,
called Monte Carlo Simulation, had in fact been pioneered by mathe-
maticians  and  physicists  in  the  1940s  who,  when  faced  with  enor-
mous  mathematical  calculations  on  nuclear  matters  that  their  earlycomputers  simply  could  not  handle,  in  effect  sampled  the  calcula-tions  to  get  an  accurate  approximation  to  the  needed  answer.   It  isreally more subtle and elegant than it may seem from this description.Modern  business  applications  of  these  ideas  include  intelligentsystems  that  can  learn  to  behave  in  changing  business  environ-ments  whilst  continuing  to  earn  money  at  a  rate  close  to  whatwould, in retrospect, have been the best to have done within someclass  of  good  performing  strategies  (best  portfolio  rebalancingscheme  to  have  used,  best  of  several  decision  models  to  haverelied upon, best of several human advisors to have listened to).           B.  More about regression and correlation.A few remarks about correlation.  As mentioned above, the idea ofdrawing  a  straight  line  through  a  cloud  of  (x,  y)  points  is  very  old.But  Sir  Francis  Galton  observed  something  very  interesting  aboutsuch plots.  Here is a quote taken from       http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Galton.html  expressing it well:Regression to the mean."In  around  1875  he  was  experimenting  with  sweet-pea  seeds.  He  used  100seeds of each of seven different diameters and constructed a two-way plot ofdiameters  of  the original  seeds against  the diameters of  the seeds of  the nextgeneration. He noticed that  the median diameter of  the offspring of  the largeseeds  were  less  than  that  of  their  parents  while  the  median  diameter  of  theoffspring  of  the  small  seeds  were  greater  than  that  of  their  parents.  Galtonrealised that  the  off-spring tended  to  revert  towards  the  mean size.  Certainlyhe did not  understand at  this  stage that  his findings would apply to any two-way  plot,  thinking  rather  than  it  was  peculiar  to  the  situation  with  which  hewas  experimenting.  At  first  he  called  the  phenomena  'reversion',  but  laterchanged the name to 'regression'."The regression phenomenon applies to many (x, y) plots.  We hear ofoutstanding students  on a test administered  in junior year whose testscores falter  when they are re-tested  next  year.   I've a plot  of  scoreson  two midterm examinations over exactly the same material adminis-tered two days apart.  The any group appreciably above the mean onexam 1 definitely fell back on exam 2 whereas any group appreciablybelow  the  mean  on  exam  1  moved  up  on  exam  2.   The  averageheights  of  husbands  of  exceptionally  tall  married  women  is  not  sooutstanding as the women.  Likewise the average heights of wives ofexceptionally tall married men is not so outstanding as the tall men.This  phenomenon  does  not  apply  to  all  plots  but  does  apply  espe-cially to bi-variate (two dimensional)  normal plots.   The two dimen-sional  analogue of the bell  curves are the bell  surfaces.   Here is  onefor IQ scores of married couples.  You can see that their IQ's show atendency to increase together.60 80 100 120 140Husband's IQ 60 80 100120140Wife's IQ00.250.50.751 60 80 100 120 140Husband's IQPerhaps  you  can  perceive  in  the  picture  that  the  countours  (think  ofslices horizontally through the surface) are elliptical.  The plot belowobscures this ellipse by attempting to shade the picture.   60 80 100 120 140Husband's IQ 60 80 100 120 140Wife's IQ00.10.2 60 80 100 120 140Husband's IQData  from such  a  distribtuion  (bi-variate  normal)  tends  to  plot  in  anelliptical form.  That is how you recognize "being in control for twovariables."  Here is a plot of IQ scores (x, y) for 200 couples.80 90 100 110 120 130 Husband's IQ8090100110120130Wife's IQHere is a plot for 4000 couples.80 100 120 140 Husband's IQ80100120140Wife's IQRegression is  seen in  the plot  as follows.   Take any Husbands'  IQ,say IQ 130.  Looking at all the points above x = 130 the mean wives'IQ (whose husbands are at 130) is less than 130.  So the average IQof  women  married  to  husbands  whose  IQ  is  130  will  be  less  than130.  If  you  plot  the  vertical  strip  averages  (average  y  score  for  each  x)these tend to fall on a straight line, the line you perceive passing rightthrough the center of the plot.  It is called the regression line.  Galtonwanted to understand regression and how to measure its effect.His  attempts  to  understand  the  regression  phenomenon  were  con-nected with his drive to measure the extent of linear statistical depen-dence  between  two  scores  (x,  y).   He  wanted a  simple  measure  thatwas insensitive to the scales of measurement.  For a list of (x, y) pairs Galton reasoned that points with         x > xBAR and y > yBAR should  contribute  positively  to  linear  dependence  x  and  y  are  largetogether.  Likewise, points (x, y) with both x < xBAR and y < yBARshould  contribute  positively  to  linear  dependence.   In  the  other  twocases     x < xBAR and y > yBAR      x > xBAR and y < yBARhe felt  there  should  be  a  negative  contribution  to linear  dependence.This  led him to consider  the  covariance,  an extension of  variance  totwo variables x, y.              Cov(X, Y) = E (X - EX)(Y - EY) for r.v.                                 = E(X Y) - (E X) (E Y)Note that Cov(X, Y) is 0 for independent r.v.  Note also that              Var X = Cov(X, X)              Var Y = Cov(Y, Y)For any two r.v., regardless of whether independent or dependent,                       Var(X + Y) = Var(X) + 2 Cov(X, Y) + Var(Y)              Now to the sample counterpart of covariance.  For a list of n datapairs (x, y) we have              Cov = (" xy / n) - ("x / n) ("y / n).                      = xyêêêê - xêêê yêêê (avg of prod - prod of avgs)Correlation.   Covariance  is  a  nice  measure  of  linear  association.After all, it lets us deal with variance of sums of r.v. even in the depen-dent case. But although covariance does not depend upon either the xor  y  mean,  it  does  depend upon the  scales  of  measurement  (see thatcov doubles if all the x scores are doubled).  Galton got rid of this bydividing covariance by each of the sd of x and y, calling this CORRE-LATION:           correlation ! = CovHX, YLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsx sY  for r.v.and for n pairs (x, y):            sample correlation !̀ = xyêêêê - xêêê yêêêÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################x2êêêê - H xêêêL2  "####################y2êêêê - H yêêêL2Properties  of correlation.   It  is  mathematically  proven that correla-tion  does  not  change  if  scales  are  multiplied  by  a  positive  constantand locations are hcanges.  Correlation of r.v. ! satisfies -1b!b1 andis zero if r.v. X, Y are independent.  Sample correlation is zero if thedata appear as independent, but may be zero in some other cases.  For example, (x, y) data {0, 0}, {0,1}, {1,0}, {1,1} presents as inde-pendent (if x i = 0 you know y = 0 or 1, likewise if x = 1 you know y= 0 or 1) and indeed the correlation is zero (calculate it).0.2 0.4 0.6 0.8 10.20.40.60.81Data  {0,0},  {0,2},  {1,1}  also  has  zero  correlation  but  does  notpresent  as  independent  (if  x  =  1  you  know  y  =  1also). 0.2 0.4 0.6 0.8 10.511.52If r.v. are independent you will likely see a sample correlation aroundzero.   But  if  a sample  correlation  is  around 0 that  does  not  precludedependence.Appearanace  of  correlation  in  bi-variate  normal  plots.   Here  areseveral  sample plots  from bi-variate  normal distributions  having dif-ferent correlations.  Correlation 0.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.25.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.5.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.75.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.9380 100 120 140 Husband's IQ80100120140Wife's IQ
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STT 315
Slides for week 7, 2-20-06 (see also Additional Slides for Week 6)

These slides cover 
           A.   Use of random digits.
           B.   Regression estimator.
           
A.   Use  of  random  digits.   This  topic  was  introduced  early  in  the
course  but  will  be  more  fully  elaborated  here  since  it  is  needed  for
the BONUS assignment due this week in recitation.

Random digits,  such  as  found  in  Table  14  of  your  textbook,  appear
something like this:

         Table 14   Random Numbers
         
         1559    9068    9290    8303    8508    8954    1051    6677  ....
         5550    6245    7313    0117    7652    5069    6354    7668  ....
         
The idea is that  these digits  should behave as though they were pro-
duced from with-replacement  and equal-probability  sampling of  the
ten digits  {0,  1,  2,  3,  4,  5,  6,  7,  8,  9}.    For  example,  any particular
digit,  such as  "7"  would  be  expected  to  occur  in  roughly  one of  ten
times.  Likewise, consecutive pairs 15  59  90  68   ..  can be regarded
as  with-replacement  samples  of  the  100  two  digit  pairs  {00,  01,  ...,
99}.   The  independence  of  such  digits  means  that  if  portions  of  the
table  are  revealed  to  us  the  odds  are  not  changed  for  the  portions
unseen.  As an example, upon seeing the first block 1559, the condi-
tional  probability  that  the  very  next  block  is  also  1559  is  one  in
10000, just as it would be if you had not seen the first block of four.  

How do we use random digits to effect a random sample?  Basically,
we  set  up  a  1:1  corresspondence  between  the  population  units  and
random digit  patterns  so  that  everybody  gets  the  same  chance  to  be
chosen.  For example, if your population has 53996 units and a with-
replacement sample of 4 units is desired you could set up the corress-
pondence
               unit 1    õ  digit pattern 00001
               unit 2    õ  digit pattern 00002
                 ...                              ...
     unit 53996    õ   digit pattern 53996     
Using the portion of Table 14 above we can decide to take consecu-
tive  non-overlapping  blocks  of  5  digits,  skipping  any  greater  than
53996 and the 00000 block (skipping them does not alter the odds for
those actually used).  Here is the sample we obtain by this method:
  Table 14   Random Numbers
         

   1559 9 068 92 90    830 3 8508     8954    1 051 66 77  ....
so  units  15599,  6892,  38505,  5166  comprise  our  with-replacement
sample of four.  If we desire a sample without-replacement it is only
necessary  to  skip  over  any  five  digit  block  that  has  previously
occurred, again not changing the odds for ones that are selectable.
         
B.   Regression  estimator.   The  idea  of  drawing  a  straight  line
through  a  cloud  of  (x,  y)  points  is  very  old  and  has  many  applica-
tions.   We'll  describe a way to use a line through points to narrow a
confidence  interval.   For  example,  suppose  we  wonder  how  much
revenue will  come to us this  year  from a population of ten thousand
rental  properties,  each  of  which  is  subject  to  its  own local  economy
with  differing  tax,  economic  health,  maintainance,  and  other  issues.
We have recourse to sampling (say) 100 of the properties  and audit-
ing them to learn (maybe predict as best we can) how much revenue
each  will  produce.   If  would  be  enormously  costly  to  do  this  for  all
ten thousand properties.  Let's focus on the mean revenue y per prop-
erty.  That can project total revenue by multiplying the CI by ten thou-
sand.  The usual  95% CI for my is

                  yBAR ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

We can  narrow this  95% interval  by  increasing  the  sample  size  n  =
100 but this comes at some cost.  Perhaps it costs $800 to audit each
sample  property.   To  double  precision  will  require  around  n  =  400
sample  size  which  adds  300  times  $800  =  $240,000  to  the  cost!
What if we could effectively narrow the interval without much addi-
tional cost?  

Here  is  a  way  to  do  it  using  something  called  a  regression  estima-

tor.   What you do is score each sample property with (x, y) where y
is the projected  revenue  and x is  what we earned from that  property
last year (a matter of record).   It will turn out to be advantageous for
us to record  x  for  each sample  property.   This  comes at  virtually no
additional cost and will narrow the CI for the same n = 100 sampling
effort (and cost). 

After  our  sample  of  100  properties  is  in  we  calculate  the  following
five (so-called first and second order) statistics:

      xêê yêê

x2
êêêê

y2
êêêê

xyêêêê

 

      
We surely know the average revenue mx of all ten thousand prop-

erties  from  last  year.   Also,  it  seems  reasonable  to  suppose  that
there is some degree of positive linear association between revenues
last  year  and  this  (i.e.  a  plot  of  all  ten  thousand  (x,  y)  scores,  if  it
could be had, would likely show a cloud of points around an upward
sloping line, since higher than average revenue x last year is likely to
be accompanied by higher than average revenue y this year, and like-
wise  low  x  will  be  associated  with  low  y,  not  perfectly  by  approxi-
mately).   

The basic idea.  If our sample 100 properties has  xêê  <  mx  we reason
that yêê  is also likely to be lower than  mx.  So we might improve upon
the  estimate  by  increasing  yêê  in  such  a  case  according  to  how  far
below mx  our  sample  xêê  has  fallen  and the  apparent  degree  of  linear
association  between  x  and  y  revealed  by  our  sample  of  100  proper-
ties.  

The regression estimator adjusts  y
è

 as follows:

      regression estimator m̀y, regr =

yêê + H mx - xêê L !̀
"####################
y2

êêêê
- H yêêêL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################
x2

êêêê
- H xêêêL2

      

where

      sample correlation !̀ = xyêêêê - xêêê yêêê
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################

x2
êêêê

- H xêêêL2  
"####################
y2

êêêê
- H yêêêL2

What is the payoff for using this  regression estimator?   It  can be
seen in the form of the 95% (or other) CI for my.

          yêê
! 1.96 

syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

  ignoring x

            m̀y, regr ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

 
"##############

1 - !̀2
 using x

          

 Since  -1 b  !̀  !  1  the  shrinkage  factor  is  0  b  
"###############

1 - !̀2
b  1.   If  the

sample (x,  y)  points  fall  exactly  on a  straight  line  of (some) upward

slope !̀ = 1 and this shrinkage factor is 0 = 
è!!!!!!!!!!!!!!!

1 - 12  indicating per-
fect prediction.  In effect, you know my  for this year since you know
my  from last year and there appears to be perfect positive correlation.
The same would be true if there is perfect negative correlation !̀ = -1,
i.e. all points on a line of (some) downward slope.
 
The above is all you need for your assignment due 2-23-06.  Read

on  for  general  information  about  random  sampling  and  also

regression.

A.  More about uses of random digits.

How  are  the  digits  of  Table  14  produced?   One  might  imagine  a
scheme in which a sort of roulette wheel with sectors {0, 1, 2, 3, 4, 5,
6,  7,  8,  9}  is  spun  repeatedly.   Rand  Corporation  used an electronic
roulette wheel to produce digits for their book "A Million  Random Digits

with 100000 Normal  Deviates" The Free Press, 1955.  Such efforts go back
at least to 1927.  Other mechanisms designed to tap physical random-
ness abound, one current example being a very high speed electronic
device  (about  the  size  of  a  small  refrigerator)  to  monitor  electronic
noise,  the  output  of  which  is  mathematically  modified  to  produce
equally probable outcomes at a startlingly fast rate for super-comput-
ing uses.  I have an old Atari 800 (8 bit!) computer that uses the least
significant  digits  of  its  electronic  clock's  time reading as a source of
random digits, the output of which works very well.  The main draw-
back to such schemes is (a) they often take too much equipment and
time, (b) their random digits are lost unless they are stored (requiring
more time) making it difficult to check work done with them.  

Random  digits  are  usually  pseudo  random:   The  random  digits
commonly  used  today  are  not  random  at  all!   They  are  most  often
produced by a deterministic recursive algorithm of the type
        g(x) ö g(f(x))ög(f(f(x)))ög(f(f(f(x))))ö etc
where  x  is  the  "seed"  and  g,  f  are  appropriately  chosen  functions.
We  continue  to  call  the  output  of  such  schemes  Random  Digits  or
Random Numbers when in reality they are not really random but are
perfectly predictable once you know the underlying functions f, g of
the particular  method.   Nonetheless,  these Pseudo Random Numbers
do behave very much as if they were random for particular choices of
functions  g,  f.   In  fact,  they  are  required  to  pass  on-going  tests  for
randomness  both  before  and  after  being  pressed  into  service.   In
embarrassing  example  highlighting  the  risks  IBM  faced  when  it
began to embrace PCs, the second generation random number genera-
tor issued  with the  IBM PC failed such a test.   Consecutive  pairs  of
random numbers  plotted  like  nearly  vertical  parallel  lines  instead  of
being  scattered  all  over  the  square  as  should  have  been  the  case.
That plot revealed the generator being used.  It was a commonly used
type  involving  steep  parallel  lines  (f  was  a  function  consisting  of
steep parallel lines one after the other and g grabbed some digits off)
but  the  slopes  of  these  lines  had  been  chosen  improperly.   I  had  a
first  generation IBM PC whose random number  generator,  doubtless
of the same type but correctly tuned, worked fine.  An IBM rep came
to my home, in a suit,  to change the chip in another,  second genera-
tion, IBM PC.  Years later students jokingly informed me they'd been
using that computer as a door stop in my lab (such a joke had circu-
lated about the ultimate fate of early PCs and they took humor in the
fact that they'd actually been doing it).
        
Demand  for  random  digits.   These  days,  the  appetite  for  random
digits is enormous since they are needed for all sorts of sampling and
simulation activities.   A new type of statistics routinely uses trillions
of random digits to solve very modest statistical problems, the advan-
tage  being  that  almost  all  of  the  specialized  formulas  such  as  are
found  in  your  textbook  can be  bypassed  through  the  use  of  a  single
"do almost everything" program.  For such work random digits must
be  instantly  available  to  computers  in  massive  quantities   and  they
must reliably act in respect of statistical considerations.  Random dig-
its are at the heart of information technology underpinning such activi-
ties  as  modelling  market  movements,  economic  forecasting,  weather
forecasting,  statistical  sampling,  and  the  growing  field  of  systems
modeling.  

Two  examples  will  give  you  a  taste  of  what  is  going  on.   A  few
years ago I attended a workshop at which an engineer described how
he, in just  3  years,  came up with  a working prototype  for a portable
device requested by the FAA that could be carried by one person and
would  detect  stress  fractures  in  aircraft  wings  using  a  scan  plate
(much like a metal detector) passed over a wing's surface.  The engi-
neer  began  by  setting  up  a  mathematical  model  for  wing  fractures
using dozens of variables in non-linear  differential  equations.  These
highly  complex  equations  described  the  totality  of  the  engineer's
knowledge  of  the  effects  induced  by  stress  fractures  on  an  electro-
magnetic field.  But the model was far too complex and needed super-
computers and lots of time to scan just one portion of a wing.  To try
to  simplify  things  he  used  advanced  mathematics  to  "linearize"  this
system,  replacing  the  dozens  of  nonlinear  differential  equations  by
linear differential  equations in hundreds of variables.   This was sim-
pler conceptually but still far too complex to lead directly to a porta-
ble device that could be used in real time.  To see how his linearized
system responded to various fracture environments he employed mas-
sive  random inputs  to  simulate  enormous  numbers  of  fracture  types,
subjecting  these  one  by  one  to  super-computer  solution  of  the
required  hundreds  of  linear  differential  equations.   Pouring  over  all
this  data  using  statistical  methods  his  computers  isolated  a  mere  12
of the hundreds of variables that explained most of the overall statisti-
cal variation of the data (this was very fortuitous, but he was looking
for a break after  all).   In a test run of a truck-sized proof of concept
device  his  12  variable  LINEAR model  met  the  FAA's  needs,  result-
ing  in  a  major  contract  to  go  ahead  with  conversion  to  a  portable
device.  Our second example came out of another workshop.  In this
one a statistician developed a method for isolating conversations in a
noisy  environment.   We  were  shown  a  video  of  an  outdoor  cafe,
taken  from  across  a  busy  street,  with  people  sitting  at  little  tables
immersed in traffic noises and lots of other stray sounds coming from
all directions.  The camera zoomed in on two people having lunch, a
switch  was  flipped,  and  we  were  able  to  understand  their  conversa-
tion relatively freed from other sounds.  The conversation was unintel-
ligible until  the switch was thrown at which point  the general  sound
pattern of the environment was statistically tuned so we could under-
stand  the  conversation.   The  computations  behind  it  all  were  based
on  massive  simulations  and  Bayes'  formula,  utilizing,  once  again,  a
virtually limitless supply of random digits.  The methods being used,
called Monte Carlo Simulation, had in fact been pioneered by mathe-
maticians  and  physicists  in  the  1940s  who,  when  faced  with  enor-
mous  mathematical  calculations  on  nuclear  matters  that  their  early
computers  simply  could  not  handle,  in  effect  sampled  the  calcula-
tions  to  get  an  accurate  approximation  to  the  needed  answer.   It  is
really more subtle and elegant than it may seem from this description.

Modern  business  applications  of  these  ideas  include  intelligent

systems  that  can  learn  to  behave  in  changing  business  environ-

ments  whilst  continuing  to  earn  money  at  a  rate  close  to  what

would, in retrospect, have been the best to have done within some

class  of  good  performing  strategies  (best  portfolio  rebalancing

scheme  to  have  used,  best  of  several  decision  models  to  have

relied upon, best of several human advisors to have listened to). 

          
B.  More about regression and correlation.

A few remarks about correlation.  As mentioned above, the idea of
drawing  a  straight  line  through  a  cloud  of  (x,  y)  points  is  very  old.
But  Sir  Francis  Galton  observed  something  very  interesting  about
such plots.  Here is a quote taken from
       http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Galton.html  

expressing it well:

Regression to the mean.

"In  around  1875  he  was  experimenting  with  sweet-pea  seeds.  He  used  100

seeds of each of seven different diameters and constructed a two-way plot of
diameters  of  the original  seeds against  the diameters of  the seeds of  the next
generation. He noticed that  the median diameter of  the offspring of  the large

seeds  were  less  than  that  of  their  parents  while  the  median  diameter  of  the
offspring  of  the  small  seeds  were  greater  than  that  of  their  parents.  Galton

realised that  the  off-spring tended  to  revert  towards  the  mean size.  Certainly
he did not  understand at  this  stage that  his findings would apply to any two-way  plot,  thinking  rather  than  it  was  peculiar  to  the  situation  with  which  hewas  experimenting.  At  first  he  called  the  phenomena  'reversion',  but  laterchanged the name to 'regression'."The regression phenomenon applies to many (x, y) plots.  We hear ofoutstanding students  on a test administered  in junior year whose testscores falter  when they are re-tested  next  year.   I've a plot  of  scoreson  two midterm examinations over exactly the same material adminis-tered two days apart.  The any group appreciably above the mean onexam 1 definitely fell back on exam 2 whereas any group appreciablybelow  the  mean  on  exam  1  moved  up  on  exam  2.   The  averageheights  of  husbands  of  exceptionally  tall  married  women  is  not  sooutstanding as the women.  Likewise the average heights of wives ofexceptionally tall married men is not so outstanding as the tall men.This  phenomenon  does  not  apply  to  all  plots  but  does  apply  espe-cially to bi-variate (two dimensional)  normal plots.   The two dimen-sional  analogue of the bell  curves are the bell  surfaces.   Here is  onefor IQ scores of married couples.  You can see that their IQ's show atendency to increase together.60 80 100 120 140Husband's IQ 60 80 100120140Wife's IQ00.250.50.751 60 80 100 120 140Husband's IQPerhaps  you  can  perceive  in  the  picture  that  the  countours  (think  ofslices horizontally through the surface) are elliptical.  The plot belowobscures this ellipse by attempting to shade the picture.   60 80 100 120 140Husband's IQ 60 80 100 120 140Wife's IQ00.10.2 60 80 100 120 140Husband's IQData  from such  a  distribtuion  (bi-variate  normal)  tends  to  plot  in  anelliptical form.  That is how you recognize "being in control for twovariables."  Here is a plot of IQ scores (x, y) for 200 couples.80 90 100 110 120 130 Husband's IQ8090100110120130Wife's IQHere is a plot for 4000 couples.80 100 120 140 Husband's IQ80100120140Wife's IQRegression is  seen in  the plot  as follows.   Take any Husbands'  IQ,say IQ 130.  Looking at all the points above x = 130 the mean wives'IQ (whose husbands are at 130) is less than 130.  So the average IQof  women  married  to  husbands  whose  IQ  is  130  will  be  less  than130.  If  you  plot  the  vertical  strip  averages  (average  y  score  for  each  x)these tend to fall on a straight line, the line you perceive passing rightthrough the center of the plot.  It is called the regression line.  Galtonwanted to understand regression and how to measure its effect.His  attempts  to  understand  the  regression  phenomenon  were  con-nected with his drive to measure the extent of linear statistical depen-dence  between  two  scores  (x,  y).   He  wanted a  simple  measure  thatwas insensitive to the scales of measurement.  For a list of (x, y) pairs Galton reasoned that points with         x > xBAR and y > yBAR should  contribute  positively  to  linear  dependence  x  and  y  are  largetogether.  Likewise, points (x, y) with both x < xBAR and y < yBARshould  contribute  positively  to  linear  dependence.   In  the  other  twocases     x < xBAR and y > yBAR      x > xBAR and y < yBARhe felt  there  should  be  a  negative  contribution  to linear  dependence.This  led him to consider  the  covariance,  an extension of  variance  totwo variables x, y.              Cov(X, Y) = E (X - EX)(Y - EY) for r.v.                                 = E(X Y) - (E X) (E Y)Note that Cov(X, Y) is 0 for independent r.v.  Note also that              Var X = Cov(X, X)              Var Y = Cov(Y, Y)For any two r.v., regardless of whether independent or dependent,                       Var(X + Y) = Var(X) + 2 Cov(X, Y) + Var(Y)              Now to the sample counterpart of covariance.  For a list of n datapairs (x, y) we have              Cov = (" xy / n) - ("x / n) ("y / n).                      = xyêêêê - xêêê yêêê (avg of prod - prod of avgs)Correlation.   Covariance  is  a  nice  measure  of  linear  association.After all, it lets us deal with variance of sums of r.v. even in the depen-dent case. But although covariance does not depend upon either the xor  y  mean,  it  does  depend upon the  scales  of  measurement  (see thatcov doubles if all the x scores are doubled).  Galton got rid of this bydividing covariance by each of the sd of x and y, calling this CORRE-LATION:           correlation ! = CovHX, YLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsx sY  for r.v.and for n pairs (x, y):            sample correlation !̀ = xyêêêê - xêêê yêêêÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################x2êêêê - H xêêêL2  "####################y2êêêê - H yêêêL2Properties  of correlation.   It  is  mathematically  proven that correla-tion  does  not  change  if  scales  are  multiplied  by  a  positive  constantand locations are hcanges.  Correlation of r.v. ! satisfies -1b!b1 andis zero if r.v. X, Y are independent.  Sample correlation is zero if thedata appear as independent, but may be zero in some other cases.  For example, (x, y) data {0, 0}, {0,1}, {1,0}, {1,1} presents as inde-pendent (if x i = 0 you know y = 0 or 1, likewise if x = 1 you know y= 0 or 1) and indeed the correlation is zero (calculate it).0.2 0.4 0.6 0.8 10.20.40.60.81Data  {0,0},  {0,2},  {1,1}  also  has  zero  correlation  but  does  notpresent as independent (if x = 1 you know y = 1 also).0.2 0.4 0.6 0.8 10.511.52If r.v. are independent you will likely see a sample correlation aroundzero.   But  if  a sample  correlation  is  around 0 that  does  not  precludedependence.Appearanace  of  correlation  in  bi-variate  normal  plots.   Here  areseveral  sample plots  from bi-variate  normal distributions  having dif-ferent correlations.  Correlation 0.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.25.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.5.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.75.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.9380 100 120 140 Husband's IQ80100120140Wife's IQ
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STT 315
Slides for week 7, 2-20-06 (see also Additional Slides for Week 6)

These slides cover 
           A.   Use of random digits.
           B.   Regression estimator.
           
A.   Use  of  random  digits.   This  topic  was  introduced  early  in  the
course  but  will  be  more  fully  elaborated  here  since  it  is  needed  for
the BONUS assignment due this week in recitation.

Random digits,  such  as  found  in  Table  14  of  your  textbook,  appear
something like this:

         Table 14   Random Numbers
         
         1559    9068    9290    8303    8508    8954    1051    6677  ....
         5550    6245    7313    0117    7652    5069    6354    7668  ....
         
The idea is that  these digits  should behave as though they were pro-
duced from with-replacement  and equal-probability  sampling of  the
ten digits  {0,  1,  2,  3,  4,  5,  6,  7,  8,  9}.    For  example,  any particular
digit,  such as  "7"  would  be  expected  to  occur  in  roughly  one of  ten
times.  Likewise, consecutive pairs 15  59  90  68   ..  can be regarded
as  with-replacement  samples  of  the  100  two  digit  pairs  {00,  01,  ...,
99}.   The  independence  of  such  digits  means  that  if  portions  of  the
table  are  revealed  to  us  the  odds  are  not  changed  for  the  portions
unseen.  As an example, upon seeing the first block 1559, the condi-
tional  probability  that  the  very  next  block  is  also  1559  is  one  in
10000, just as it would be if you had not seen the first block of four.  

How do we use random digits to effect a random sample?  Basically,
we  set  up  a  1:1  corresspondence  between  the  population  units  and
random digit  patterns  so  that  everybody  gets  the  same  chance  to  be
chosen.  For example, if your population has 53996 units and a with-
replacement sample of 4 units is desired you could set up the corress-
pondence
               unit 1    õ  digit pattern 00001
               unit 2    õ  digit pattern 00002
                 ...                              ...
     unit 53996    õ   digit pattern 53996     
Using the portion of Table 14 above we can decide to take consecu-
tive  non-overlapping  blocks  of  5  digits,  skipping  any  greater  than
53996 and the 00000 block (skipping them does not alter the odds for
those actually used).  Here is the sample we obtain by this method:
  Table 14   Random Numbers
         

   1559 9 068 92 90    830 3 8508     8954    1 051 66 77  ....
so  units  15599,  6892,  38505,  5166  comprise  our  with-replacement
sample of four.  If we desire a sample without-replacement it is only
necessary  to  skip  over  any  five  digit  block  that  has  previously
occurred, again not changing the odds for ones that are selectable.
         
B.   Regression  estimator.   The  idea  of  drawing  a  straight  line
through  a  cloud  of  (x,  y)  points  is  very  old  and  has  many  applica-
tions.   We'll  describe a way to use a line through points to narrow a
confidence  interval.   For  example,  suppose  we  wonder  how  much
revenue will  come to us this  year  from a population of ten thousand
rental  properties,  each  of  which  is  subject  to  its  own local  economy
with  differing  tax,  economic  health,  maintainance,  and  other  issues.
We have recourse to sampling (say) 100 of the properties  and audit-
ing them to learn (maybe predict as best we can) how much revenue
each  will  produce.   If  would  be  enormously  costly  to  do  this  for  all
ten thousand properties.  Let's focus on the mean revenue y per prop-
erty.  That can project total revenue by multiplying the CI by ten thou-
sand.  The usual  95% CI for my is

                  yBAR ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

We can  narrow this  95% interval  by  increasing  the  sample  size  n  =
100 but this comes at some cost.  Perhaps it costs $800 to audit each
sample  property.   To  double  precision  will  require  around  n  =  400
sample  size  which  adds  300  times  $800  =  $240,000  to  the  cost!
What if we could effectively narrow the interval without much addi-
tional cost?  

Here  is  a  way  to  do  it  using  something  called  a  regression  estima-

tor.   What you do is score each sample property with (x, y) where y
is the projected  revenue  and x is  what we earned from that  property
last year (a matter of record).   It will turn out to be advantageous for
us to record  x  for  each sample  property.   This  comes at  virtually no
additional cost and will narrow the CI for the same n = 100 sampling
effort (and cost). 

After  our  sample  of  100  properties  is  in  we  calculate  the  following
five (so-called first and second order) statistics:

      xêê yêê

x2
êêêê

y2
êêêê

xyêêêê

 

      
We surely know the average revenue mx of all ten thousand prop-

erties  from  last  year.   Also,  it  seems  reasonable  to  suppose  that
there is some degree of positive linear association between revenues
last  year  and  this  (i.e.  a  plot  of  all  ten  thousand  (x,  y)  scores,  if  it
could be had, would likely show a cloud of points around an upward
sloping line, since higher than average revenue x last year is likely to
be accompanied by higher than average revenue y this year, and like-
wise  low  x  will  be  associated  with  low  y,  not  perfectly  by  approxi-
mately).   

The basic idea.  If our sample 100 properties has  xêê  <  mx  we reason
that yêê  is also likely to be lower than  mx.  So we might improve upon
the  estimate  by  increasing  yêê  in  such  a  case  according  to  how  far
below mx  our  sample  xêê  has  fallen  and the  apparent  degree  of  linear
association  between  x  and  y  revealed  by  our  sample  of  100  proper-
ties.  

The regression estimator adjusts  y
è

 as follows:

      regression estimator m̀y, regr =

yêê + H mx - xêê L !̀
"####################
y2

êêêê
- H yêêêL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################
x2

êêêê
- H xêêêL2

      

where

      sample correlation !̀ = xyêêêê - xêêê yêêê
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################

x2
êêêê

- H xêêêL2  
"####################
y2

êêêê
- H yêêêL2

What is the payoff for using this  regression estimator?   It  can be
seen in the form of the 95% (or other) CI for my.

          yêê
! 1.96 

syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

  ignoring x

            m̀y, regr ! 1.96 
syÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
100

 
"##############

1 - !̀2
 using x

          

 Since  -1 b  !̀  !  1  the  shrinkage  factor  is  0  b  
"###############

1 - !̀2
b  1.   If  the

sample (x,  y)  points  fall  exactly  on a  straight  line  of (some) upward

slope !̀ = 1 and this shrinkage factor is 0 = 
è!!!!!!!!!!!!!!!

1 - 12  indicating per-
fect prediction.  In effect, you know my  for this year since you know
my  from last year and there appears to be perfect positive correlation.
The same would be true if there is perfect negative correlation !̀ = -1,
i.e. all points on a line of (some) downward slope.
 
The above is all you need for your assignment due 2-23-06.  Read

on  for  general  information  about  random  sampling  and  also

regression.

A.  More about uses of random digits.

How  are  the  digits  of  Table  14  produced?   One  might  imagine  a
scheme in which a sort of roulette wheel with sectors {0, 1, 2, 3, 4, 5,
6,  7,  8,  9}  is  spun  repeatedly.   Rand  Corporation  used an electronic
roulette wheel to produce digits for their book "A Million  Random Digits

with 100000 Normal  Deviates" The Free Press, 1955.  Such efforts go back
at least to 1927.  Other mechanisms designed to tap physical random-
ness abound, one current example being a very high speed electronic
device  (about  the  size  of  a  small  refrigerator)  to  monitor  electronic
noise,  the  output  of  which  is  mathematically  modified  to  produce
equally probable outcomes at a startlingly fast rate for super-comput-
ing uses.  I have an old Atari 800 (8 bit!) computer that uses the least
significant  digits  of  its  electronic  clock's  time reading as a source of
random digits, the output of which works very well.  The main draw-
back to such schemes is (a) they often take too much equipment and
time, (b) their random digits are lost unless they are stored (requiring
more time) making it difficult to check work done with them.  

Random  digits  are  usually  pseudo  random:   The  random  digits
commonly  used  today  are  not  random  at  all!   They  are  most  often
produced by a deterministic recursive algorithm of the type
        g(x) ö g(f(x))ög(f(f(x)))ög(f(f(f(x))))ö etc
where  x  is  the  "seed"  and  g,  f  are  appropriately  chosen  functions.
We  continue  to  call  the  output  of  such  schemes  Random  Digits  or
Random Numbers when in reality they are not really random but are
perfectly predictable once you know the underlying functions f, g of
the particular  method.   Nonetheless,  these Pseudo Random Numbers
do behave very much as if they were random for particular choices of
functions  g,  f.   In  fact,  they  are  required  to  pass  on-going  tests  for
randomness  both  before  and  after  being  pressed  into  service.   In
embarrassing  example  highlighting  the  risks  IBM  faced  when  it
began to embrace PCs, the second generation random number genera-
tor issued  with the  IBM PC failed such a test.   Consecutive  pairs  of
random numbers  plotted  like  nearly  vertical  parallel  lines  instead  of
being  scattered  all  over  the  square  as  should  have  been  the  case.
That plot revealed the generator being used.  It was a commonly used
type  involving  steep  parallel  lines  (f  was  a  function  consisting  of
steep parallel lines one after the other and g grabbed some digits off)
but  the  slopes  of  these  lines  had  been  chosen  improperly.   I  had  a
first  generation IBM PC whose random number  generator,  doubtless
of the same type but correctly tuned, worked fine.  An IBM rep came
to my home, in a suit,  to change the chip in another,  second genera-
tion, IBM PC.  Years later students jokingly informed me they'd been
using that computer as a door stop in my lab (such a joke had circu-
lated about the ultimate fate of early PCs and they took humor in the
fact that they'd actually been doing it).
        
Demand  for  random  digits.   These  days,  the  appetite  for  random
digits is enormous since they are needed for all sorts of sampling and
simulation activities.   A new type of statistics routinely uses trillions
of random digits to solve very modest statistical problems, the advan-
tage  being  that  almost  all  of  the  specialized  formulas  such  as  are
found  in  your  textbook  can be  bypassed  through  the  use  of  a  single
"do almost everything" program.  For such work random digits must
be  instantly  available  to  computers  in  massive  quantities   and  they
must reliably act in respect of statistical considerations.  Random dig-
its are at the heart of information technology underpinning such activi-
ties  as  modelling  market  movements,  economic  forecasting,  weather
forecasting,  statistical  sampling,  and  the  growing  field  of  systems
modeling.  

Two  examples  will  give  you  a  taste  of  what  is  going  on.   A  few
years ago I attended a workshop at which an engineer described how
he, in just  3  years,  came up with  a working prototype  for a portable
device requested by the FAA that could be carried by one person and
would  detect  stress  fractures  in  aircraft  wings  using  a  scan  plate
(much like a metal detector) passed over a wing's surface.  The engi-
neer  began  by  setting  up  a  mathematical  model  for  wing  fractures
using dozens of variables in non-linear  differential  equations.  These
highly  complex  equations  described  the  totality  of  the  engineer's
knowledge  of  the  effects  induced  by  stress  fractures  on  an  electro-
magnetic field.  But the model was far too complex and needed super-
computers and lots of time to scan just one portion of a wing.  To try
to  simplify  things  he  used  advanced  mathematics  to  "linearize"  this
system,  replacing  the  dozens  of  nonlinear  differential  equations  by
linear differential  equations in hundreds of variables.   This was sim-
pler conceptually but still far too complex to lead directly to a porta-
ble device that could be used in real time.  To see how his linearized
system responded to various fracture environments he employed mas-
sive  random inputs  to  simulate  enormous  numbers  of  fracture  types,
subjecting  these  one  by  one  to  super-computer  solution  of  the
required  hundreds  of  linear  differential  equations.   Pouring  over  all
this  data  using  statistical  methods  his  computers  isolated  a  mere  12
of the hundreds of variables that explained most of the overall statisti-
cal variation of the data (this was very fortuitous, but he was looking
for a break after  all).   In a test run of a truck-sized proof of concept
device  his  12  variable  LINEAR model  met  the  FAA's  needs,  result-
ing  in  a  major  contract  to  go  ahead  with  conversion  to  a  portable
device.  Our second example came out of another workshop.  In this
one a statistician developed a method for isolating conversations in a
noisy  environment.   We  were  shown  a  video  of  an  outdoor  cafe,
taken  from  across  a  busy  street,  with  people  sitting  at  little  tables
immersed in traffic noises and lots of other stray sounds coming from
all directions.  The camera zoomed in on two people having lunch, a
switch  was  flipped,  and  we  were  able  to  understand  their  conversa-
tion relatively freed from other sounds.  The conversation was unintel-
ligible until  the switch was thrown at which point  the general  sound
pattern of the environment was statistically tuned so we could under-
stand  the  conversation.   The  computations  behind  it  all  were  based
on  massive  simulations  and  Bayes'  formula,  utilizing,  once  again,  a
virtually limitless supply of random digits.  The methods being used,
called Monte Carlo Simulation, had in fact been pioneered by mathe-
maticians  and  physicists  in  the  1940s  who,  when  faced  with  enor-
mous  mathematical  calculations  on  nuclear  matters  that  their  early
computers  simply  could  not  handle,  in  effect  sampled  the  calcula-
tions  to  get  an  accurate  approximation  to  the  needed  answer.   It  is
really more subtle and elegant than it may seem from this description.

Modern  business  applications  of  these  ideas  include  intelligent

systems  that  can  learn  to  behave  in  changing  business  environ-

ments  whilst  continuing  to  earn  money  at  a  rate  close  to  what

would, in retrospect, have been the best to have done within some

class  of  good  performing  strategies  (best  portfolio  rebalancing

scheme  to  have  used,  best  of  several  decision  models  to  have

relied upon, best of several human advisors to have listened to). 

          
B.  More about regression and correlation.

A few remarks about correlation.  As mentioned above, the idea of
drawing  a  straight  line  through  a  cloud  of  (x,  y)  points  is  very  old.
But  Sir  Francis  Galton  observed  something  very  interesting  about
such plots.  Here is a quote taken from
       http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Galton.html  

expressing it well:

Regression to the mean.

"In  around  1875  he  was  experimenting  with  sweet-pea  seeds.  He  used  100
seeds of each of seven different diameters and constructed a two-way plot of
diameters  of  the original  seeds against  the diameters of  the seeds of  the next

generation. He noticed that  the median diameter of  the offspring of  the large
seeds  were  less  than  that  of  their  parents  while  the  median  diameter  of  the

offspring  of  the  small  seeds  were  greater  than  that  of  their  parents.  Galton

realised that  the  off-spring tended  to  revert  towards  the  mean size.  Certainly
he did not  understand at  this  stage that  his findings would apply to any two-

way  plot,  thinking  rather  than  it  was  peculiar  to  the  situation  with  which  he
was  experimenting.  At  first  he  called  the  phenomena  'reversion',  but  later
changed the name to 'regression'."

The regression phenomenon applies to many (x, y) plots.  We hear of
outstanding students  on a test administered  in junior year whose test
scores falter  when they are re-tested  next  year.   I've a plot  of  scores
on  two midterm examinations over exactly the same material adminis-
tered two days apart.  The any group appreciably above the mean on
exam 1 definitely fell back on exam 2 whereas any group appreciably
below  the  mean  on  exam  1  moved  up  on  exam  2.   The  average
heights  of  husbands  of  exceptionally  tall  married  women  is  not  so
outstanding as the women.  Likewise the average heights of wives of
exceptionally tall married men is not so outstanding as the tall men.

This  phenomenon  does  not  apply  to  all  plots  but  does  apply  espe-
cially to bi-variate (two dimensional)  normal plots.   The two dimen-
sional  analogue of the bell  curves are the bell  surfaces.   Here is  one
for IQ scores of married couples.  You can see that their IQ's show a
tendency to increase together.
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100 120 140Husband's IQPerhaps  you  can  perceive  in  the  picture  that  the  countours  (think  ofslices horizontally through the surface) are elliptical.  The plot belowobscures this ellipse by attempting to shade the picture.   60 80 100 120 140Husband's IQ 60 80 100 120 140Wife's IQ00.10.2 60 80 100 120 140Husband's IQData  from such  a  distribtuion  (bi-variate  normal)  tends  to  plot  in  anelliptical form.  That is how you recognize "being in control for twovariables."  Here is a plot of IQ scores (x, y) for 200 couples.80 90 100 110 120 130 Husband's IQ8090100110120130Wife's IQHere is a plot for 4000 couples.80 100 120 140 Husband's IQ80100120140Wife's IQRegression is  seen in  the plot  as follows.   Take any Husbands'  IQ,say IQ 130.  Looking at all the points above x = 130 the mean wives'IQ (whose husbands are at 130) is less than 130.  So the average IQof  women  married  to  husbands  whose  IQ  is  130  will  be  less  than130.  If  you  plot  the  vertical  strip  averages  (average  y  score  for  each  x)these tend to fall on a straight line, the line you perceive passing rightthrough the center of the plot.  It is called the regression line.  Galtonwanted to understand regression and how to measure its effect.His  attempts  to  understand  the  regression  phenomenon  were  con-nected with his drive to measure the extent of linear statistical depen-dence  between  two  scores  (x,  y).   He  wanted a  simple  measure  thatwas insensitive to the scales of measurement.  For a list of (x, y) pairs Galton reasoned that points with         x > xBAR and y > yBAR should  contribute  positively  to  linear  dependence  x  and  y  are  largetogether.  Likewise, points (x, y) with both x < xBAR and y < yBARshould  contribute  positively  to  linear  dependence.   In  the  other  twocases     x < xBAR and y > yBAR      x > xBAR and y < yBARhe felt  there  should  be  a  negative  contribution  to linear  dependence.This  led him to consider  the  covariance,  an extension of  variance  totwo variables x, y.              Cov(X, Y) = E (X - EX)(Y - EY) for r.v.                                 = E(X Y) - (E X) (E Y)Note that Cov(X, Y) is 0 for independent r.v.  Note also that              Var X = Cov(X, X)              Var Y = Cov(Y, Y)For any two r.v., regardless of whether independent or dependent,                       Var(X + Y) = Var(X) + 2 Cov(X, Y) + Var(Y)              Now to the sample counterpart of covariance.  For a list of n datapairs (x, y) we have              Cov = (" xy / n) - ("x / n) ("y / n).                      = xyêêêê - xêêê yêêê (avg of prod - prod of avgs)Correlation.   Covariance  is  a  nice  measure  of  linear  association.After all, it lets us deal with variance of sums of r.v. even in the depen-dent case. But although covariance does not depend upon either the xor  y  mean,  it  does  depend upon the  scales  of  measurement  (see thatcov doubles if all the x scores are doubled).  Galton got rid of this bydividing covariance by each of the sd of x and y, calling this CORRE-LATION:           correlation ! = CovHX, YLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsx sY  for r.v.and for n pairs (x, y):            sample correlation !̀ = xyêêêê - xêêê yêêêÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"####################x2êêêê - H xêêêL2  "####################y2êêêê - H yêêêL2Properties  of correlation.   It  is  mathematically  proven that correla-tion  does  not  change  if  scales  are  multiplied  by  a  positive  constantand locations are hcanges.  Correlation of r.v. ! satisfies -1b!b1 andis zero if r.v. X, Y are independent.  Sample correlation is zero if thedata appear as independent, but may be zero in some other cases.  For example, (x, y) data {0, 0}, {0,1}, {1,0}, {1,1} presents as inde-pendent (if x i = 0 you know y = 0 or 1, likewise if x = 1 you know y= 0 or 1) and indeed the correlation is zero (calculate it).0.2 0.4 0.6 0.8 10.20.40.60.81Data  {0,0},  {0,2},  {1,1}  also  has  zero  correlation  but  does  notpresent as independent (if x = 1 you know y = 1 also).0.2 0.4 0.6 0.8 10.511.52If r.v. are independent you will likely see a sample correlation aroundzero.   But  if  a sample  correlation  is  around 0 that  does  not  precludedependence.Appearanace  of  correlation  in  bi-variate  normal  plots.   Here  areseveral  sample plots  from bi-variate  normal distributions  having dif-ferent correlations.  Correlation 0.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.25.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.5.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.75.80 100 120 140 Husband's IQ80100120140Wife's IQCorrelation 0.9380 100 120 140 Husband's IQ80100120140Wife's IQ
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