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In[13]:=
z@ r_D :=
Apply@Plus, Table@Random@D, 8i, 1, 12<DD - 6

z[1] returns an approximately standard normal  distributed sample as does
z[r] for any real number r.  We need the r  to force Mathematica to generate
indpendent copies in certain situations.

In[15]:=
8z@1D, z@2D, z@3D, z@4D, z@5D, z@6D, z@7D, z@8D<

Out[15]=
80.772312, -0.69582, -0.225729, 0.179642,

-0.93014, -1.54908, -0.853784, -0.0496516<
1.  Sketch the standard normal probability density identifying the mean and sd as recogniz-
able elements of your sketch and locate the above sample values by means of short verti-
cal slashes placed at points on the z-axis.

2.  In your sketch above identify the segment of the z-axis that is approximately produced
by a plot of tiny dots placed at 100000 scaled independent samples
                        z@ DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2 Log@100000D .

This is an example of "normal patterning" in which independent normal samples, even in
higher dimensions,  take on the shapes of ellipses.  In one dimension the ellipse is a line
segment.                      

3.  The joint normal density for two independent z-scores {Z1 , Z2} (called by {z[],z[]})
is for each possible values (z1, z2) given by the product of their marginal densities and
is therefore                        

                        f(z1, z2) = 1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 e- z1

2
ÅÅÅÅÅÅÅÅ2 1ÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

 e- z2 2
ÅÅÅÅÅÅÅÅ2

If we plot this joint density of two independent standard normal r.v. it is seen to have the
isotropic  property.   What does that mean?  Refer to the pictures  below (due to default
values  in  digitization  the  contour  plot  is  jagged,  but  it  should  be  perfectly  smooth).
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In[5]:=

f@u_, v_D := IExp@-u2 ê 2D ë è!!!!!!!
2 pM IExp@-v2 ê 2D ë è!!!!!!!

2 pM
In[8]:=

Plot3D@f@u, vD, 8u, -4, 4<, 8v, -4, 4<, PlotRange Ø AllD
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Out[8]=
Ü SurfaceGraphics  Ü
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In[49]:=
ContourPlot@f@u, vD, 8u, -4, 4<,
8v, -4, 4<, PlotRange Ø AllD
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Out[49]=
Ü ContourGraphics  Ü

4.   Normal  patterning  occurs  in  every  dimension  provided  the  random  variables  are
jointly  normal.   Below  we  have  a  plot  of  100000  independent  samples  scaled  back
towards the mean {0,0}: 
                 8z@ D, z@ D<ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2 Log@100000D
This should reveal the contour shape above.  Keep in mind these are entirely independent
samples but under proper scaling back to their mean they reveal the proper shape of the
contours of any given normal density generating the samples.
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In[44]:=
ListPlot@ Table@8z@1D, z@2D<, 8i, 1, 100000<D ê

Sqrt@2 Log@100000DD, AspectRatio Ø Automatic,
Background Ø GrayLevel@0.7D,
DefaultColor Ø RGBColor@1, 1, 1DD

5.  In the plot just above locate the following scaled samples{z[1],  z[2]} / 
è!!!!!!!!!!!!!!!!!!

2 Log@8D .
Use a small circle to identify each of these scaled points.

The thing to remember is that all multivariate  normal  samples x1, ..., xn , regardless  of
dimension,  obey this phenonenon.   Depending  upon the context  each xi  may be a nor-
mally  distributed  random number,  vector or even a normally  distributed  random curve.
In  the  case  of  random  vectors  or  curves  the  coordinates  may  be  mutually  correlated
(dependent).  Regardless, the independent scaled (values, vectors or curves) 
                { x1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!2 Log@nD , ..., xnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!2 Log@nD }

will for large n plot in a shape revealing the countours  of the normal density generating
those normal sample objects.  In simple vector plots these will appear as ellipses but may
assume  other  shapes  when  plotting  curves  or  other  complicated  normally  distributed
objects.
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Remarks.  We have studied the multiple linear regression model:
     yi = b1 xi1 + b2 xi2 + ... + bd xid + ei for i = 1, ..., n.
This may also be written in matrix form:
                 y = x b + e,     y is nä1, x is näd, b is dä1, e is nä1
with
                 y = y1 x = x11 .... x1 d          b =  b1          e = e1
                       y2                     x21 .... x2 d                 b2                e2
                        .                        .    .     .    .                   .                   .
                        .                        .    .     .    .                  bd                  .
                        .                        .    .     .    .                                       .
                       yn                      xn1 .... xnd                                    en                    
Solving  the normal  equations  of least  squares  obtained  from differentiating  the sum of
squares  of  discrepancies,  left  vertically  by any  proposed  fit  of  the form x b

`
 to  y,  we

found that if the columns of x are linearly independent  the unique coefficients  of least
squares fit are provided by: 
                b

`
 = Hxtr  xL-1 xtr  y = b + Hxtr  xL-1 xtr  e  

The term in the box is least squares performed on errors.  If one uses this least squares
fit whose coefficients are b

`
  the resulting fitted values ỳ = x b

`
 will ordinarily not fit the

data y perfectly but will leave residuals:
                è = y - ỳ  = y - x b

`

If  the  regression  model  above  is  satisfied  for  independent  N[0,  s2]  errors  ei  this
induces a random distribution on b

`
, which after all depends (linearly in fact) upon these

errors.  That distribution is then multivariate normal with:
               E  b

`
j  = b j        and         Cov( b

`
j1, b

`
j2) = AHxtr  xL-1Ej1 j2 s2

for all j, j1, j2 from 1 to d.  Unknown errors' standard deviation s is estimated by a modi-
fied sample standard deviation of the list of residuals è :

               sè  = "##########nÅÅÅÅÅÅÅÅÅÅÅn—d  "###############
è2êêêê

- è
ê2

In the above we see that the modification is to use divisor n—d instead of the custom-
ary  n—1.   Turning  to  confidence  intervals  for  the  estimated  coefficients  b

`
j  we  have

estimated margins of error:

               (t or z for 95%) $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%@Hxtr  xL-1D j j sè
2

Remarks.  For independent  N[0, s2] errors t is applicable and exact for all n > d in the
above.  On the other hand z is an approximation valid for large n since we are estimating
s.  If the constant  term is included  in the model,  as is most often the case, there is the
simplifiaction  that the sample mean of the least squares residuals is zero.  That is, with
constant term è

è
 = 0.

6.  What is the key connection  between the usual linear model  and a processes  under
statistical control?
             Ans.  Variables x1, ... , xd , y of a process under statistical control 
             necessarily satisfy a linear model y = x b + e for some b and s with
             (x1, ... , xd ). (b1, ... , bd ) being the mean response of y when
             x1, ... , xd  are specified and s2 being the conditional variance of y 
             about (x1, ... , xd ). (b1, ... , bd ) when (x1, ... , xd ) are specified.
Note that s does not vary with (x1, ... , xd), exactly as is the case with the 
usual linear model.  Now, draw the picture illustrating this phenomenon for the case
of a two dimensional  plot of (x,y) pairs that are jointly normally distributed (under
joint statistical control).

Variables  x1, ... , xd ,  y of  a  process  under  statistical  control  are  regarded  as jointly
normally distributed.  The role of y as dependent  variable is not particularly special as
regards joint normality.   We could just as well be speaking about x1  as dependent  vari-
able and the rest, including y, as independent  variables, at least so far as joint normality
is concerned.   They are all variables  "under joint statistical  control."  But we've singled
out y because we wish to control it (perhaps) through choice of the independent variables
x1, ... , xd . 
       

Remarks.  We've used Little Software to solve for various fits and associated quantities
as per the remarks above.  I will not repeat the few software calls employed but ask that
you have retained the ability to know their uses and interpretations if they appear in front
of you.  For example is you see 
                betahat[{{1,4.5},{1,3.2},{1,3.12}},{36.4,  44.7, 67.7}]
you know this is a linear regression set in matrix form and that its output will be the fitted
y-intercept  and slope.   You know also that as usually presented  the (x,y) data pairs are
(4.5, 36.4), (3.2, 44.7), (3.12, 67.7).

7.  Fit of least squares  line for 2-dim normal plots by eye.  Reading off the means
and standard deviations of x and y and the correlation by eye.  It is simple:
          sample means of x, y are easily seen
          block off an interval of ~68% of points around mean of x
          block off an interval of ~68% of points around mean of y
Now you have an idea of the sample standard deviations of x and y.
          lay off a line through the means joining the point one sdx right and one sdy up
You now have the "naive" line, not the regression line.  
          draw the regression line by eye
The regression line plots through the vertical strip y-means.
          estimate by eye the ratio of the slope of the regression line vs the naive line
That  is  the estimated  correlation.   Of course  this  is no substitute  for calculation  but it
does help us to think about what is going on.  Do all this for the example below which is
a plot of 100 points (x,y) obtained from a correlated normal model.
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Out[61]=
Ü Graphics Ü
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