STT 315 201-202   KEY

Homework due Wednesday 8-9-06

Your exam on Friday 8-11-06 will cover all material after the last exams, including this assignment, a key  for which will be posted Wednesday after classes. 

The subject of this assignment, Tests of Statistical Hypotheses, is keyed to portions of chapter 7 of your textbook.  The main focus will be on three testing situations, each paired with one of the three CI we’ve just studied.

parameter         test statistic                                   related CI                       comment

mu =mean          (xBAR – mu0) / (s / root(n))        xBAR +/- z s / root(n)     large n

mu=mean           (xBAR – mu0) / (s / root(n))        xBAR +/- t s / root(n)      n > 1

                                                                                                                         normal pop

p = P(success)    (pHAT – p0) / (root(p0 q0 / n)     pHAT +/- z root(pHAT qHAT / n)

                                                                                                                         large n

Note:  The last test statistic uses p0, q0 instead of pHAT, qHAT in the standard deviation.

One-sided test.  Tests are used to quantify evidence against a null hypothesis about the parameter of interest, perhaps to alert us to departures from the null hypothesis.  For example, we may be monitoring fill weights of cans of soup.  If the process is already under statistical control we may do this by periodically sampling some small number, say n = 5, of cans from production to test the null hypothesis H0: “the population mean filling of canned soup is mu =16.1 ounces.”  It is important to identify an alternative hypothesis of interest.  For this example it might be H1: mu < 16.1, in which case we would call this a one-tailed (or one-sided) test.  Such a setup would be appropriate if we want the test to alert us to the possibility that mu has drifted below mu0 = 16.1, after all the legal content’s weight is 16 ounces.  Likewise, if it were important to detect overfilling, we could choose H1: “mu > 16.1.”  

How would such a test be done?  Take the case H0: mu = 16.1, H1: mu < 16.1.  From the above table we see that the appropriate test statistic is

               (xBAR – mu0) / (s / root(n))

where mu0 = 16.1 is (always, in all tests) the boundary between H0 and H1.

This test statistic obviously measures the discrepancy between the sample mean xBAR but then compares it against (s / root(n)), the estimated sd of xBAR.

We are looking for negative values of this test statistic which would signal that xBAR is below mu0 = 16.1.  Suppose we field a sample of n = 5 and find xBAR = 15.99 with s = 0.07.  The test statistic is then 

           (xBAR – mu0) / (s / root(n))

           =  (15.99 – 16.1) / (0.07 / root(5)) = -3.5138

Since the test statistic is negative we’ve evidence against H0 but how much evidence?   Since we’re only looking in the direction mu < 16.1 (one-sided test) we might ask for the probability of getting a test statistic smaller than the –3.5138. we got from our data.

              P( test statistic < -3.5138 | mu = 16.1) = P( T < -3.5138).

In the t-table for degrees of freedom n-1 = 5-1 = 4 we find 

                                  t0.01
            DF

             4                   3.747           meaning P(T > 3.747) = 0.01 

Since T is symmetric around zero, P(T < -3.51) is also around 0.01.

Obviously, we cannot always expect to find that our t score will be so close to a table entry.  But in this case –3.51 can be closely compared with the table entry 3.747 for which our rarity is found to be 1%.  We summarize our test by saying that the “observed significance level” is p = 0.01.”  This use of p must not be confused with the other use of p in the binomial setup.  They are entirely different uses of letter p.  We may write pSIG  for clarity.

Now, finally, we can actually test the hypothesis H0: mu = 16.1 versus the alternative H1: mu < 16.1, based on a sample of n = 5, assuming that the five sample scores represent a sample from a normal population with mu = 16.1.  

The sample data yields xBAR = 15.99 and sample standard deviation s = 0.07.  The test statistic is calculated and is –3.5138.  The observed significance level is (close to) p = 0.01.  What do we do?  If we must come to some conclusion we can do the following:

          a.    Specify a level alpha, say 0.05, representing the risk we are

         willing to assume of mistakenly rejecting the null hypothesis H0

         (that mu = 16.1).  Since p = 0.01 is less or equal this alpha = 0.05, 

         we take the action of rejecting H0 based on our sample of five.

          b.    In order to avoid manipulating the test it is often suggested

          that alpha be specified in advance of data collection.

          c.    If p exceeds alpha we do not have sufficient evidence to reject

          the null hypothesis (at the alpha level of risk we have chosen).

IMPORTANT:  Every statistical test, regardless of context, rejects the null hypothesis if the observed significance level p falls below the specified level alpha (see “Why test this way?” below).  Alpha is called the “type one error probability” (probability of error of the first kind) and represents the probability that H0 will be rejected when mu is on the boundary of the hull and alternative hypotheses.  Beta, the chance of failing to reject the null hypothesis when it is false has to be calculated at each point mu in the alternative hypothesis.  To control alpha and beta simultaneously to low levels requires “lots of data.”  Beta is also called the probability of type two error (probability of error of the second kind).

Why test this way?  We now explain the reason a test always takes the form “reject H0 when pSIG is less or equal to alpha.”  Think about “rejecting” the tallest 2% of a crop of Christmas trees.  Those trees are precisely the ones that have 2% or fewer trees taller than they are.  This is exactly true if the distribution of heights of trees is continuous and approximately true otherwise.  You can see it if you play around with a sketch of a density.  Now, think of each sample of n as a “tree” whose “height” is pSIG.  By rejecting H0 for those samples of n having pSIG less or equal to alpha = 0.02 we are rejecting H0 for precisely the worst 2% of samples of n (as measured by pSIG).   Those samples of n for which we’re rejecting H0 are essentially the ones that are least probable under H0 (at the extreme tail of the test statistics they produce).

Bayesian and computer intensive statistics.  The dilemmas associated with yes/no decisions are well known in all of the many contexts of daily life outside of statistics. But, as glimpsed above, statisticians have been able to understand these issues clearly in the context of reaching specific types of decisions based upon the information provided by random samples.  These successes have not gone unnoticed and we are now seeing more and more statistical methods drawn into contexts far removed from the basic setup outlined above.  There is a great need to objectify decision processes so that their operations become more transparent and systematic improvements can be made to them as new information comes to bear.  A lot of this work uses “subjective probabilities” which may represent expert opinion as well as frequencies of events derived from experience.  Models are drawn up (many borrowed from statistics) and Bayes rule is invoked to revise probabilities in the light of new evidence.  Computer simulation methods play a big role in this.  So our humble little statistics is becoming something of a societal decision making engine.

Two-sided test.  Suppose that we wish to be alerted to any departure, up or down, from the null hypothesis H0: mu = 16.1.  We will use the same test statistic t = -3.51 since that measures the departure of xBAR from mu0 relative to s/root(n) (the estimated sd of xBAR).  But p has to be doubled to p = 2 (0.01) = 0.02 for the two-sided test (also called the two-tailed test).  

Why is p doubled in the two-sided test?  Well, significance level p is supposed to represent the chance of getting a test statistic more extreme against the null hypothesis than the -3.51 we observed.  But in the two-sided case that would include values T > 3.51 as well as those T < -3.51.  Hence, we must double the p value for the two-sided test.  The null hypothesis is once again rejected at the level alpha = 0.05 because p = 0.02 < 0.05.

1.  Account balances of a company have been brought under statistical control.  The established mean is around $450.  Periodically the company samples 8 accounts to check on the process mean.  Suppose a sample of eight accounts has sample mean xBAR = $433 with sample standard deviation s = $82.  A test will be performed of the hypothesis H0: mu = $450 versus the alternative H1: mu is not equal to $450.

a.  Is this one sided or two sided?

Two sided since the alternative hypothesis H1 falls on both sides of H0.

b.  Give the form of, and calculate the t-test statistic.

Test statistic = (xBAR – mu0) / (s / root(n)) 

= (433 - 450)/(82/Sqrt[8]) = -0.586381

c.  Determine the two closest values to (b) in the t-table (or the single closest if the test statistic score is at an edge of the table).  Having located these, use the closest one to establish an approximate p value (you have to double here).

Degrees of freedom = n – 1 = 8 – 1 = 7

          DF                         t0.1

               7                                  1.415             (closest table entry to 0.586381)
So P(T > 0.586381) > P(T > 1.415) = 0.1.  Since the test is two sided pSIG is double that which is at least 0.2.
d.  Using (c), what action (accept or reject H0) is taken by the test for alpha = 0.02?

Fail to reject H0 since pSIG > 0.2 > alpha = 0.02.

e.  If the process remains in control with mean mu = $450 around what percentage of such tests will (falsely) reject H0?

Around 2% since that is alpha.

f.   If instead the test is one sided with H1: “mu < $450” what is the p value?  What action is taken by the test? 

For the one-sided test we do not double so pSIG = P(T < = -0.586381) > 0.1.  But still we fail to reject since 0.1 > alpha = 0.02.

g. If instead the test is one sided with H1: “mu > $450” what action is taken by the test?  No calculation is needed.

In this case xBAR = 433 does not go in the direction of H1 so the test will fail to reject H0.

2.  If the average number of sales per store is above 589 the company feels that it can go ahead with development.  Test marketing is done in a random sample of 60 stores.  Suppose sample mean sales for the 60 stores is 540 with sample standard deviation s = 80.  A test will be performed of the hypothesis H0: mu = $589 versus the alternative H1: mu < 589.

a.  Is this one sided or two sided?

One sided.

b.  Give the form of, and calculate the z-test statistic.

Test statistic = (xBAR – mu0) / (s / root(n)) 

= (540 - 589)/(80/Sqrt[60]) = -4.74
c.  Determine the two closest values to (b) in the infinity row of the t-table (or the single closest if the test statistic score is at an edge of the table).  Having located these, use the closest one to establish an approximate p value.

Closest z is 2.576.  So pSIG = P(Z < -3.87298) = P(Z > +3.87298) < 0.005.

d.  Using (c), what action (accept or reject H0) is taken by the test for alpha = 0.05?

Reject Ho since pSIG < 0.005 < alpha = 0.05.

e.  Around what percentage of such tests will (falsely) reject H0 if the true mean remains at 589?

Around 5% since alpha = 0.05.

3.  A company wishes to learn the fraction of stores p (the other use of p) in which product A will outsell product B.  They sample 100 stores for a test- marketing.  Of these stores they find that A outsells B in 64 stores.  

a.  Determine pHAT.  

pHAT = 64/100 = 0.64
b.  Calculate the test statistic for a test of p = 0.6 versus H1: p > 0.6.

(pHAT – p0)/(Sqrt[p0 q0]/Sqrt[n]) 

= (0.64 – 0.6)/(Sqrt[0.6 0.4]/Sqrt[100]) = 0.816497

c.  Is the test (b) one or two sided?

One-sided, since H1 is entirely on one side of H0.

d.  Determine the significance level p for the test.

pSIG = P(Z > 0.816497)  (pr of more extreme in direction of H1)

         z         0.02
        0.8       0.2939

So pSIG = 0.5 – 0.2939 = 0.2061.

The infinity degrees of freedom portion of the t-table would have only told us that the tail probability P(Z > 0.816497) is above 0.1 (10%) because the closest table entry is 1.282 and there is more probability to the right of 0.82 than there is to the right of 1.282.

      DF             t0.10
     Inf            1.282

e. What action is taken by the test if alpha = 0.025?

Fail to reject H0 since pSIG > alpha = 0.025

